首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have conducted a genetic analysis of the region flanking the 68C glue gene cluster in Drosophila melanogaster by isolating lethal and semilethal mutations uncovered by deficiencies which span this region. Three different mutagens were used: ethyl methanesulfonate (EMS), ethyl nitrosourea (ENU) and diepoxybutane (DEB). In the region from 68A3 to 68C11, 64 lethal, semilethal, and visible mutations were recovered. These include alleles of 13 new lethal complementation groups, as well as new alleles of rotated, low xanthine dehydrogenase, lethal(3)517 and lethal(3)B76. Six new visible mutations from within this region were recovered on the basis of their reduced viability; all proved to be semiviable alleles of lethal complementation groups. No significant differences were observed in the distributions of lethals recovered using the three different mutagens. Each lethal was mapped on the basis of complementation with overlapping deficiencies; mutations that mapped within the same interval were tested for complementation, and the relative order of the lethal groups within each interval was determined by recombination. The cytological distribution of genes within the 68A3-68C11 region is not uniform: the region from 68A2,3 to 68B1,3 (seven to ten polytene chromosome bands) contains at least 13 lethal complementation groups and the mutation low xanthine dehydrogenase; the adjoining region from 68B1,3 to 68C5,6 (six to nine bands) includes the 68C glue gene cluster, but no known lethal or visible complementation groups; and the interval from 68C5,6 to 68C10,11 (three to five bands) contains at least three lethal complementation groups and the visible mutation rotated. The developmental stage at which lethality is observed was determined for a representative allele from each lethal complementation group.  相似文献   

2.
K C Kirkland  J P Phillips 《Gene》1987,61(3):415-419
A synthetic oligodeoxynucleotide 18-mer probe derived from the amino acid sequence of Drosophila melanogaster cytoplasmic superoxide dismutase (cSOD) was used to screen a D. melanogaster genomic library. One of the positive clones maps by in situ hybridization to position 68A8-9 on the left arm of polytene chromosome 3, the region to which cSOD mutants have previously been mapped genetically. Partial sequence analysis verifies the presence of cSOD-coding sequences in this clone and indicates that the intron structure of the Drosophila cSOD gene differs significantly from its human counterpart.  相似文献   

3.
4.
We report here the isolation of a tandem duplication of a small region of the third chromosome of Drosophila melanogaster containing the Cu-Zn superoxide dismutase (cSOD) gene. This duplication is associated with a dosage-dependent increase in cSOD activity. The biological consequences of hypermorphic levels of cSOD in genotypes carrying this duplication have been investigated under diverse conditions of oxygen stress imposed by acute exposure to ionizing radiation, chronic exposure to paraquat, and the normoxia of standard laboratory culture. We find that a 50% increase in cSOD activity above the normal diploid level confers increased resistance to ionizing radiation and, in contrast, confers decreased resistance to the superoxide-generating agent paraquat. The duplication is associated with a minor increase in adult life-span under conditions of normoxia. These results reveal important features of the biological function of cSOD within the context of the overall oxygen defense system of Drosophila.  相似文献   

5.
6.
The genetic interval 35C to 36A on chromosome arm 2L of Drosophila melanogaster has been saturated for mutations with visible or lethal phenotypes. 38 loci have been characterized, including several maternal-effect lethals (vasa, Bic-C, chiffon, cactus and cornichon) and several early embryonic lethals, including snail and fizzy. About 130 deletions have been used to order these loci. Complex interactions between mutant alleles have been uncovered in the immediate genetic environs of the snail gene, as has further evidence for an interaction between this region and that including the nearby genes no-ocelli and elbow.  相似文献   

7.
Genetic organization of a proximal region of the second chromosome inDrosophila melanogaster has been analysed by saturation mutagenesis. Seven alleles were uncovered in this region in addition to the one previously known. Besides this, quite a few mutations were isolated that non-complemented more than one group of lethals and looked very much like deletions of varying extent. Except one, all the lethals complemented M(2)z.  相似文献   

8.
Recombinational and deletion mapping of electrophoretic variants of the glutamine synthetase I isozyme (GSI) in Drosophila melanogaster locates the gene in the 21B region on the second chromosome. We have conducted a genetic analysis of the region extending cytologically from 21A to 21B4-6. Recessive lethal mutations were generated by ethyl methanesulfonate (EMS) and ethyl nitrosourea (ENU) mutagenesis and by hybrid dysgenesis (HD). These lethals fall into seven functional groups, which were partially ordered by complementation with cytologically defined deficiencies of this region generated by hybrid dysgenesis. Two of the EMS- and two of the ENU-induced lethals fulfill biochemical criteria expected for null alleles of the GSI gene.  相似文献   

