首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The isolated rabbit retina was studied electron microscopically after fixation with a 3% solution of glutaraldehyde in a 0.05 M S?rensen's phosphate buffer. In radial sections, the inner segments, nuclei, and synapses of the photoreceptor cells seemed similar in size to those from retinas that had been fixed in an isotonic solution containing 1 % crystalline osmium tetroxide in the incubating medium used for the isolation procedure. However, when the number of comparable structures was greatly increased by viewing them in tangential sections, the cellular shrinkage and mitochondrial swelling produced by this widely used, hypertonic, glutaraldehyde fixative were obvious.  相似文献   

2.
Effects of Fixation on Cell Volume of Marine Planktonic Protozoa   总被引:8,自引:2,他引:6       下载免费PDF全文
The effects of fixation on the cell volume of marine heterotrophic nanoflagellates and planktonic ciliates were investigated. Decreases in cell volume depended on the combination of the protozoan taxa and the particular fixative. For a particular fixative and protozoan species, degree of shrinkage was independent of physiological state. The volume of fixed cells was found to be approximately 20 to 55% lower than the cell volume of live organisms. For the heterotrophic microflagellates, the fixatives ranked, in order of decreasing effect on cell volume, as glutaraldehyde, formaldehyde, acid Lugol's solution, and modified van der Veer solution. With oligotrichous ciliates and a tintinnid ciliate, formaldehyde caused less shrinkage than glutaraldehyde or acid Lugol's solution. With the aldehyde fixatives, the microflagellates were found to shrink more than the ciliates. Differential effects of fixation on cell volumes may result in an underestimation of the biomass of certain protozoan taxa in natural samples.  相似文献   

3.
The effect of Ca2+ and Mg2+ on feline parathyroid cells during perfusion fixation with glutaraldehyde and subsequent immersion in OsO4 was investigated. Both Ca2+ and Mg2+ may exert a stabilizing or destabilizing effect on cell membranes and on elements of the cytoskeleton. The effect depends (1) on the ion concentration, (2) on the buffer concentration and (3) on the fixative. Stabilization due to Ca2+ or Mg2+ during glutaraldehyde fixation is not altered during subsequent osmication but both cations may cause destabilization during osmication in tissue prefixed without cations. Ca2+ and Mg2+ also reduce cell volume in combination with low osmolar buffer but they prevent cells from excessive shrinkage due to high osmolar buffers. Ca2+ and Mg2+ alone or in combination reduce swelling of RER, extraction of cellular material and loss of subcellular compartments, such as secretory granules, under optimal conditions. Ca2+, however, provokes formation of dark (shrunken) and light (swollen) cells accompanied by loss of subcellular components when used in low concentration during osmication. Low concentrations of Mg2+ added to glutaraldehyde exert similar effects. Stabilization of membranes is assumed to be due to the binding capacity of Ca2+ and Mg2+ to both phospholipids and proteins. The influence of Ca2+ and Mg2+ to changes in cell volume is considered likely to be the result of ionic interaction in the cytoplasmic gel, the maintenance of cell volume being a matter of equilibrium between the swelling pressure of the cytoplasmic gel and osmotic pressure of the fixative solution.  相似文献   

4.
The effect of hyperosmotic solution of NaCl, urea and mannitol on Bufo viridis red blood cells were studied. The percentage of water content in B. viridis red blood cells decreased significantly in NaCl and mannitol hypertonic solutions compared to urea hypertonic solution. The urea concentration found in red blood cells in a urea hypertonic solution was significantly higher than in red blood cells acclimated to NaCl and mannitol hypertonic solutions. The Na+ concentration was significantly lower in red blood cells immersed in urea hypertonic solution than in red blood cells immersed in hypertonic NaCl and mannitol solutions. However, the K+ concentration increased at a similar rate in three different hypertonic solutions.  相似文献   

