首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rigid domain, defined here as a tertiary structure common to two or more different protein conformations, can be identified numerically from atomic coordinates by finding sets of residues, one in each conformation, such that the distance between any two residues within the set belonging to one conformation is the same as the distance between the two structurally equivalent residues within the set belonging to any other conformation. The distance between two residues is taken to be the distance between their respective α carbon atoms. With the methods of this paper we have found in the deoxy and oxy conformations of the human hemoglobin α1β1 dimer a rigid domain closely related to that previously identified by Baldwin and Chothia (J. Mol. Biol. 129:175–220,1979). We provide two algorithms, both using the difference-distance matrix, with which to search for rigid domains directly from atomic coordinates. The first finds all rigid domains in a protein but has storage and processing demands that become prohibitively large with increasing protein size. The second, although not necessarily finding every rigid domain, is computationally tractable for proteins of any size. Because of its efficiency we are able to search protein conformations recursively for groups of non-intersecting domains. Different protein conformations, when aligned by superimposing their respective domain structures; can be examined for structural differences in regions complementing a rigid domain. © 1995 Wiley-Liss, Inc.  相似文献   

2.
The short consensus repeat domain (SCR, complement control protein module, sushi-domain) is a structural unit found in multiple adjacent copies in more than 40 human proteins. Each bead-like domain is composed of approximately 60 residues and the adjacent domains are connected in a head-to-tail fashion with linkers that consist of two to 12 amino acid residues. Based on experimentally determined structures the neighbouring SCR domains interact with each other at the so-called hinge or interdomain contact region. The functions mediated by the SCR domains have been studied using mutagenesis but the possible effects of the mutations on the hinge regions and interdomain angles have not been analysed. In this study, the linker and three loops in conserved locations were found to be responsible for the interdomain contact regions of all the solved experimental structures. The interdomain contact regions were identified in sequences of 140 human SCR domain pairs, and distinct hydrophobic and charge features were found in different subsets of SCR proteins and functional domains. To compare the possible associations of the interdomain contact region characteristics to the interdomain orientations all the experimentally solved SCR structures were subjected to a uniform calculation of tilt, twist, and skew angles that define the interdomain orientation. The twist and skew angles were found to have a linear correlation and the spatial location of one loop of the N-terminal domain (N#1) was found to have an effect on the skew angle. Thus, we describe location of the interdomain contact regions in primary structures of SCR domains and report that the orientation of adjacent SCR domains is not random and depends partially on the interdomain contact regions. On the basis of these results, mutations within the interdomain contact regions and subsequent loss-of-function effects caused by changes in the interdomain orientation can be avoided in mutagenesis studies.  相似文献   

3.
A study of the hinge bending mode in the enzyme liver alcohol dehydrogenase is made by use of empirical energy functions. The enzyme is a dimer, with each monomer composed of a coenzyme binding domain and a catalytic domain with a large cleft between the two. Superposition of the apoenzyme and holoenzyme crystal structures is used to determine a rigid rotation axis for closing of the cleft. It is shown that a rigid body transformation of the apoenzyme to the holoenzyme structure corresponds to a 10 degrees rotation of the catalytic domain about this axis. The rotation is not along the least-motion path for closing of the cleft but instead corresponds to the catalytic domain coming closer to the coenzyme binding domain by a sliding motion. Estimation of the energy associated with the interdomain motion of the apoenzyme over a range of 90 degrees (-40 to 50 degrees, where 0 degrees corresponds to the minimized crystal structure) demonstrates that local structural relaxation makes possible large-scale rotations with relatively small energy increments. A variety of structural rearrangements associated with the domain motion are characterized. They involve the hinge region residues that provide the covalent connections between the two domains and certain loop regions that are brought into contact by the rotation. Differences between the energy minimized and the holoenzyme structures point to the existence of alternative conformations for loops and to the importance of the ligands in the structural rearrangements.  相似文献   

4.
To investigate the domain structure of proteins and the function of individual domains, proteins are usually subjected to limited proteolysis, followed by isolation of protein fragments and determination of their functions. We have developed an approach we call random gene dissection (RGD) for the identification of functional protein domains and their interdomain regions as well as their in vivo complementing fragments. The approach was tested on a two-domain protein, the type IIS restriction endonuclease BfiI. The collection of BfiI insertional mutants was screened for those that are endonucleolytically active and thus induce the SOS DNA repair response. Sixteen isolated mutants of the wild-type specificity contained insertions that were dispersed in a relatively large region of the target recognition domain. They split the gene into two complementing parts that separately were unable to induce the SOS DNA repair response. In contrast, all 19 mutants of relaxed specificity contained the cassette inserted into a very narrow interdomain region that connects BfiI domains responsible for DNA recognition and for cleavage. As expected, only the N-terminal fragment of BfiI was required to induce SOS response. Our results demonstrate that RGD can be used as a general method to identify complementing fragments and functional domains in enzymes.  相似文献   

