首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iron regulatory proteins (IRPs) control iron metabolism by specifically interacting with iron-responsive elements (IREs) on mRNAs. Nitric oxide (NO) converts IRP-1 from a [4Fe-4S] aconitase to a trans-regulatory protein through Fe-S cluster disassembly. Here, we have focused on the fate of IRE binding IRP1 from murine macrophages when NO flux stops. We show that virtually all IRP-1 molecules from NO-producing cells dissociated from IRE and recovered aconitase activity after re-assembling a [4Fe-4S] cluster in vitro. The reverse change in IRP-1 activities also occurred in intact cells no longer exposed to NO and did not require de novo protein synthesis. Likewise, inhibition of mitochondrial aconitase via NO-induced Fe-S cluster disassembly was also reversed independently of protein translation after NO removal. Our results provide the first evidence of Fe-S cluster repair of NO-modified aconitases in mammalian cells. Moreover, we show that reverse change in IRP-1 activities and repair of mitochondrial aconitase activity depended on energized mitochondria. Finally, we demonstrate that IRP-1 activation by NO was accompanied by both a drastic decrease in ferritin levels and an increase in transferrin receptor mRNA levels. However, although ferritin expression was recovered upon IRP-1-IRE dissociation, expression of transferrin receptor mRNA continued to rise for several hours after stopping NO flux.  相似文献   

2.
3.
Iron regulatory protein-1 (IRP-1) controls the expression of several mRNAs by binding to iron-responsive elements (IREs) in their untranslated regions. In iron-replete cells, a 4Fe-4S cluster converts IRP-1 to cytoplasmic aconitase. IRE binding activity is restored by cluster loss in response to iron starvation, NO, or extracellular H2O2. Here, we study the effects of intracellular quinone-induced oxidative stress on IRP-1. Treatment of murine B6 fibroblasts with menadione sodium bisulfite (MSB), a redox cycling drug, causes a modest activation of IRP-1 to bind to IREs within 15-30 min. However, IRE binding drops to basal levels within 60 min. Surprisingly, a remarkable loss of both IRE binding and aconitase activities of IRP-1 follows treatment with MSB for 1-2 h. These effects do not result from alterations in IRP-1 half-life, can be antagonized by the antioxidant N-acetylcysteine, and regulate IRE-containing mRNAs; the capacity of iron-starved MSB-treated cells to increase transferrin receptor mRNA levels is inhibited, and MSB increases the translation of a human growth hormone indicator mRNA bearing an IRE in its 5'-untranslated region. Nonetheless, MSB inhibits ferritin synthesis. Thus, menadione-induced oxidative stress leads to post-translational inactivation of both genetic and enzymatic functions of IRP-1 by a mechanism that lies beyond the "classical" Fe-S cluster switch and exerts multiple effects on cellular iron metabolism.  相似文献   

4.
5.
6.
7.
Iron regulatory protein-1 (IRP-1) is known as a cytosolic aconitase and a central regulator of iron (Fe) homeostasis. IRP-1 regulates the expression of Fe metabolism-related proteins by interacting with the Fe-responsive element (IRE) in the untranslated regions of mRNAs of these proteins. However, it is less known whether IRP-1 modulates various non-Fe metals. In the present study, we showed that treatment of homogenously purified IRP-1 with non-Fe metals decreased the affinity to IRE in RNA band shift assays and increased aconitase activity. Non-Fe metals also inhibited (55)Fe incorporation into the fourth labile position of the Fe-S cluster of IRP-1. In PLC hepatoma cells, metal loading inactivated binding activity and activated enzyme activity. It also suppressed transferrin receptor mRNA expression in the cells. These results suggest that various non-Fe metals modulate IRP-1 by conversion of the 3Fe-4S apo-form to a [1 non-Fe metal + 3Fe]-4Fe holo-form.  相似文献   