9.
Nicklas JA  Cline TW 《Genetics》1983,103(4):617-631
The X-chromosome:autosome balance in D. melanogaster appears to control both sex determination and dosage compensation through effects on a maternally influenced sex-linked gene called Sex-lethal (Sxl; 1-19.2). To facilitate molecular and genetic analysis of Sxl, we attempted to determine the locations of all ethyl methanesulfonate (EMS)-mutable genes vital to both sexes in the region between 6E1 and 7B1. This area includes approximately 1 cM of the genetic map on each side of Sxl and was reported by C. B. Bridges to contain 26 salivary gland polytene chromosome bands. The region appears rather sparsely populated with genes vital to both sexes, since the 122 recessive lethal mutations we recovered fell into only nine complementation groups. From one to 38 alleles of each gene were recovered. There was a preponderance of embryonic lethals in this area, although the lethal periods of loss-of-function mutations included larval, pupal and adult stages as well. Since the screen required that mutations be recessive and lethal to males, our failure to recover new Sxl alleles was the result expected for a gene with a female-specific function. An attempt was made to identify recessive male-specific lethals in this region, but none were found. Precise map positions were determined for eight of the nine vital genes. An interesting feature of the map is the location of Sxl in the middle of a 0.6- to 0.7-cM interval that appears to be devoid of genes vital to both sexes. The genetic location was determined of breakpoints near Sxl for all available chromosome rearrangements. Sxl is most likely located just to the left of band 7A1. We determined the relationship of our EMS-induced mutations in these nine genes to alleles induced by others. From this we conclude that the various genes appear to differ significantly from each other in their relative sensitivity to mutation by EMS vs. X rays.  相似文献   

10.
Genetics of Acetylcholinesterase in DROSOPHILA MELANOGASTER   总被引:17,自引:7,他引:10       下载免费PDF全文
Genes in Drosophila melanogaster that control acetylcholinesterase (AChE) were searched for by segmental aneuploidy techniques. Homogenates of flies containing duplications or deletions for different segments were assayed for enzyme activity. A region on the third chromosome was found for which flies having one does consistently gave lower AChE activity than euploid flies, which were in turn had lower activity than flies with three doses. The activity differences were in the approximate ratio 1:2:3. Fine structure deletion mapping within this region revealed a very small segment for which one-dose flies have approximately half-normal activity. To obtain putative AchE-null mutations, lethal mutations within this region were assayed. Four allelic lethals have approximately half-normal activity in heterozygous condition. These lethals probably define the structural locus (symbol: Ace) for AChE.  相似文献   

11.
Nash D  Janca FC 《Genetics》1983,105(4):957-968
In a small region of the X chromosome of Drosophila melanogaster, we have found that a third of the mutations that appear to act as lethals in segmental haploids are viable in homozygous mutant individuals. These viable mutations fall into four complementation groups. The most reasonable explanation of these mutations is that they are a subset of functionally hypomorphic alleles of essential genes: hypomorphic mutations with activity levels above a threshold required for survival, but below twice that level, should behave in this manner. We refer to these mutations as "haplo-specific lethal mutations." In studies of autosomal lethals, haplo-specific lethal mutations can be included in lethal complementation tests without being identified as such. Accidental inclusion of disguised haplo-specific lethals in autosomal complementation tests will generate spurious examples of interallelic complementation.  相似文献   

12.
The chromosomal region surrounding the structural gene for α-glycerophosphate dehydrogenase (αGpdh, 2-20.5) of Drosophila melanogaster has been studied in detail. Forty-three EMS-induced recessive lethal mutations and five previously identified visible mutations have been localized within the 25A-27D region of chromosome 2 by deficiency mapping and in some cases by a recombination analysis. The 43 lethal mutations specify 17 lethal loci. αGpdh has been localized to a single polytene chromosome band, 25F5, and there apparently are no lethals that map to the αGpdh locus.  相似文献   