5.
BACKGROUND: The mechanisms that allow or constrain protein movement have not been understood. Here we study interdomain interactions in proteins to investigate hinge-bending motions. RESULTS: We find a limited number of salt bridges and hydrogen bonds at the interdomain interface, in both the "closed" and the "open" conformations. Consistently, analysis of 222 salt bridges in an independently selected database indicates that most salt bridges form within rather than between independently folding hydrophobic units. Calculations show that these interdomain salt bridges either destabilize or only marginally stabilize the closed conformation in most proteins. In contrast, the nonpolar buried surface area between the moving parts can be extensive in the closed conformations. However, when the nonpolar buried surface area is large, we find that at the interdomain interface in the open conformation it may be as large or larger than in the closed conformation. Hence, the energetic penalty of opening the closed conformation is overcome. Consistently, a large nonpolar surface area buried in the closed interdomain interface accompanies limited opening of the domains, yielding a larger interface. CONCLUSIONS: Short-range electrostatic interactions are largely absent between moving domains. Interdomain nonpolar buried surface area may be large in the closed conformation, but it is largely offset by the area buried in the open conformation. In such cases the opening of the domains appears to be relatively small. This may allow prediction of the extent of domain opening. Such predictions may have implications for the shape and size of the binding pockets in drug/protein design.  相似文献   

6.
The computational design of novel nested proteins—in which the primary structure of one protein domain (insert) is flanked by the primary structure segments of another (parent)—would enable the generation of multifunctional proteins. Here we present a new algorithm, called Loop‐Directed Domain Insertion (LooDo), implemented within the Rosetta software suite, for the purpose of designing nested protein domain combinations connected by flexible linker regions. Conformational space for the insert domain is sampled using large libraries of linker fragments for linker‐to‐parent domain superimposition followed by insert‐to‐linker superimposition. The relative positioning of the two domains (treated as rigid bodies) is sampled efficiently by a grid‐based, mutual placement compatibility search. The conformations of the loop residues, and the identities of loop as well as interface residues, are simultaneously optimized using a generalized kinematic loop closure algorithm and Rosetta EnzymeDesign, respectively, to minimize interface energy. The algorithm was found to consistently sample near‐native conformations and interface sequences for a benchmark set of structurally similar but functionally divergent domain‐inserted enzymes from the α/β hydrolase superfamily, and discriminates well between native and nonnative conformations and sequences, although loop conformations tended to deviate from the native conformations. Furthermore, in cross‐domain placement tests, native insert‐parent domain combinations were ranked as the best‐scoring structures compared to nonnative domain combinations. This algorithm should be broadly applicable to the design of multi‐domain protein complexes with any combination of inserted or tandem domain connections.  相似文献   