8.
9.
Smokers have an elevated risk of cardiovascular disease, but the origin(s) of this increased risk are incompletely defined. Evidence supports an accumulation of the oxidant-generating enzyme myeloperoxidase (MPO) in the inflamed artery wall, and smokers have high levels of SCN?, a preferred MPO substrate, with this resulting in HOSCN formation. We hypothesised that HOSCN, a thiol-specific oxidant may target the iron-sulphur cluster of aconitase (both isolated, and within primary human coronary artery endothelial cells; HCAEC) resulting in enzyme dysfunction, release of iron, and conversion of the cytosolic isoform to iron response protein-1, which regulates intracellular iron levels. We show that exposure of isolated aconitase to increasing concentrations of HOSCN releases iron from the aconitase [Fe-S]4 cluster, and decreases enzyme activity. This is associated with protein thiol loss and modification of specific Cys residues in, and around, the [Fe-S]4 cluster. Exposure of HCAEC to HOSCN resulted in increased intracellular levels of chelatable iron, loss of aconitase activity and increased iron response protein-1 (IRP-1) activity. These data indicate HOSCN, an oxidant associated with oxidative stress in smokers, can induce aconitase dysfunction in human endothelial cells via Cys oxidation, damage to the [Fe-S]4 cluster, iron release and generation of IRP-1 activity, which modulates ferritin protein levels and results in dysregulation of iron metabolism. These data may rationalise, in part, the presence of increased levels of iron in human atherosclerotic lesions and contribute to increased oxidative damage and endothelial cell dysfunction in smokers. Similar reactions may occur at other sites of inflammation.  相似文献   

10.
The generally accepted role of iron-regulatory protein 1 (IRP1) in orchestrating the fate of iron-regulated mRNAs depends on the interconversion of its cytosolic aconitase and RNA-binding forms through assembly/disassembly of its Fe-S cluster, without altering protein abundance. Here, we show that IRP1 protein abundance can be iron-regulated. Modulation of IRP1 abundance by iron did not require assembly of the Fe-S cluster, since a mutant with all cluster-ligating cysteines mutated to serine underwent iron-induced protein degradation. Phosphorylation of IRP1 at S138 favored the RNA-binding form and promoted iron-dependent degradation. However, phosphorylation at S138 was not required for degradation. Further, degradation of an S138 phosphomimetic mutant was not blocked by mutation of cluster-ligating cysteines. These findings were confirmed in mouse models with genetic defects in cytosolic Fe-S cluster assembly/disassembly. IRP1 RNA-binding activity was primarily regulated by IRP1 degradation in these animals. Our results reveal a mechanism for regulating IRP1 action relevant to the control of iron homeostasis during cell proliferation, inflammation, and in response to diseases altering cytosolic Fe-S cluster assembly or disassembly.  相似文献   

11.
Using highly purified recombinant mitochondrial aconitase, we determined the kinetics and mechanisms of inactivation mediated by nitric oxide (*NO), nitrosoglutathione (GSNO), and peroxynitrite (ONOO(-)). High *NO concentrations are required to inhibit resting aconitase. Brief *NO exposures led to a reversible inhibition competitive with isocitrate (K(I)=35 microM). Subsequently, an irreversible inactivation (0.65 M(-1) s(-1)) was observed. Irreversible inactivation was mediated by GSNO also, both in the absence and in the presence of substrates (0.23 M(-1) s(-1)). Peroxynitrite reacted with the [4Fe-4S] cluster, yielding the inactive [3Fe-4S] enzyme (1.1 x 10(5) M(-1) s(-1)). Carbon dioxide enhanced ONOO(-)-dependent inactivation via reaction of CO(3)*(-) with the [4Fe-4S] cluster (3 x 10(8) M(-1) s(-1)). Peroxynitrite also induced m-aconitase tyrosine nitration but this reaction did not contribute to enzyme inactivation. Computational modeling of aconitase inactivation by O(2)*(-) and *NO revealed that, when NO is produced and readily consumed, measuring the amount of active aconitase remains a sensitive method to detect variations in O(2)*(-) production in cells but, when cells are exposed to high concentrations of NO, aconitase inactivation does not exclusively reflect changes in rates of O(2)*(-) production. In the latter case, extents of aconitase inactivation reflect the formation of secondary reactive species, specifically ONOO(-) and CO(3)*(-), which also mediate m-aconitase tyrosine nitration, a footprint of reactive *NO-derived species.  相似文献   