5.
The purpose of this study was to examine the impact of a low osmolality glutaraldehyde fixative and a high osmolality glutaraldehyde-formaldehyde fixative on the structural organization of a tissue that could be exposed to low and high osmolality environments. The corneas of freshwater trout were prepared for transmission and scanning electron microscopy using either a fixative of 2% glutaraldehyde in 60 mM cacodylate buffer (pH 7.8, 260 mOsm/l) or a fixative prepared by adding 2.5% glutaraldehyde to a solution of 1% formaldehyde and buffering the solution with 0.1 M cacodylate (pH 7.6, 850 mOsm/l; Karnovsky-type fixative). The corneal epithelial cell layer thickness was greater after glutaraldehyde compared to glutaraldehyde-formaldehyde fixation (67 vs 55 mum), as was the thickness of the superficial cells (5.1 vs 3.4 mum) and basal cells (43 vs 38 mum). The intermediate (wing) cells of the epithelium were, however, less thick after glutaraldehyde fixation (15 vs 18 mum). The width of the squamous, intermediate and basal cells was greater following glutaraldehyde fixation with the effect being greatest in the superficial layers and insignificant at the level of the basal cells. The results show that chemical fixatives with extremes of osmolality cannot only produce different cell sizes in a tissue but also determine the overall organization of the cells in a positional-dependent fashion.  相似文献   

6.
Summary— The effect of various combinations of three fixative compositions (glutaraldehyde buffered in veronal acetate, cacodylate, and piperazine-N, N'-bis[2-ethanesulfonic acid]—PIPES], two fixative storage times (fresh vs 6 weeks), and two fixation durations (3 h vs 9 days) on nucleolar fine structure and nucleolar volume in three root cell-types of oat seedlings (Avena sativa L, cv Seger) were evaluated. All fixatives show overall good preservation of fine structure. Nucleolar components are distinct and well delineated in cells fixed in solutions buffered with either cacodylate or veronal acetate; the components are more condensed when preserved in fixative buffered with PIPES. Nucleolar volume is greatest in cells fixed in the cacodylate fixative, and smallest in those preserved in the PIPES fixative. Among the treatments tested, the PIPES fixative evidently best maintains nucleolar volume. Distracting particulate deposits are abundant on nuclei and nucleoli in cells preserved in the veronal-acetate fixative. Contrary to common assumptions, aging of buffered fixative at room temperature for 6 weeks seems to affect neither the general quality of cellular preservation nor the pH of the fixatives, although nucleolar volume is reduced by such treatment. Long-period fixation (9 days) results in destruction of membrane integrity (mitochondria, plastids, ER), and shrinkage of organelles from the cytoplasm. Nucleolar volume is reduced with prolonged fixation.  相似文献   

7.
J P Yee  H C Mel 《Blood cells》1978,4(3):485-497
Red blood cells interact with glutaraldehyde (GA) in a complex kinetic pattern of events. At a given GA concentration in phosphate buffered saline (PBS), the sequence of cell 'volume' response, as measured by resistive pulse spectroscopy (RPS), includes: an immediate response to the overall solution osmolality; a constant volume, latent phase; a rapid swelling phase; an intermediate constant volume phase; and a shrinkage phase to a final steady state volume. The final volume depends on fixative solution osmolality; for GA concentrations between 0.05% and 0.25% w/v, fixative osmolalities of less than 355 mosM, including 'isotonic', or greater than 355 mosM, lead to final cell volumes greater or less than native, respectively. Cell-membrane deformability decreases continuously and monotonically with time, as assessed by RPS. The rate of fixation is a direct function of GA concentration, in accordance with a derived empirical expression. The measured kinetic responses are related to considerations of cell size, deformability, and form, and to mechanisms involved in abrupt osmotic hemolysis.  相似文献   

8.
PHYSICOCHEMICAL EFFECTS OF ALDEHYDES ON THE HUMAN ERYTHROCYTE   总被引:7,自引:5,他引:2       下载免费PDF全文
The effects of formaldehyde, acetaldehyde, and glutaraldehyde on human red blood cells were investigated. It was found that (a) The surface negative charge of the erythrocytes at pH 7 was increased 10% by glutaraldehyde, but not by the other two aldehydes. (b) The effect of incomplete fixation of the red blood cells was demonstrated by hemoglobin leakage studies The leakage of hemoglobin subsequent to formaldehyde treatment was especially pronounced Acetaldehyde-fixed cells showed some leakage of hemoglobin after an hour of exposure to the fixative, whereas glutaraldehyde-fixed cells showed no hemoglobin leakage. (c) All three aldehydes caused K+ leakage during fixation. The concentrations of K+ in the fixing solutions all reached the same level, but whereas the leakage with glutaraldehyde was immediate, that with formaldehyde was more gradual and that with acetaldehyde reached a steady state only after 24 hr. (d) The effects of the aldehydes on red cell deformability and swelling revealed that glutaraldehyde hardened the cells within 15 min, formaldehyde within 5 hr, while acetaldehyde required at least 24 hr to produce appreciable fixation. (e) The hematocrit changes accompanying the fixation process depended upon cell volume changes and loss of deformability.  相似文献   

