首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Role of Actin Microfilaments in Black Creek Canal Virus Morphogenesis   总被引:6,自引:5,他引:1  
We have investigated the involvement of cytoskeletal proteins in the morphogenesis of Black Creek Canal virus (BCCV), a New World hantavirus. Immunofluorescent staining of BCCV-infected cells revealed a filamentous pattern of virus antigen, the appearance of which was sensitive to treatment with cytochalasin D, an actin microfilament-depolymerizing drug. Double immunofluorescence staining of BCCV-infected Vero cells with anti-BCCV nucleocapsid (N) monoclonal antibody and phalloidin revealed a colocalization of the BCCV N protein with actin microfilaments. A similar, though less prominent, filamentous pattern was observed in BHK21 cells transiently expressing the BCCV N protein alone but not in cells expressing the BCCV G1 and G2 glycoproteins. Moreover, the association of the N protein with actin microfilaments was confirmed by coimmunoprecipitation with β-actin-specific antibody. Treatment of the BCCV-infected Vero cells at 3 days postinfection with cytochalasin D decreased the yield of released BCCV by 94% relative to the yield from untreated cells. Pretreatment of Vero cells with cytochalasin D prior to and during BCCV adsorption and entry had no effect on the outcome of virus production. These results indicate that actin filaments may play an important role in hantavirus assembly and/or release.  相似文献   

2.
When hepatitis A virus was inoculated into Vero cells, virus-specified protein and RNA synthesis was detected. Production of viral protein was detected by electrophoretic analysis in polyacrylamide gels by using a double-label coelectrophoresis and subtraction method which eliminated the contribution of host protein components from the profiles of virus-infected cytoplasm. Eleven virus-specified proteins were detected in the net electrophoretic profiles of hepatitis A virus-infected cells. The molecular weights of these proteins were very similar to those detected in cells infected with poliovirus type 1. Virus-specified protein synthesis could be detected at 3 to 6 h and continued for at least 48 h postinfection, but no significant effect on host-cell macromolecular synthesis was observed. Limited viral RNA replication occurred between 2 and 6 h postinfection. The genomic RNA of hepatitis A virus was extracted and shown to be capable of infecting cells and inducing the same set of proteins as intact virus, indicating that the RNA genome is positive stranded. Progeny virus was never detected in the supernatant fluids of infected cell cultures, and the cells showed no observable cytopathology, even though hepatitis A virus-specific proteins and antigens were being produced. The nature of the defect in the replicative cycle of hepatitis A virus in this system remains unknown.  相似文献   

3.
Mice were immunized with measles virus to determine whether an auto-anti-idiotypic antireceptor response could be generated as a probe for measles virus receptors. Mice initially responded to viral antigens (days 11 to 18) and subsequently developed antibodies to a putative measles virus receptor (peak at day 30 to 35) by three criteria: the sera (1) agglutinated erythrocytes which virus agglutinates, (2) reacted with Vero cells, and (3) inhibited virus attachment to Vero cells. Additionally, select sera inhibited virus infection of Vero cells. The cell-reactive activity was identified as immunoglobulin G antibody and was neutralized by sera reacting with virus (idiotype). The application of this anti-idiotypic antibody to identify measles virus-binding sites on Vero cells was revealed by the ability of sera to immunoprecipitate 20- and 30.5-kilodalton proteins from metabolically labeled ([35S]methionine) Vero cells.  相似文献   

4.
Brief treatment of Sindbis virus-infected BHK-21 or Vero cells with low concentrations of trypsin irreversibly blocked further production of progeny virions after removal of the enzyme. The inhibitory effects of the trypsin treatment could only be demonstrated in cells in which virus infection was established; optimal inhibition occurred at ca. 3 h postinfection. Production of virus structural proteins PE2, E1, and C occurred at normal levels in inhibited cells. PE2 and E1 were also transported to the cell plasma membrane during inhibition; however, PE2 was not cleaved to E2, and little capsid protein became membrane associated relative to control cells. Although trypsin treatment had no effect on Sindbis protein synthesis, the production of both 26S and 42S RNA was greatly reduced. Similar trypsin treatment of BHK cells infected with vesicular stomatitis virus had no detectable effect on the course of virus infection.  相似文献   