12.
13.
Iron regulatory protein 1 (IRP1) is regulated through the assembly/disassembly of a [4Fe-4S] cluster, which interconverts IRP1 with cytosolic aconitase. A genetic screen to isolate Saccharomyces cerevisiae strains bearing mutations in genes required for the conversion of IRP1 to c-aconitase led to the identification of a previously uncharacterized, essential gene, which we call CFD1 (cytosolic Fe-S cluster deficient). CFD1 encodes a highly conserved, putative P-loop ATPase. A non-lethal mutation of CFD1 (cfd1-1) reduced c-aconitase specific activity in IRP1-transformed yeast by >90%, although IRP1 in these cells could be readily converted to c-aconitase in vitro upon incubation with iron alone. IRP1-transformed cfd1-1 yeast lacked EPR-detectable Fe-S clusters in c-aconitase, pointing to a defect in Fe-S cluster assembly. The specific activity of another cytosolic Fe-S protein, Leu1p, was also inhibited by >90% in cfd1-1 yeast, whereas activity of mitochondrial Fe-S proteins was not inhibited. Consistent with a cytosolic site of activity, Cfd1p was localized in the cytoplasm. To our knowledge, Cfd1p is the first cytoplasmic Fe-S cluster assembly factor described in eukaryotes.  相似文献   

14.
Human iron regulatory protein-1 (IRP-1) is a bifunctional protein that regulates iron metabolism by binding to mRNAs encoding proteins involved in iron uptake, storage, and utilization. Intracellular iron accumulation regulates IRP-1 function by promoting the assembly of an iron-sulfur cluster, conferring aconitase activity to IRP-1, and hindering RNA binding. Using protein footprinting, we have studied the structure of the two functional forms of IRP-1 and have mapped the surface of the iron-responsive element (IRE) binding site. Binding of the ferritin IRE or of the minimal regulatory region of transferrin receptor mRNA induced strong protections against proteolysis in the region spanning amino acids 80 to 187, which are located in the putative cleft thought to be involved in RNA binding. In addition, IRE-induced protections were also found in the C-terminal domain at Arg-721 and Arg-728. These data implicate a bipartite IRE binding site located in the putative cleft of IRP-1. The aconitase form of IRP-1 adopts a more compact structure because strong reductions of cleavage were detected in two defined areas encompassing residues 149 to 187 and 721 to 735. Thus both ligands of apo-IRP-1, the IRE and the 4Fe-4S cluster, induce distinct but overlapping alterations in protease accessibility. These data provide evidences for structural changes in IRP-1 upon cluster formation that affect the accessibility of residues constituting the RNA binding site.  相似文献   

15.
Interconversion of iron regulatory protein 1 (IRP1) with cytosolic aconitase (c-aconitase) occurs via assembly/disassembly of a [4Fe-4S] cluster. Recent evidence implicates oxidants in cluster disassembly. We investigated H(2)O(2)-initiated Fe-S cluster disassembly in c-aconitase expressed in Saccharomyces cerevisiae. A signal for [3Fe-4S] c-aconitase was detected by whole-cell EPR of aerobically grown, aco1 yeast expressing wild-type IRP1 or a S138A-IRP1 mutant (IRP1(S138A)), providing the first direct evidence of a 3Fe intermediate in vivo. Exposure of yeast to H(2)O(2) increased this 3Fe c-aconitase signal up to 5-fold, coincident with inhibition of c-aconitase activity. Untreated yeast expressing IRP1(S138D) or IRP1(S138E), which mimic phosphorylated IRP1, failed to give a 3Fe signal. H(2)O(2) produced a weak 3Fe signal in yeast expressing IRP1(S138D). Yeast expressing IRP1(S138D) or IRP1(S138E) were the most sensitive to inhibition of aconitase-dependent growth by H(2)O(2) and were more responsive to changes in media iron status. Ferricyanide oxidation of anaerobically reconstituted c-aconitase yielded a strong 3Fe EPR signal with wild-type and S138A c-aconitases. Only a weak 3Fe signal was obtained with S138D c-aconitase, and no signal was obtained with S138E c-aconitase. This, paired with loss of c-aconitase activity, strongly argues that the Fe-S clusters of these phosphomimetic c-aconitase mutants undergo more complete disassembly upon oxidation. Our results demonstrate that 3Fe c-aconitase is an intermediate in H(2)O(2)-initiated Fe-S cluster disassembly in vivo and suggest that cluster assembly/disassembly in IRP1 is a dynamic process in aerobically growing yeast. Further, our results support the view that phosphorylation of IRP1 can modulate its response to iron through effects on Fe-S cluster stability and turnover.  相似文献   