7.
Eunsung Park  Julian Lee 《Proteins》2015,83(6):1054-1067
Many proteins undergo large‐scale motions where relatively rigid domains move against each other. The identification of rigid domains, as well as the hinge residues important for their relative movements, is important for various applications including flexible docking simulations. In this work, we develop a method for protein rigid domain identification based on an exhaustive enumeration of maximal rigid domains, the rigid domains not fully contained within other domains. The computation is performed by mapping the problem to that of finding maximal cliques in a graph. A minimal set of rigid domains are then selected, which cover most of the protein with minimal overlap. In contrast to the results of existing methods that partition a protein into non‐overlapping domains using approximate algorithms, the rigid domains obtained from exact enumeration naturally contain overlapping regions, which correspond to the hinges of the inter‐domain bending motion. The performance of the algorithm is demonstrated on several proteins. Proteins 2015; 83:1054–1067. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
A method for modeling large-scale rearrangements of protein domains connected by a single- or a double-stranded linker is proposed. Multidomain proteins may undergo substantial domain displacements, while their intradomain structure remains essentially unchanged. The method allows automatic identification of an interdomain linker and builds an all-atom model of a protein structure in internal coordinates. Torsion angles belonging to the interdomain linkers and side chains potentially able to form domain interfaces are set free while all remaining torsions, bond lengths, and bond angles are fixed. Large-scale sampling of the reduced torsion conformational subspace is effected with the “biased probability Monte Carlo-minimization” method [Abagyan, R.A., Totrov, M.M. (1994): J. Mol. Biol. 235, 983–1002]. Solvation and side-chain entropic contributions are added to the energy function. A special procedure has been developed to generate concerted deformations of a double-stranded interdomain linker in such a way that the polypeptide chain continuity is preserved. The method was tested on Bence-Jones protein with a single-stranded linker and lysine/arginine/ornithine-binding (LAO) protein with a double-stranded linker. For each protein, structurally diverse low-energy conformations with ideal covalent geometry were generated, and an overlap between two sets of conformations generated starting from the crystallographically determined “closed” and “open” forms was found. One of the low-energy conformations generated in a run starting from the LAO “closed” form was only 2.2 Å away from the structure of the “open” form. The method can be useful in predicting the scope of possible domain rearrangements of a multidomain protein. Proteins 27:410–424, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
10.
Structures of nine independent conformers of E. coli 5'-nucleotidase (5'-NT) have been analyzed using four different crystal forms. These data show that the two-domain protein undergoes an unusual 96 degrees hinge-bending domain rotation. Structures of the open and closed forms with substrates and inhibitors reveal that the substrate moves by approximately 25 A with the large domain rotation into the catalytic site. The domain motions derived from a comparison of the nine conformations agree well with motions obtained from a normal mode analysis in that all independent domain rotations are around axes that are roughly located in the plane which includes the domain centers and the hinge. Two residues, Lys355 and Gly356, form the core of the hinge region and undergo a large change of the main-chain torsion angles. The hinge-bending movement observed for 5'-nucleotidase differs markedly from a classical hinge-bending closure motion which involves an opening of the substrate or ligand-binding cleft between two domains. In contrast, the movement observed in 5'-nucleotidase resembles that of a ball-and-socket joint. The smaller C-terminal domain rotates approximately around its center such that the residues at the domain interface move in a sliding motion along the interface. Few direct interdomain contacts and a layer of water molecules between the two domains facilitate the sliding motion.  相似文献   

11.
Multidomain proteins with two or more independently folded functional domains are prevalent in nature. Whereas most multidomain proteins are linked linearly in sequence, roughly one-tenth possess domain insertions where a guest domain is implanted into a loop of a host domain, such that the two domains are connected by a pair of interdomain linkers. Here, we characterized the influence of the interdomain linkers on the structure and dynamics of a domain-insertion protein in which the guest LysM domain is inserted into a central loop of the host CVNH domain. Expanding upon our previous crystallographic and NMR studies, we applied SAXS in combination with NMR paramagnetic relaxation enhancement to construct a structural model of the overall two-domain system. Although the two domains have no fixed relative orientation, certain orientations were found to be preferred over others. We also assessed the accuracies of molecular mechanics force fields in modeling the structure and dynamics of tethered multidomain proteins by integrating our experimental results with microsecond-scale atomistic molecular dynamics simulations. In particular, our evaluation of two different combinations of the latest force fields and water models revealed that both combinations accurately reproduce certain structural and dynamical properties, but are inaccurate for others. Overall, our study illustrates the value of integrating experimental NMR and SAXS studies with long timescale atomistic simulations for characterizing structural ensembles of flexibly linked multidomain systems.  相似文献   

12.
Postsynaptic density-95/disks large/zonula occludens-1 (PDZ) domains are relatively small (80-120 residues) protein binding modules central in the organization of receptor clusters and in the association of cellular proteins. Their main function is to bind C-terminals of selected proteins that are recognized through specific amino acids in their carboxyl end. Binding is associated with a deformation of the PDZ native structure and is responsible for dynamical changes in regions not in direct contact with the target. We investigate how this deformation is related to the harmonic dynamics of the PDZ structure and show that one low-frequency collective normal mode, characterized by the concerted movements of different secondary structures, is involved in the binding process. Our results suggest that even minimal structural changes are responsible for communication between distant regions of the protein, in agreement with recent NMR experiments. Thus, PDZ domains are a very clear example of how collective normal modes are able to characterize the relation between function and dynamics of proteins, and to provide indications on the precursors of binding/unbinding events.  相似文献   