5.
The state of polymerization of actin and the organization of actin filaments is widely believed to be related to cellular transformation. Since the intracellular monomer (G) and filamentous (F) actin content reflects the state of microfilament polymerization, we measured the G/total actin ratio in primary cultures of normal and malignant human keratinocytes. In normal keratinocytes the mean value of this ratio was 0·30 ± 0·03 (mean ± SE, n = 15), while in basal cell carcinoma (BCC) keratinocytes it was 0·49 ± 0·03 (n = 8) and in squamous cell carcinoma keratinocytes (SCC) 0·5 ± 0·07 (n = 4), indicating a 1·7-fold increase of the G/total actin ratio in malignant cells. These results imply that the proportion of polymerized actin is decreased markedly in malignant keratinocytes, suggesting alterations of microfilament structures which probably occur during the transformation process. This was supported by the morphological changes of microfilament structures as assessed by fluorescence microscopy. A different distribution of actin filaments in normal and malignant cells became evident; stress-fibres were converging in patches at several points in SCC cells, when compared to normal keratinocytes. Furthermore, incubation of normal and malignant keratinocytes with cytochalasin B indicated differences in the resistance of their microfilament networks. After 1 h exposure to 10?6 and 10?5 M cytochalasin B, microfilaments in normal cells appeared to be less affected than their counterparts in neoplastic cells. Even in a high excess of cytochalasin B (10?4 M ), normal keratinocytes preserved their shape, while both basal cell and SCC were totally disrupted. We concluded that the G/total actin ratio was significantly increased in malignant keratinocytes. This seems to be correlated with altered microfilament morphology and resistance to cytochalasin B treatment. Our results suggest that the process of malignant transformation may be characterized by changes in the state of the polymerization of actin and in the stability of the microfilament network indicating that both features could potentially serve as markers determine the transformed state of keratinocytes.  相似文献   

6.
Maize root tip cells were examined for the distribution of actin microfilaments in various cell types and to determine the effects of microfilament disrupters. Fluorescence microscopy on fixed, stabilized, squashed cells using the F-actin specific probe, rhodamine-labelled phalloidin, allowed for a three-dimensional visualization of actin microfilaments. Microfilaments were observed as long, meandering structures in root cap cells and meristematic cells, while those in immature vascular parenchyma were abundant in the thin band of cytoplasm and were long and less curved. By modifying standard electron microscopic fixation procedures, microfilaments in plant cells could be easily detected in all cell types. Treatment with cytochalasin B, cytochalasin D and lead acetate, compounds that interfere with microfilament related processes, re-organized the microfilaments into abnormal crossed and highly condensed masses. All the treatments affected not only the microfilaments but also the accumulation of secretory vesicles. The vivid demonstration of the effects of all of these microfilament disrupters on the number and size of Golgi vesicles indicates that these vesicles may depend on microfilaments for intracellular movement.  相似文献   

7.
Summary Maize root tip cells were examined for the distribution of actin microfilaments in various cell types and to determine the effects of microfilament disrupters. Fluorescence microscopy on fixed, stabilized, squashed cells using the F-actin specific probe, rhodamine-labelled phalloidin, allowed for a three-dimensional visualization of actin microfilaments. Microfilaments were observed as long, meandering structures in root cap cells and meristematic cells, while those in immature vascular parenchyma were abundant in the thin band of cytoplasm and were long and less curved. By modifying standard electron microscopic fixation procedures, microfilaments in plant cells could be easily detected in all cell types. Treatment with cytochalasin B, cytochalasin D and lead acetate, compounds that interfere with microfilament related processes, re-organized the microfilaments into abnormal crossed and highly condensed masses. All the treatments affected not only the microfilaments but also the accumulation of secretory vesicles. The vivid demonstration of the effects of all of these microfilament disrupters on the number and size of Golgi vesicles indicates that these vesicles may depend on microfilaments for intracellular movement.  相似文献   