16.
17.
Nitric oxide modulates the activity of tobacco aconitase   总被引:27,自引:0,他引:27       下载免费PDF全文
Recent evidence suggests an important role for nitric oxide (NO) signaling in plant-pathogen interactions. Additional elucidation of the role of NO in plants will require identification of NO targets. Since aconitases are major NO targets in animals, we examined the effect of NO on tobacco (Nicotiana tabacum) aconitase. The tobacco aconitases, like their animal counterparts, were inhibited by NO donors. The cytosolic aconitase in animals, in addition to being a key redox and NO sensor, is converted by NO into an mRNA binding protein (IRP, or iron-regulatory protein) that regulates iron homeostasis. A tobacco cytosolic aconitase gene (NtACO1) whose deduced amino acid sequence shared 61% identity and 76% similarity with the human IRP-1 was cloned. Furthermore, residues involved in mRNA binding by IRP-1 were conserved in NtACO1. These results reveal additional similarities between the NO signaling mechanisms used by plants and animals.  相似文献   

18.
We have obtained iron K-edge extended x-ray absorption fine structure spectra of the plant mitochondrial aconitase in its active state, in the presence (aconitase (+)) and absence (aconitase (-)) of the substrate citrate. Analysis of the data indicates that oxygens are present in the first coordination shell, at an average Fe-O distance of 1.96/1.98 A (aconitase (+)/aconitase(-)). Part of these oxygens is provided by the citrate, which binds at 1.99 A from the iron in aconitase (+). The second shell (sulfur) contribution is split and is consistent with Fe-S distances of 2.30/2.29 and 2.56/2.59 A, and the third shell (iron) is consistent with an Fe-Fe distance of 2.83/2.84 A. Both Fe-S and Fe-Fe distances are longer than similar distances found in most Fe-S centers. A strong scattering at approximately 5 A has been identified as originating from an iron atom which is near to, but not part of, the Fe-S cluster. These data indicate that active plant mitochondrial aconitase contains a novel type of iron center.  相似文献   

19.
The survival of skeletal muscle myoblasts in culture after exposure either to a donor of NO, sodium nitroprusside (SNP), or ethanamine, 2,2'-(hydroxynitrosohydrazono)bis-(DETA NONOate), or to a donor of both NO and O(-)(2), 3-morpholinosydnonimine hydrochloride (SIN-1), was investigated. SIN-1 reduced clonogenic survival markedly but donors of NO alone did not. The injurious effect of SIN-1 was prevented by oxyhemoglobin or by uric acid but not by superoxide dismutase. The exposure of myoblasts to authentic peroxynitrite (ONOO(-)) or to DETA NONOate in the presence of an O(-)(2)-generating system did not reduce their survival. The results show that NO or ONOO(-) alone is not detrimental to myoblast survival and suggest that SIN-1 toxicity is, at least in part, mediated by H(2)O(2) in this myoblast culture system.  相似文献   

20.
Iron regulatory protein-1 (IRP-1) is a cytosolic RNA-binding protein that is a regulator of iron homeostasis in mammalian cells. IRP-1 binds to RNA structures, known as iron-responsive elements, located in the untranslated regions of specific mRNAs, and it regulates the translation or stability of these mRNAs. Iron regulates IRP-1 activity by converting it from an RNA-binding apoprotein into a [4Fe-4S] cluster protein exhibiting aconitase activity. IRP-1 is widely found in prokaryotes and eukaryotes. Here, we report the biochemical characterization and regulation of an IRP-1 homolog in Caenorhabditis elegans (GEI-22/ACO-1). GEI-22/ACO-1 is expressed in the cytosol of cells of the hypodermis and the intestine. Like mammalian IRP-1/aconitases, GEI-22/ACO-1 exhibits aconitase activity and is post-translationally regulated by iron. Although GEI-22/ACO-1 shares striking resemblance to mammalian IRP-1, it fails to bind RNA. This is consistent with the lack of iron-responsive elements in the C. elegans ferritin genes, ftn-1 and ftn-2. While mammalian ferritin H and L mRNAs are translationally regulated by iron, the amounts of C. elegans ftn-1 and ftn-2 mRNAs are increased by iron and decreased by iron chelation. Excess iron did not significantly alter worm development but did shorten their life span. These studies indicated that iron homeostasis in C. elegans shares some similarities with those of vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号