13.
Forty-seven lethal mutations and alleles of nine visible loci (including alcohol dehydrogenase) have been mapped by both deficiency mapping and, in most cases, by recombination mapping to a small region (34D-35C) of chromosome arm 2L of Drosophila melanogaster. The lethals fall into approximately 21 complementation groups, and we estimate that the total number of lethal plus visible complementation groups within the 34-band deficiency, Df(2L)64j, is approximately 34, a remarkable numerical coincidence. The possible genetic significance of this coincidence is discussed. Lethals mapping close to the structural gene for alcohol dehydrogenase, both distally and proximally, have been identified and will be used for the construction of selective crosses for the study of exchange within this locus. Despite many abnormal cytological features (e.g., ectopic pairing, weak points) region 35 of chromosome arm 2L does not display any unusual genetic features; indeed, in terms of the amount of recombination per band and the average map distance between adjacent loci, this region is similar to that between zeste and white on the X chromosome.  相似文献   

14.
The genetic organization of interval 62B3-4 to 62D3-4 on the Drosophila third chromosome was investigated. The region (designated DRE) includes four known loci: Roughened (R; 3-1.4), defined by a dominant mutation disrupting eye morphology; the nonvital locus Aprt, structural gene for adenine phosphoribosyltransferase; Dras3, a homolog of the vertebrate ras oncogene; and 1(3)ecdysoneless (1(3)ecd), a gene that has been implicated in the regulation of larval molting hormone (ecdysteroid) synthesis. Overlapping chromosomal deletions of the region were generated by gamma-ray-induced reversion of the R mutation. Recessive lethal mutations were isolated based upon failure to complement the recessive lethality of Df(3L)RR2, a deletion of the DRE region that removes 16-18 polytene chromosome bands. A total of 117 mutations were isolated following ethyl methanesulfonate and gamma-ray mutagenesis. These and two additional define 13 lethal complementation groups. Mutations at two loci were recovered at disproportionately high rates. One of these loci is preferentially sensitive to radiation-induced mutational alterations. Additionally, an unusually low recovery rate for cytologically detectable rearrangement breakpoints within the gamma-ray-sensitive locus suggests that an interval of the DRE region closely linked to the R locus may be dominantly sensitive to position effects. Lethal phase analysis of mutant hemizygotes indicates that a high proportion of DRE-region loci (11 of 13) are necessary for larval development. Mutations in five loci cause predominantly first-instar larval lethality, while mutations in four other loci cause predominantly second-instar lethality. Mutations in two loci cause late-larval lethality associated with abnormal imaginal disc development. A temperature-sensitive allele of one newly identified complementation group blocks ecdysteroid-induced pupariation. This developmental block is overcome by dietary 20-hydroxyecdysone, suggesting that a second locus in the region in addition to l(3)ecd may play a role in the regulation of late larval ecdysteroid levels.  相似文献   

15.
16.
Genome imprinting is the process by which identical alleles at a particular locus may be rendered functionally different depending on the sex of the parent contributing the allele. While several mutations in imprinted genes have been defined, no variants in the regulatory system that gives rise to imprinting have been described. Here we report our genetic analysis of the behavior of the interstrain, polar, embryonic-lethal phenotype known as the "DDK syndrome." We have mapped the interstrain, polar-lethal region of the genome to the distal portion of mouse chromosome 11, near the Xmv-42 locus. We propose that the lethal phenotype is not caused by a standard mutation, but by aberrant imprinting of a gene within this region.  相似文献   

17.
328 X-linked recessive lethal mutations induced in late spermatids by hycanthone methanesulfonate were tested for coverage by duplications that comprised, in total, about 24% of the euchromatic X chromosome; 78 lethals appeared to be covered. Crossover localization tests of a random sample of 38 non-covered lethals revealed 4 chromosomes carrying a lethal within a duplicated segment. Lethals localized to a particular region were crossed to reference deficiencies and single-locus mutations, and inter se, to ascertain their genetic extent. The proportion of multi-locus deletions among these 78 covered and 4 non-covered lethals was 3/48, 1/10 and 13/24 for the distal, medial and proximal regions, respectively. A storage period of 9 days did not noticeably influence these proportions. In the sample of 38 non-covered lethals, and among 17 of the covered single-site lethals, 4 cases of strong crossover suppression were detected. Comparison of these results with data obtained with other mutagens suggests that induction of multi-locus deletions, and possibly of other types of chromosome rearrangement, could in part depend on other mechanisms than those acting in the formation of translocations and chromosome loss. For the purpose of mutagen testing, these findings imply that, in Drosophila, results in the regular genetic tests for chromosome breakage events do not always accurately predict the capacity of a mutagen to induce multi-locus deletions. This is of importance since transmissible multi-locus deletions have been considered a significant source of genetic damage in man.  相似文献   