13.
The KCTD family is an emerging class of proteins that are involved in important biological processes whose biochemical and structural properties are rather poorly characterized or even completely undefined. We here used KCTD5, the only member of the family with a known three-dimensional structure, to gain insights into the intrinsic structural stability of the C-terminal domain (CTD) and into the mutual dynamic interplay between the two domains of the protein. Molecular dynamics (MD) simulations indicate that in the simulation timescale (120 ns), the pentameric assembly of the CTD is endowed with a significant intrinsic stability. Moreover, MD analyses also led to the identification of exposed β-strand residues. Being these regions intrinsically sticky, they could be involved in the substrate recognition. More importantly, simulations conducted on the full-length protein provide interesting information of the relative motions between the BTB domain and the CTD of the protein. Indeed, the dissection of the overall motion of the protein is indicative of a large interdomain twisting associated with limited bending movements. Notably, MD data indicate that the entire interdomain motion is pivoted by a single residue (Ser150) of the hinge region that connects the domains. The functional relevance of these motions was evaluated in the context of the functional macromolecular machinery in which KCTD5 is involved. This analysis indicates that the interdomain twisting motion here characterized may be important for the correct positioning of the substrate to be ubiquitinated with respect to the other factors of the ubiquitination machinery.  相似文献   

14.

Background

The conventional superposition methods use an ordinary least squares (LS) fit for structural comparison of two different conformations of the same protein. The main problem of the LS fit that it is sensitive to outliers, i.e. large displacements of the original structures superimposed.

Results

To overcome this problem, we present a new algorithm to overlap two protein conformations by their atomic coordinates using a robust statistics technique: least median of squares (LMS). In order to effectively approximate the LMS optimization, the forward search technique is utilized. Our algorithm can automatically detect and superimpose the rigid core regions of two conformations with small or large displacements. In contrast, most existing superposition techniques strongly depend on the initial LS estimating for the entire atom sets of proteins. They may fail on structural superposition of two conformations with large displacements. The presented LMS fit can be considered as an alternative and complementary tool for structural superposition.

Conclusion

The proposed algorithm is robust and does not require any prior knowledge of the flexible regions. Furthermore, we show that the LMS fit can be extended to multiple level superposition between two conformations with several rigid domains. Our fit tool has produced successful superpositions when applied to proteins for which two conformations are known. The binary executable program for Windows platform, tested examples, and database are available from https://engineering.purdue.edu/PRECISE/LMSfit.  相似文献   

15.
ASAP family Arf GAPs induce the hydrolysis of GTP bound to the Ras superfamily protein Arf1, regulate cell adhesion and migration and have been implicated in carcinogenesis. The ASAP proteins have a core catalytic domain of PH, Arf GAP and Ank repeat domains. The PH domain is necessary for both biological and catalytic functions of ASAP1 and has been proposed to be integrally folded with the Arf GAP domain. Protection studies and analytical ultracentrifugation studies previously reported indicated that the domains are, at least partly, folded together. Here, using NMR spectroscopy and biochemical analysis, we have further tested this hypothesis and characterized the interdomain interaction. A comparison of NMR spectra of three recombinant proteins comprised of either the isolated PH domain of ASAP1, the Arf GAP and ankyrin repeat domain or all three domains indicated that the PH domain did interact with the Arf GAP and Ank repeat domains; however, we found a significant amount of dynamic independence between the PH and Arf GAP domains, consistent with the interactions being transient. In contrast, the Arf GAP and Ank repeat domains form a relatively rigid structure. The PH-Arf GAP domain interaction partially occluded the phosphoinositide binding site in the soluble protein, but binding studies indicated the PIP2 binding site was accessible in ASAP1 bound to a lipid bilayer surface. Phosphoinositide binding altered the conformation of the PH domain, but had little effect on the structure of the Arf GAP domain. Mutations in a loop of the PH domain that contacts the Arf GAP domain affected PIP2 binding and the K(m) and k(cat) for converting Arf1 GTP to Arf1 GDP. Based on these results, we generated a homology model of a composite PH/Arf GAP/Ank repeat domain structure. We propose that the PH domain contributes to Arf GAP activity by either binding to or positioning Arf1 GTP that is simultaneously bound to the Arf GAP domain.  相似文献   

16.
BACKGROUND: L1 is an important primary rRNA-binding protein, as well as a translational repressor that binds mRNA. It was shown that L1 proteins from some bacteria and archaea are functionally interchangeable within the ribosome and in the repression of translation. The crystal structure of bacterial L1 from Thermus thermophilus (TthL1) has previously been determined. RESULTS: We report here the first structure of a ribosomal protein from archaea, L1 from Methanococcus jannaschii (MjaL1). The overall shape of the two-domain molecule differs dramatically from that of its bacterial counterpart (TthL1) because of the different relative orientations of the domains. Two strictly conserved regions of the amino acid sequence, each belonging to one of the domains and positioned close to each other in the interdomain cavity of TthL1, are separated by about 25 A in MjaL1 owing to a significant opening of the structure. These regions are structurally highly conserved and are proposed to be the specific RNA-binding sites. CONCLUSIONS: The unusually high RNA-binding affinity of MjaL1 might be explained by the exposure of its highly conserved regions. The open conformation of MjaL1 is strongly stabilized by nonconserved interdomain interactions and suggests that the closed conformations of L1 (as in TthL1) open upon RNA binding. Comparison of the two L1 protein structures reveals a high conformational variability of this ribosomal protein. Determination of the MjaL1 structure offers an additional variant for fitting the L1 protein into electron-density maps of the 50S ribosomal subunit.  相似文献   

