首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Phosphorylation of histone H1 is intimately related to the cell cycle progression in higher eukaryotes, reaching maximum levels during mitosis. We have previously shown that in the flagellated protozoan Trypanosoma cruzi, which does not condense chromatin during mitosis, histone H1 is phosphorylated at a single cyclin-dependent kinase site. By using an antibody that recognizes specifically the phosphorylated T. cruzi histone H1 site, we have now confirmed that T. cruzi histone H1 is also phosphorylated in a cell cycle-dependent manner. Differently from core histones, the bulk of nonphosphorylated histone H1 in G(1) and S phases of the cell cycle is concentrated in the central regions of the nucleus, which contains the nucleolus and less densely packed chromatin. When cells pass G(2), histone H1 becomes phosphorylated and starts to diffuse. At the onset of mitosis, histone H1 phosphorylation is maximal and found in the entire nuclear space. As permeabilized parasites preferentially lose phosphorylated histone H1, we conclude that this modification promotes its release from less condensed and nucleolar chromatin after G(2).  相似文献   

2.
Summary— Trypanosoma brucei brucei, a protozoan parasite of wild and domestic animals in Africa, is related to the pathogenic agent of human sleeping sickness. Four H1 histone proteins were isolated from nuclei of procyclic culture forms and cleaved with proteases. Amino acid sequence analysis of purified fragments indicated the presence of variants which displayed sequence identities as compared to the C-terminal domain of human H1. Substitutions of amino acids and posttranslational modifications of the histones in iT b brucei H1 may influence protein conformation and histone-histone as well as histone-DNA interactions in the chromatin of the parasite. Digestion of soluble chromatin with immobilized trypsin at low and high ionic strengths indicated an internal localization of H1 in the condensed chromatin. The influence of histone H1 of T b brucei on the compaction pattern of the chromatin was investigated by dissociation and reconstitution experiments. Electron microscopy revealed that trypanosome H1 was able to induce condensation of the chromatin of the parasite and of rat liver into dense tangles. After dephosphorylation of H1, 30 nm fibers were induced in rat liver chromatin, while the resulting fibers were distinctly thinner in T b brucei. It can be concluded that the absence of 30 nm fibers in T b brucei chromatin cannot be explained by the divergent variants and posttranslational phosphorylations of H1 only but rather by the influence of both, the divergent core histones, previously described, and H1 properties.  相似文献   

3.
The cell tightly controls histone protein levels in order to achieve proper packaging of the genome into chromatin, while avoiding the deleterious consequences of excess free histones. Our accompanying study has shown that a histone modification that loosens the intrinsic structure of the nucleosome, phosphorylation of histone H3 on threonine 118 (H3 T118ph), exists on centromeres and chromosome arms during mitosis. Here, we show that H3 T118ph localizes to centrosomes in humans, flies, and worms during all stages of mitosis. H3 abundance at the centrosome increased upon proteasome inhibition, suggesting that excess free histone H3 localizes to centrosomes for degradation during mitosis. In agreement, we find ubiquitinated H3 specifically during mitosis and within purified centrosomes. These results suggest that targeting of histone H3 to the centrosome for proteasome-mediated degradation is a novel pathway for controlling histone supply, specifically during mitosis.  相似文献   

4.
Trypanosoma cruziis an ancient, parasitic eukaryote which does not undergo chromatin condensation during cell division. This behavior may be explained if one considers the strong amino acid sequence divergence ofTrypanosomahistones compared to higher eukaryotes. In the latter organisms histone synthesis is coupled to DNA replication. Considering the nonconserved amino acid sequence ofT. cruzihistones, as well as the absence of chromatin condensation in this organism, we have studied histone synthesis in relation to DNA replication in this parasite. We have found that core histones and a fraction of histone H1 are synthesized concomitantly to DNA replication. However, another fraction of histone H1 is constitutively synthesized.  相似文献   