18.
Chadov BF 《Genetika》2002,38(7):869-880
The mutants referred to as facultative dominant lethals were selected in the progeny of gamma-irradiated Drosophila males. The mutant males were viable and fertile, though their crosses with females of the yellow line yielded no daughters. The mutations obtained differed from the common mutations by (1) extremely varying penetrance of F1 hybrids from crosses with various lines; (2) the uncertain relationships between the mutant and normal alleles; (3) the different expression in somatic and germ cells; (4) the dependence of the expression on the sex of the parent carrying the donor mutations; (5) the mass morphosis formation and (6) the frequent reversal to the norm. These mutations are assigned to the regulatory group and their specific expression (see above) can be helpful in identifying regulatory gene mutations. We assume that the specific expression of the mutations studied is related to specific properties of the regulatory genes. These properties are as follows: (1) only one out of two homologous regulatory genes located on one homolog is in an active state, (2) in the haploid chromosome set the regulatory gene is represented by several alleles (cys-alleles); (3) only one allele ensures the regulatory gene activity.  相似文献   

19.
Johnson EB  Steffen DJ  Lynch KW  Herz J 《Genomics》2006,88(5):600-609
Mulefoot disease (MFD) is an autosomal recessive disorder of phenotypically variable expression that causes syndactyly in certain strains of cows. MFD maps to a narrow interval on bovine chromosome 15 that is syntenic to human chromosome 11p12-p11.2. This region contains MEGF7/LRP4 (approved gene symbol LRP4), a gene that encodes a member of the multifunctional low-density lipoprotein receptor gene family. Targeted and naturally occurring mutations in the murine Megf7/Lrp4 gene, a putative coreceptor in the Wnt signaling pathway, cause polysyndactyly in the rodent. Thus, Megf7/Lrp4 is a strong candidate for the MFD mutation. Using PCR analysis of tissue samples and sperm from confirmed homozygous MFD carriers, we have identified a functional single base pair mutation in the affected animals. We show that a G --> A transition at the first nucleotide in the splice donor site of intron 37 completely disables this splice site. The abnormal splicing that is caused by this mutation predicts the generation of a dysfunctional membrane-anchored receptor lacking the normal cytoplasmic domain. These findings confirm that autosomal recessive loss-of-function mutations in Megf7/Lrp4 result in phenotypically similar forms of syndactyly in different mammalian species and that such mutations are the cause of MFD in bovines.  相似文献   

20.
We have analyzed a region of approximately 5.4 million base pairs for mutations, which under standard laboratory conditions result in developmental arrest, sterility, or maternal-effect lethality in Caenorhabditis elegans. Lethal mutations were isolated, maintained, and genetically manipulated as homozygotes using sDp2– a duplication of the left half of chromosome I. All of the lethals and rearrangements used in this analysis were balanced by sDp2. Relatively low doses of mutagen, (approximately 15 mM ethylmethane sulfate; EMS), were used so as to limit the occurrence of second-site mutations, thus increasing the probability of recovering single nucleotide substitutions. Treatment of over 32,400 marked chromosomes resulted in 486 analyzed mutations. In this paper, we add 133 previously unidentified let genes, isolated in the EMS screens, and one let gene identified by a γ-ray induced mutation, to our collection of 103 essential genes. We also recovered lethal alleles of genes for which visible mutants already existed. In total, eight deficiencies and alleles of 237 essential genes were identified. Eighty-nine of the previously unidentified let genes are represented by more than one lethal allele. Statistical analysis indicates a minimum estimate of 400 essential genes in the region of chromosome I balanced by sDp2. This region occupies approximately half of chromosome I, and contains over 1135 protein-coding genes predicted from the genomic sequence data. Thus, approximately one-third of the predicted genes are estimated to be essential. Of these approximately 60% are represented by lethal alleles. Less than 2% of the lethal-bearing strains recovered in our analysis, including the eight genetically definable deficiencies, carried more than one lethal mutation. Several screens were used to recover mutations for this analysis. Because all the mutations were isolated using the same balancer, under similar screening conditions, it was possible to compare intervals within the sDp2 region with each other. The fraction of essential genes that present relatively large targets for EMS was highest within the central cluster (dpy-5 to unc-13). Received: 12 July 1999 / Accepted: 6 December 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号