17.
A comparison of a series of extended molecular dynamics (MD) simulations of bacteriophage T4 lysozyme in solvent with X-ray data is presented. Essential dynamics analyses were used to derive collective fluctuations from both the simulated trajectories and a distribution of crystallographic conformations. In both cases the main collective fluctuations describe domain motions. The protein consists of an N- and C-terminal domain connected by a long helix. The analysis of the distribution of crystallographic conformations reveals that the N-terminal helix rotates together with either of these two domains. The main domain fluctuation describes a closure mode of the two domains in which the N-terminal helix rotates concertedly with the C-terminal domain, while the domain fluctuation with second largest amplitude corresponds to a twisting mode of the two domains, with the N-terminal helix rotating concertedly with the N-terminal domain. For the closure mode, the difference in hinge-bending angle between the most open and most closed X-ray structure along this mode is 49 degrees. In the MD simulation that shows the largest fluctuation along this mode, a rotation of 45 degrees was observed. Although the twisting mode has much less freedom than the closure mode in the distribution of crystallographic conformations, experimental results suggest that it might be functionally important. Interestingly, the twisting mode is sampled more extensively in all MD simulations than it is in the distribution of X-ray conformations. Proteins 31:116–127, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
Comparisons of atomic models for chemically identical protein molecules solved in differing crystal environments provide information on flexibility in the protein structure. The structures of five T4 lysozyme proteins in differing crystal environments showed large relative displacements of the two domains with conserved backbone conformations that are connected by a flexible hinge (H. R. Faber and B. W. Matthews. 1990. Nature (Lond.). 348:263-266). In contrast, my comparison of the positions of all the atoms in two crystal forms of insulin shows that the structural changes caused by the differing crystal contacts are contained within nearby amino acids and are not propagated through the core of the insulin molecule. Groups of atoms that are most significantly displaced are not shifted in large rigid units but are repacked into new and distinct conformations. The transmission of displacements through the single domain insulin molecule is, like the movements due to thermal vibrations (D. L. D. Caspar, J. Clarage, D. M. Salunke, M. S. Clarage. 1988. Nature (Lond.). 332:659-662), characterized by short-range interactions between small atomic groups.  相似文献   

19.
20.
The structure and fluctuations of the enzyme S-adenosyl-L-homocysteine hydrolase (SAHH) are analyzed in an effort to explain its biological function. Besides the previously identified open structure, characteristic of the substrate-free enzyme, we find two distinct structures in enzyme-inhibitor complexes, the closed and closed-twisted conformers. Both closed conformers differ from the open form by a hinge bending motion of two large domains within each subunit, which isolate the inhibitor bound in the active site from the bulk solvent. The closed-twisted form further differs from the closed form by a rigid body twist of the two-subunit dimers. The local structural fluctuations of SAHH are analyzed by performing block normal mode analysis of the tetrameric enzyme in its three forms. For the open form, we find that the four lowest-frequency normal modes, corresponding to the collective motions of the protein with the largest amplitudes, are essentially combinations of the hinge bending deformations of the individual subunits. Thus, the mechanical properties of the open structure of SAHH lead to the presence of structural fluctuations in the direction of the open-to-closed conformational transition. A candidate for such a motion has been observed in previous fluorescence depolarization studies of the enzyme. Both structural and normal mode analyses indicate that residues 180-190 and 350-356 form hinge regions, connecting large domains which tend to move as rigid bodies in response to interactions with substrate, intermediates, and the product of the enzymatic reactions. We propose that these hinge regions play a crucial role in the enzymatic mechanism of SAHH. In contrast to the open form, normal mode calculations for the closed conformations show strong coupling of the hinge bending motions of the individual subunits to each other and to other low-frequency vibrations. Thus, information about structural changes related to reaction progress in one active site may be mechanically transmitted to other subunits of the protein, explaining the cooperativity found in the enzyme kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号