8.
Proper assembly of nucleocapsids of the baculovirus Autographa californica nuclear polyhedrosis virus is prevented by cytochalasin D, a drug that interferes with actin microfilament function. To investigate the involvement of microfilaments in A. californica nuclear polyhedrosis virus replication, a fluorescence microscopy study was conducted that correlated changes in distribution of microfilaments with events in the life cycle of the virus. Tetramethylrhodamine isothiocyanate-labeled phalloidin was used to label microfilaments, and monoclonal antibody was used to label p39, the major viral capsid protein. Three microfilament arrangements were found in infected cells. During uptake of virus, thick cables were formed. These were insensitive to cycloheximide, indicating that this configuration was a rearrangement of preexisting cellular actin mediated by a component of the viral inoculum. At the time of cell rounding and before viral DNA replication, ventral aggregates of actin were observed. These were sensitive to cycloheximide but not to aphidicolin, indicating that an early viral gene mediated this actin rearrangement. Ventral aggregates did not result from the rounding process itself. Uninfected cells prerounded with colchicine did not form ventral aggregates. Cells prerounded with colchicine and then infected did form aggregates. At the time of exponential production of progency virus, microfilaments were found in the nucleus surrounding the virogenic stroma. In this area (where nucleocapsid assembly is known to take place) microfilaments colocalized with p39. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western immunoblot analysis identified p39 among proteins retained on an f-actin affinity column. We postulate that microfilaments in the nucleus provide a scaffold to position capsids for proper assembly and filling with DNA.  相似文献   

9.
Polyadenylated mRNA extracted from cytoplasm of measles virus-infected Vero cells was translated in a cell-free system. Three of the polypeptides obtained corresponded to nucleocapsid protein, phosphoprotein, and membrane protein of measles virions. A fourth polypeptide, present in measles virus-infected cells, could be generated by addition of Vero cytoplasmic extract and was identified as a cleavage product of the nucleocapsid protein.  相似文献   

10.
Absorption of a pooled human gamma globulin preparation with acetone-treated measles virus-infected cells removed all antibodies to measles virus antigens except a portion of the antibody to the fusion (F) protein. The residual anti-F antibody had hemolysis-inhibiting and virus-neutralizing activities, inhibited spread of infection through cell fusion, and was effective in protection of passively immunized mice from fatal measles encephalitis, providing evidence for the protective role of human antibody to the F protein of measles virus.  相似文献   

11.
The time of appearance of a lysosomal enzyme, beta-glucuronidase, in the medium of cells infected with either measles virus or echovirus 6 varied with the host cell system. Replication and release of virus preceded leakage of beta-glucuronidase from green monkey kidney cells. In contrast, extracellular enzyme appeared before replication and release of virus in human amnion cells. Hydrocortisone depressed enzyme leakage but did not retard replication of measles virus or viral-induced cytopathology. The intracellular distribution of beta-glucuronidase in uninfected and measles virus-infected cells was also studied. Measles virus infection altered the position of particulate-bound beta-glucuronidase in linear sucrose gradients prior to substantial release of this enzyme intra- and extracellularly. At early stages in infection, most of the cell-associated virus banded with particulate-bound enzyme in the middle of the gradient. As infection progressed, separation of measles virus infectivity from enzyme activity occurred, and intracellular virus was recovered near the meniscus of sucrose gradients.  相似文献   

12.
13.
Virus-induced cell fusion has been studied after infection of Vero cells with measles virus. Scanning and transmission electron microscopy were combined with immunoperoxidase labeling of measles antigens to correlate viral production and distribution of virus-induced erythrocyte binding sites with progress of fusion. Release of infectious virus started before syncytia were detected and decreased while the number and size of syncytia were increasing. Most virions were seen budding from mononucleated cells or from the periphery of syncytia where cells were being recruited. Moving inward, the surfaces of syncytia where cells were being recruited. Moving inward, the surfaces of syncytia were covered with numerous ridges containing viral antigen, but few viral buds were seen, suggesting that syncytia might be sites of defective viral formation. Hemadsorption occurred predominantly within the confines of syncytia. Erythrocytes were scattered sparsely over immature syncytia but were densely packed in the center of mature syncytia. Active binding sites for erythrocytes were located on cell villi and ridges covered with measles antigens. Hemadsorption was completely inhibited in measles virus-infected cultures pretreated with virus-specific immunoglobulin G for 1 h at 4 degrees C. However, when these cultures were shifted to 37 degrees C, hemadsorbing sites were recovered at the periphery of enlarging syncytia. Virus-induced sites for erythrocyte adsorption were found to move centripetally on syncytium membranes as fusion progressed.  相似文献   