9.
Osmolar Concentration and Fixation of Mycoplasmas   总被引:9,自引:9,他引:0       下载免费PDF全文
Broth cultures of Acholeplasma laidlawii were fixed with various concentrations of cacodylate-buffered glutaraldehyde. The shape and ultrastructure of the organisms varied with the osmolar concentration of the fixative. When the fixation mixture was hypertonic to the culture medium, ultrathin sections suggested that the cells had shrunk. Phosphate buffer, sodium chloride, or sucrose at comparable osmolaities had the same effect as sodium cacodylate. Glutaraldehyde itself also contributed to the osmotic effects of the fixation mixture but to a lesser extent than salts or sucrose, to which the cell membrane is impermeable. The osmolar concentration of the fixation mixture seemed of greater importance than pH in determining morphology. The mycoplasma was still susceptible to damage by high concentrations of cacodylate after fixation with 2.5% glutaraldehyde. The best procedure was to fix and wash the organism under conditions isotonic with the growth medium. These conditions were also satisfactory for a filamentous mycoplasma, Mycoplasma orale.  相似文献   

10.
Chloroplasts suspended in phosphate buffer with PMS swelledrapidly on illumination, their volumes reaching a maximum levelwithin 5 min. Subsequently they shrank noticeably. Both swellingand subsequent shrinkage were reversible; in the former, chloroplastsswelled on illumination and shrank on turning off the light.In the latter,olume change occurred in the opposite direction.Light-induced swelling in the presence of PMS disappeared onalternating light and dark several times. Thereafter, only shrinkagewas observed. Only shrinkage took place on illumination when PMS was addedto Tris-washed, or heated chloroplasts, or when chloroplastswere suspended in phosphate buffer with other electron transportcofactors such as FMN and vitamin K3 or in acetate buffer insteadof phosphate in the presence of PMS. PMA and CCCP (low concentration)inhibited swelling with PMS. Quinacrine had no effect on volumechanges with PMS, while antimycin A and CCCP (high concentration)completely prevented both swelling and shrinkage. These suggestthat volume changes are a result of competition between swellingand shrinking activities which depend on utilization of highenergy intermediates formed by PMS-induced photochemical reactions. (Received February 18, 1970; )  相似文献   

11.
Incubation of rabbit alveolar macrophages in hypo-osmotic solutions transiently increases cell volume and inhibits membrane internalization, resulting in an increase in surface receptor number. Since recent reports suggest that hypo-osmotic treatment decreases intracellular pH, and that reduced pH inhibits receptor internalization, pH was measured in hypo-osmotically treated macrophages. We found that cells incubated in iso-osmotic solutions of pH less than 7.2 exhibited a decrease in intracellular pH upon exposure to hypo-osmotic solutions, while cells in iso-osmotic solutions of pH greater than 7.2 had an increase in pH upon exposure to hypo-osmotic solutions. The relative increase in surface receptor number was unaffected by the initial pH or by the direction of change in pH. Incubation of cells in high K+/low Na+ hypotonic buffers induced a persistent increase in cell volume and surface receptor number. Cell volume and surface receptor number fell to baseline values after restoration of isotonicity by the addition of hypertonic sucrose. These manipulations had little effect on intracellular pH. We conclude that the inhibition of membrane internalization observed in cells exposed to hypo-osmotic solutions is independent of changes in intracellular pH. The inhibition of internalization observed in this system may be due directly to forces produced as a consequence of cell swelling.  相似文献   

12.
Synopsis Frog sartorius muscles have been fixed sequentially with acrolein and osmium tetroxide dissolved in vehicles of various tonicities, and the myosin filament spacings and sarcomere lengths measured with the electron microscope. From these dimensions the myosin unit-cell volume has been calculated and compared with X-ray diffraction data to determine the effect of fixation. In muscles soaked in normal Ringer and afterwards fixed using normal Ringer as a vehicle for the fixation agents, the unitcell volume undergoes a 10.4% reduction during the preparative procedure. Muscles soaked in hypertonic Ringer undergo a similar reduction in volume during fixation, provided hypertonic Ringer is used as the vehicle; if they are fixed in normal Ringer, the lattice swells during fixation, even if the change to the normal tonicity vehicle occurs after acrolein fixation. If blocks suitable for embedding are cut from the muscles before, rather than after, osmium fixation, more complex changes in intracellular dimensions may occur, including artefactual swelling of the T-system. It is concluded that fixation of tissues exposed to modifications of normal physiological solutions should be performed using the same modified solutions as fixative vehicles.  相似文献   