5.
The conjugation of ubiquitin to histones H2A and H2B has been established in higher eukaryotes and has been related to changes in chromatin organization. In Trypanosoma cruzi, no condensation of chromatin occurs during mitosis. In order to determine the presence of histone ubiquitination in T. cruzi epimastigotes, histones were extracted from chromatin and analyzed by three electrophoretic systems: acid-urea, triton-acid-urea and sodium-dodecyl-sulphate polyacrylamide gel. The immunochemical detection of ubiquitin-histone conjugates by Western blotting showed a strong reaction with a slow migrating band of Mr 19 kDa. The high percentage of ubiquitin-histone conjugates present in T. cruzi chromatin may be related to the inability of this parasite to condense chromatin into a 30 nm fiber. J. Cell. Biochem. 66:433–440, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
Protozoa of the family Trypanosomatidae are pathogenic agents of human and animal diseases. Fine structure, compaction pattern, and histone content of the soluble chromatin were investigated in procyclic forms of Trypanosoma cruzi (Chagas disease, S. America) and T. brucei brucei (Nagana disease, Africa) in comparison with rat liver chromatin. At low ionic strength chromatin was present as nucleosome filaments. Condensation into compact fibers (solenoid) was complete for rat chromatin at 100 mM salt concentration while chromatin of T. cruzi showed less condensation (tangle formation), and that of T.b. brucei did barely condense under identical experimental conditions. In general, the nucleosomes of trypanosomes, especially T.b. brucei, seemed to be less regularly arranged than those of the higher eukaryote. Addition of histone H1-containing fractions of rat liver chromatin increased the compaction of T. cruzi chromatin but had no influence on T.b. brucei chromatin. SDS-polyacrylamide gel electrophoresis revealed histone H1 and the 4 core histones in rat liver chromatin. Neither in T. cruzi nor T.b. brucei were proteins identical to rat histone H1 present. Differences existed also in molecular weight of core histones between rat and trypanosomes, as well as between T. cruzi and T.b. brucei. These differences might explain species-specific differences in the fine structural organization and compaction pattern of the chromatin of the rat, T. cruzi, and T.b. brucei.  相似文献   

7.
8.
The onset and regulation of mitosis is dependent on phosphorylation of a wide array of proteins. Among the proteins that are phosphorylated during mitosis is histone H3, which is heavily phosphorylated on its N-terminal tail. In addition, large-scale mass spectrometry screens have revealed that histone H3 phosphorylation can occur at multiple sites within its globular domain, yet detailed analyses of the functions of these phosphorylations are lacking. Here, we explore one such histone H3 phosphorylation site, threonine 80 (H3T80), which is located on the nucleosome surface. Phosphorylated H3T80 (H3T80ph) is enriched in metazoan cells undergoing mitosis. Unlike H3S10 and H3S28, H3T80 is not phosphorylated by the Aurora B kinase. Further, mutations of T80 to either glutamic acid, a phosphomimetic, or to alanine, an unmodifiable residue, result in an increase in cells in prophase and an increase in anaphase/telophase bridges, respectively. SILAC-coupled mass spectrometry shows that phosphorylated H3T80 (H3T80ph) preferentially interacts with histones H2A and H4 relative to non-phosphorylated H3T80, and this result is supported by increased binding of H3T80ph to histone octamers in vitro. These findings support a model where H3T80ph, protruding from the nucleosome surface, promotes interactions between adjacent nucleosomes to promote chromatin compaction during mitosis in metazoan cells.  相似文献   

9.
Histones extracted from T. cruzi chromatin were analyzed in three electrophoretic systems. Our results show that a basic protein with some properties similar to those of histone H1 from higher eukaryotes is present in T. cruzi. However this protein presents different electrophoretic mobilities than H1 histone from higher eukaryotes in all three electrophoretic systems tested. Considering the marked differences observed in the electrophoretic mobilities of T. cruzi histones as compared with those from higher eukaryotes, it is proposed that histones are conservative proteins primarily with regard to their function.  相似文献   