13.
Regulatory volume decrease, following physical swelling of red cells from brown trout Salmo trutta , was almost complete in oxygenated cells but much less in deoxygenated cells. There was a small, insignificant regulatory volume increase, following physical shrinkage. Amiloride had no effect on this response, indicating that hypertonic shrinkage did not activate the Na+/H+ exchanger. However, cell volume was increased markedly in shrunken cells by addition of noradrenaline, with deoxygenated cells showing complete recovery. These data show that the previously reported differences in volume regulation between the red cells of brown trout and rainbow trout Oncorhynchus mykiss are not present and that both species appear to have lost volume sensitivity of the Na+/H+ exchanger.  相似文献   

14.
The dependence of electrogenic sodium pump activity on changes in the cell volume of Helix pomatia neurons with different levels of intracellular sodium ion concentration was studied. Hypertonic solutions caused hyperpolarization of the membrane and increased membrane resistance in cells with a low sodium content (low-sodium cells; LSC). The activity of the electrogenic sodium pump in hypertonic solutions was increased compared to the activity in hypotonic solutions in LSC and decreased in cells with a high sodium content (high-sodium cells; HSC). The concentration of ouabain which led to maximal inhibition of active 22Na efflux from the neurons was 10(-4) M. Lower concentrations of ouabain (10(-8) M and lower) did not inhibit the sodium pump but stimulated it. The swelling of neurons in hypotonic solutions was accompanied by an increase in the number of binding sites for ouabain, while shrinking in hypertonic solutions led to the opposite effect--a decrease in binding sites. An increase in the number of binding sites also took place in normal isotonic potassium-free solutions compared with normal Ringer's solution. Two saturable components of ouabain binding were detectable in all solutions examined. gamma-Aminobutyric acid (GABA) and acetylcholine (ACh) increased the number of ouabain binding sites on the membrane. The results suggest that there are two opposite mechanisms by which cell volume changes can modulate the pump activity. One of them depends on the intracellular sodium ion concentration and causes pump activation in hypertonic solutions in LSC and saturation in HSC, while a second mechanism mediates the activating effect of cell swelling on the sodium pump in HSC. In addition, there may be a negative feedback between the pump activity and the number of functioning pump units in the membrane.  相似文献   

15.
Effects of fixation with glutaraldehyde (GA), glutaraldehyde-osmium tetroxide (GA-OsO4), and osmium tetroxide (OsO4) on ion and ATP content, cell volume, vital dye staining, and stability to mechanical and thermal stress were studied in Ehrlich ascites tumor cells (EATC). Among variables investigated were fixation time, fixative concentration, temperature, osmolality of the fixative agent and buffer, total osmolality of the fixative solution, osmolality of the postfixation buffer, and time of postfixation treatment in buffer (Sutherland, R. M., et al. 1967. J. Cell Physiol. 69:185.). Rapid loss of potassium, exchangeable magnesium, and ATP, and increase of vital dye uptake and electrical conductivity occurred with all fixatives studied. These changes were virtually immediate with GA-OsO4 or OsO4 but slower with GA (in the latter case they were dependent on fixative temperature and concentration) (Foot, N. C. 1950. In McClung's Handbook of Microscopical Technique. 3rd edition. 564.). Total fixative osmolality had a marked effect on cell volume with OsO4 but little or no effect with GA or GA-OsO4. Osmolality of the buffer had a marked effect on cell volume with OsO4, whereas with GA or GA-OsO4 it was only significant at very hypotonic buffer osmolalities. Concentration of GA had no effect on cell volume. Osmolality of the postfixation buffer had little effect on cell volume, and duration of fixation or postfixation treatment had no effect with all fixatives. Freezing and thawing or centrifugal stress (up to 100,000 g) had little or no effect on cell volume after all fixatives studied. Mechanical stress obtained by sonication showed that OsO4 alone produced poor stabilization and that GA fixation alone produced the greatest stabilization. The results indicate that rapid membrane permeability changes of EATC follow fixative action. The results are consistent with known greater stabilizing effects of GA on model protein systems since cells were also rendered relatively stable to osmotic stress during fixation, an effect not noted with OsO4. After fixation with GA and/or OsO4 cells were stable to osmotic, thermal, or mechanical stress; this is inconsistent with several earlier reports that GA-fixed cells retain their osmotic properties.  相似文献   