10.
Alterations in nucleosome structure affect the accessibility of the DNA and can generate specialized domains of chromatin in the genome. Such changes can be introduced by posttranslational modifications of histones, by chromatin remodeling, or by the incorporation of variants of H2A and H3 into nucleosomes. In contrast to the canonical histones, which are deposited behind the replication fork during S phase, histone variants are incorporated in a process that is independent of DNA replication. Recent studies have shown that distinct multiprotein complexes are responsible for the targeted deposition of histone variants at active genes, centromeres and silent loci. The incorporation of histone variants most probably has epigenetic consequences and contributes to architectural changes in chromosomes.  相似文献   

11.
Effects of nucleotides on the proteolysis of histones in nuclei incubated at 37 degrees C during 1, 3 and 20 h were studied. It has been shown that the H1 histone is removed first during proteolysis and then the H3 and H2B histones are digested. The H4 histone is not cleaved even after 20 h incubation. PMSF and ATP inhibit the H1 cleavage when its structure was not disturbed before ATP, CTP, ADP, NAD+, AMP and NADH inhibit the partial cleavage of the core histones H3 and H2B. ATP, CTP, AMP and NADH prevent the total digestion of H2B. ATP and, at lower extent, CTP prevent the H3 digestion. ATP, CTP, ADP and NAD+ inhibit the cleavage of the H2A histone in the experiments with 20 h incubation, when H4 is only resistant in the absence of nucleotides. The data obtained suggest an important role of ATP and other nucleotides in maintaining the structure of histones and chromatin.  相似文献   

12.
We have cloned the H1 histone gene (hhoA) of Aspergillus nidulans. This single-copy gene codes for a typical linker histone with one central globular domain. The open reading frame is interrupted by six introns. The position of the first intron is identical to that of introns found in some plant histones. An H1-GFP fusion shows exclusive nuclear localization, whereas chromosomal localization can be observed during condensation at mitosis. Surprisingly, the deletion of hhoA results in no obvious phenotype. The nucleosomal repeat length and susceptibility to micrococcal nuclease digestion of A. nidulans chromatin are unchanged in the deleted strain. The nucleosomal organization of a number of promoters, including in particular the strictly regulated niiA-niaD bidirectional promoter is not affected.  相似文献   

13.
We investigated the relationship between linker histone stoichiometry and the acetylation of core histones in vivo. Exponentially growing cell lines induced to overproduce either of two H1 variants, H1(0) or H1c, displayed significantly reduced rates of incorporation of [(3)H]acetate into all four core histones. Pulse-chase experiments indicated that the rates of histone deacetylation were similar in all cell lines. These effects were also observed in nuclei isolated from these cells upon labeling with [(3)H]acetyl-CoA. Nuclear extracts prepared from control and H1-overexpressing cell lines displayed similar levels of histone acetylation activity on chromatin templates prepared from control cells. In contrast, extracts prepared from control cells were significantly less active on chromatin templates prepared from H1-overexpressing cells than on templates prepared from control cells. Reduced levels of acetylation in H1-overproducing cell lines do not appear to depend on higher order chromatin structure, because it persists even after digestion of the chromatin with micrococcal nuclease. The results suggest that alterations in chromatin structure, resulting from changes in linker histone stoichiometry may modulate the levels or rates of core histone acetylation in vivo.  相似文献   

14.
15.
Linker histone H1 is a major chromatin component that binds internucleosomal DNA and mediates the folding of nucleosomes into a higher-order structure, namely the 30-nm chromatin fiber. Multiple post-translational modifications (PTMs) of core histones H2A, H2B, H3 and H4 have been identified and their important contribution to the regulation of chromatin structure and function is firmly established. In contrast, little is known about histone H1 modifications and their function. Here we address this question in Drosophila melanogaster, which, in contrast to most eukaryotic species, contains a single histone H1 variant, dH1. For this purpose, we combined bottom-up and top-down mass-spectrometry strategies. Our results indicated that dH1 is extensively modified by phosphorylation, methylation, acetylation and ubiquitination, with most PTMs falling in the N-terminal domain. Interestingly, several dH1 N-terminal modifications have also been reported in specific human and/or mouse H1 variants, suggesting that they have conserved functions. In this regard, we also provide evidence for the contribution of one of such conserved PTMs, dimethylation of K27, to heterochromatin organization during mitosis. Furthermore, our results also identified multiple dH1 isoforms carrying several phosphorylations and/or methylations, illustrating the high structural heterogeneity of dH1. In particular, we identified several non-CDK sites at the N-terminal domain that appear to be hierarchically phosphorylated. This study provides the most comprehensive PTM characterization of any histone H1 variant to date.  相似文献   