16.
Summary Neurons in cultures of central nervous tissue exhibited marked structural changes when exposed to hypertonic solutions. Cellular reactions were described in living neurons as well as after fixation and staining in preparations observed with both the light and electron microscope. The structures involved in these changes were mainly the nucleolus, the nucleus and the Nissl substance.Nucleolus In living neurons, observed with phase contrast optics, the nucleolus became invisible in hypertonic medium. This change occurred within a few seconds, and it was reversible when the cells were brought back to isotonic solutions. Fixation of the cells while exposed to hypertonic solution caused the nucleolus to reappear as a granular body. In stained preparations it appeared as a more irregular body in contrast to the smoothly outlined nucleolus in normal cells. In electron microscopic preparations of neurons which were fixed while exposed to hypertonic solutions the nucleolus was visible only as nucleolar shadow, overlaid by a few small irregular bodies of higher electron density than other nuclear contents.Nucleus The nuclear membrane of living neurons exposed to hypertonic media lost much of its sharp definition and became rather hazy in outline. The nuclear diameter increased about 10% in hypertonic medium, and the nuclear space became somewhat denser when observed with the phase contrast microscope. In Nissl stained preparations the nuclear space was filled with many small granular or rod-shaped bodies in contrast to the clear vesicular appearance of the nuclei of untreated cells. In electron microscopic preparations the nuclear space exhibited a spotty appearance due to the presence of electron dense and light areas.Nissl Substance In living neurons immersed in hypertonic solutions the Nissl substance showed a slight increase in phase density, especially after repeated changes between hypertonic and isotonic solutions. Sometimes a distinct striation in the Nissl substance appeared. In Nissl stained preparations there was no marked change observed in comparison with normal cells. However, in the electron microscope, the Nissl substance of hypertonically treated cells exhibited a marked structural change. The membrane-bound spaces of the endoplasmic reticulum assumed a rather precise orientation parallel to the cell membrane so that in extreme cases a concentric arrangement of endoplasmic cisternae was observed. The normal arrangement of ribosomal granules in rosettes and clusters became disturbed and the granules were more uniformly distributed.The cells as whole units showed a distinct shrinkage in hypertonic solution which may account for the more crowded appearance of various organelles such as mitochondria and Golgi complexes. There was also a marked increase in agranular reticulum profiles and small membrane bound vesicles in treated cells. Vacuoles appeared frequently in the cytoplasm of treated cells; they disappeared upon re-immersion in isotonic medium.This investigation was supported by USPHS Grants NB 03114-04, NB 00690-11 and 5 T 1 GM 495 from the National Institutes of Health, Bethesda, Maryland.Acknowledgement. Mrs. Eleanor W. Morris and Mr. Edwin E. Pitsinger, Jr. gave indispensible aid with the management of the cultures and with photographic procedures.  相似文献   

17.
Diffusion-weighted in vivo1H-NMR spectroscopy of F98 glioma cells embedded in basement membrane gel threads showed that the initial cell swelling to about 180% of the original volume induced under hypotonic stress was followed by a regulatory volume decrease to nearly 100% of the control volume in Dulbecco's modified Eagle's medium (DMEM) but only to 130% in Krebs-Henseleit buffer (KHB, containing only glucose as a substrate) after 7 h. The initial cell shrinkage to approx. 70% induced by the hypertonic stress was compensated by a regulatory volume increase which after 7 h reached almost 100% of the control value in KHB and 75% in DMEM.1H-,13C-and31P-NMR spectroscopy of perchloric acid extracts showed that these volume regulatory processes were accompanied by pronounced changes in the content of organic osmolytes. Adaptation of intra- to extracellular osmolarity was preferentially mediated by a decrease in the cytosolic taurine level under hypotonic stress and by an intracellular accumulation of amino acids under hypertonic stress. If these solutes were not available in sufficient quantities (as in KHB), the osmolarity of the cytosol was increasingly modified by biosynthesis of products and intermediates of essential metabolic pathways, such as alanine, glutamate and glycerophosphocholine in addition to ethanolamine. The cellular nucleoside triphosphate level measured by in vivo31P-NMR spectroscopy indicated that the energy state of the cells was more easily sustained under hypotonic than hypertonic conditions.To whom to address reprint requests.  相似文献   

18.
The role of the F-actin cytoskeleton in cell volume regulation was studied in Ehrlich ascites tumor cells, using a quantitative rhodamine-phalloidin assay, confocal laser scanning microscopy, and electronic cell sizing. A hypotonic challenge (160 mOsm) was associated with a decrease in cellular F-actin content at 1 and 3 min and a hypertonic challenge (600 mOsm) with an increase in cellular F-actin content at 1, 3, and 5 min, respectively, compared to isotonic (310 mOsm) control cells. Confocal visualization of F-actin in fixed, intact Ehrlich cells demonstrated that osmotic challenges mainly affect the F-actin in the cortical region of the cells, with no visible changes in F-actin in other cell regions. The possible role of the F-actin cytoskeleton in RVD was studied using 0. 5 microM cytochalasin B (CB), cytochalasin D (CD), or chaetoglobosin C (ChtC), a cytochalasin analog with little or no affinity for F-actin. Recovery of cell volume after hypotonic swelling was slower in cells pretreated for 3 min with 0.5 microM CB, but not in CD- and ChtC-treated cells, compared to osmotically swollen control cells. Moreover, the maximal cell volume after swelling was decreased in CB-treated, but not in CD- or Chtc-treated cells. Following a hypertonic challenge imposed using the RVD/RVI protocol, recovery from cell shrinkage was slower in CB-treated, but not in CD- or Chtc-treated cells, whereas the minimal cell volume after shrinkage was unaltered by either of these treatments. It is concluded that osmotic cell swelling and shrinkage elicit a decrease and an increase in the F-actin content in Ehrlich cells, respectively. The RVD and RVI processes are inhibited by 0.5 microM CB, but not by 0.5 microM CD, which is more specific for actin.  相似文献   

19.
Glutaraldehyde fixation of sodium transport in dog red blood cells   总被引:7,自引:6,他引:1       下载免费PDF全文
The large increase in passive Na flux that occurs when dog red blood cells are caused to shrink is amiloride sensitive and inhibited when Cl is replaced by nitrate or thiocyanate. Activation and deactivation of this transport pathway by manipulation of cell volume is reversible. Brief treatment of the cells with 0.01-0.03% glutaraldehyde can cause the shrinkage-activated transporter to become irreversibly activated or inactivated, depending on the volume of the cells at the time of glutaraldehyde exposure. Thus, if glutaraldehyde is applied when the cells are shrunken, the amiloride-sensitive Na transporter is activated and remains so regardless of subsequent alterations in cell volume. If the fixative is applied to swollen cells, no amount of subsequent shrinkage will turn on the Na pathway. In its fixed state, the activated transporter is fully amiloride sensitive, but it is no longer inhibited when Cl is replaced by thiocyanate. The action of glutaraldehyde thus allows one to dissect the response to cell shrinkage into two phases. Activation of the pathway is affected by anions and is not prevented by amiloride. Once activated and fixed, the anion requirement disappears. Amiloride inhibits movement of Na through the activated transporter. These experiments demonstrate how a chemical cross-linking agent may be used to study the functional properties of a regulable transport pathway.  相似文献   

20.
The occurrence of electron dense deposits in sections of aldehyde-fixed tissue prepared for transmission electron microscopy has been attributed to a number of conflicting factors. In an attempt to clarify this, the precipitating effect of different combinations of phosphate or cacodylate buffer, glutaraldehyde, ethanol and uranyl acetate was investigated in test tubes. As a preliminary investigation the combination of phosphate buffer, ethanol and uranyl acetate was investigated in heart and kidney tissue fixed in glutaraldehyde with or without postosmication. The essential factors in the formation of electron dense deposits in these tissues appear to be phosphate buffer, ethanol, and uranyl acetate, although glutaraldehyde may contribute in some way. The nature and intensity of the deposits seem to vary with the sequence of combination of these factors. Osmium did not appear to be an essential factor in the reaction since deposits were observed in both osmicated and unosmicated tissue. To avoid such deposits, a postosmication distilled water wash for 20 to 30 min followed by en bloc staining with aqueous uranyl acetate is advised if phosphate buffer is used as a fixative vehicle or buffer wash after the primary fixative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号