16.
We have investigated the micrococcal nuclease digestion of chromatin from the spermatozoa of the sea cucumber Holothuria tubulosa. This chromatin contains minor protein variants related to histone H1 with a high proportion of basic amino acids. One of these variants, protein phi 0, represents about 4% of the total histones. It is 78 amino acids long and its amino acid composition and sequence are related to the very basic C-terminal region of histone H1. The presence of these proteins induces an unusual digestion pattern. Oligonucleosomal particles which are soluble at 150 mM NaCl are depleted of protein phi 0 and they are also defective in histone H1. A low percentage of the insoluble material can be solubilized at lower NaCl concentrations (50 mM). These oligonucleosomal particles show a very peculiar protein content, since at early digestion times, they contain histone H1 and protein phi 0 exclusively. We conclude that these particles arise from a cooperative displacement of core histones by protein phi 0 and histone H1. These results show that minor changes in histone H1 complement can result in the formation of artifactual particles upon microccocal nuclease digestion. These observations may be of interest in other systems which contain H1 variants.  相似文献   

17.
18.
《The Journal of cell biology》1990,111(5):1753-1762
We have examined the effects of topoisomerase inhibitors on the phosphorylation of histones in chromatin during the G2 and the M phases of the cell cycle. Throughout the G2 phase of BHK cells, addition of the topoisomerase II inhibitor VM-26 prevented histone H1 phosphorylation, accompanied by the inhibition of intracellular histone H1 kinase activity. However, VM-26 had no inhibitory effect on the activity of the kinase in vitro, suggesting an indirect influence on histone H1 kinase activity. Entry into mitosis was also prevented, as monitored by the absence of nuclear lamina depolymerization, chromosome condensation, and histone H3 phosphorylation. In contrast, the topoisomerase I inhibitor, camptothecin, inhibited histone H1 phosphorylation and entry into mitosis only when applied at early G2. In cells that were arrested in mitosis, VM-26 induced dephosphorylation of histones H1 and H3, DNA breaks, and partial chromosome decondensation. These changes in chromatin parameters probably reverse the process of chromosome condensation, unfolding condensed regions to permit the repair of strand breaks in the DNA that were induced by VM- 26. The involvement of growth-associated histone H1 kinase in these processes raises the possibility that the cell detects breaks in the DNA through their effects on the state of DNA supercoiling in constrained domains or loops. It would appear that histone H1 kinase and topoisomerase II work coordinately in both chromosome condensation and decondensation, and that this process participates in the VM-26- induced G2 arrest of the cell.  相似文献   

19.
Changes in the overall structure of chromatin are essential for the proper regulation of cellular processes, including gene activation and silencing, DNA repair, chromosome segregation during mitosis and meiosis, X chromosome inactivation in female mammals, and chromatin compaction during apoptosis. Such alterations of the chromatin template occur through at least 3 interrelated mechanisms: post-translational modifications of histones, ATP-dependent chromatin remodeling, and the incorporation (or replacement) of specialized histone variants into chromatin. Of these mechanisms, the exchange of variants into and out of chromatin is the least well understood. However, the exchange of conventional histones for variant histones has distinct and profound consequences within the cell. This review focuses on the growing number of mammalian histone variants, their particular biological functions and unique features, and how they may affect the structure of the nucleosome. We propose that a given nucleosome might not consist of heterotypic variants, but rather, that only specific histone variants come together to form a homotypic nucleosome, a hypothesis that we refer to as the nucleosome code. Such nucleosomes might in turn participate in marking specific chromatin domains that may contribute to epigenetic inheritance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号