14.
A Vero cell adapted Green strain of canine distemper virus (CDV) was tested for its plaque-forming capacity in different cell lines. Plaque formation was observed in HEp-2, BS-C-1, and HeLa cells but not in Vero or dog kidney cells even though replication and cytopathology were observed in the latter cell types. In the cells in which the virus was capable of producing plaques, the plaques were observed within 24 h post infection and continued to increase in size with subsequent cellular destruction such that by 72 h postinfection the size of the plaques approached 0.5 mm. With the use of the plaquing technique, it was possible to demonstrate the thermal lability of the virus as well as the kinetics of adsorption. Thus, it was shown that the half-life of the virus was 125 min at 25 degrees C, 75 min at 35 degrees C, and 65 min at 37 degrees C. The rate of adsorption of CDV to HEp-2 cells was 17.2% in 30 min at 37 degrees C and continued slowly for 4 h before completion. Application of this rapid plaque-forming assay to plaque-reduction tests for CDV antibody and for CDV-infected cells by the infectious center assay are described.  相似文献   

15.
The organization of microfilaments and microtubules in cultured cells before and after the addition of cytochalasin B (CB) was studied both by electron microscopy and immunofluorescence microscopy using antibodies specific for actin, tubulin and tropomyosin. CB induces a rapid disorganization of normal microfilament bundles. Star-like patches of actin and tropomyosin are visualized in immunofluorescence microscopy and dense aggregates of condensed microfilaments are seen in electron microscopy. The integrity of the microtubules is not changed by CB treatment. Addition of CB to glycerinated cells, in contrast to normal cells, does not result in the disorganization of microfilament bundles. CB-treated glycerinated models can still contract upon addition of ATP. Thus the CB-induced rearrangement of microfilament bundles occurs only in vivo and not in glycerinated cell contractility models.  相似文献   

16.
The Ebola filoviruses are aggressive pathogens that cause severe and often lethal hemorrhagic fever syndromes in humans and nonhuman primates. To date, no effective therapies have been identified. To analyze the entry and fusion properties of Ebola virus, we adapted a human immunodeficiency virus type 1 (HIV-1) virion-based fusion assay by substituting Ebola virus glycoprotein (GP) for the HIV-1 envelope. Fusion was detected by cleavage of the fluorogenic substrate CCF2 by beta-lactamase-Vpr incorporated into virions and released as a result of virion fusion. Entry and fusion induced by the Ebola virus GP occurred with much slower kinetics than with vesicular stomatitis virus G protein (VSV-G) and were blocked by depletion of membrane cholesterol and by inhibition of vesicular acidification with bafilomycin A1. These properties confirmed earlier studies and validated the assay for exploring other properties of Ebola virus GP-mediated entry and fusion. Entry and fusion of Ebola virus GP pseudotypes, but not VSV-G or HIV-1 Env pseudotypes, were impaired in the presence of the microtubule-disrupting agent nocodazole but were enhanced in the presence of the microtubule-stabilizing agent paclitaxel (Taxol). Agents that impaired microfilament function, including cytochalasin B, cytochalasin D, latrunculin A, and jasplakinolide, also inhibited Ebola virus GP-mediated entry and fusion. Together, these findings suggest that both microtubules and microfilaments may play a role in the effective trafficking of vesicles containing Ebola virions from the cell surface to the appropriate acidified vesicular compartment where fusion occurs. In terms of Ebola virus GP-mediated entry and fusion to various target cells, primary macrophages proved highly sensitive, while monocytes from the same donors displayed greatly reduced levels of entry and fusion. We further observed that tumor necrosis factor alpha, which is released by Ebola virus-infected monocytes/macrophages, enhanced Ebola virus GP-mediated entry and fusion to human umbilical vein endothelial cells. Thus, Ebola virus infection of one target cell may induce biological changes that facilitate infection of secondary target cells that play a key role in filovirus pathogenesis. Finally, these studies indicate that pseudotyping in the HIV-1 virion-based fusion assay may be a valuable approach to the study of entry and fusion properties mediated through the envelopes of other viral pathogens.  相似文献   

17.
Microfilament integrity is needed to maintain the regular arrangement of the spindle microtubules and to guarantee the normal progression of the last syncytial mitoses in Drosophila embryo. To investigate when and how microfilaments participate in this process, we incubated permeabilized embryos with the inhibitor of actin polymerization, cytochalasin B, at different times during the nuclear cycle. Our results suggest that the correct microfilament distribution is only required for the appropriate segregation of nuclei during the 11th, 12th and 13th syncytial mitoses rather than during the 10th mitosis when the spindles are too far apart to interact. When cytochalasin B treatment was performed during the last syncytial mitoses many spindles fuse among them and the regular mitotic progression is perturbed.  相似文献   

18.
Measles virus has been centrifuged on different density gradients. It sediments at densities of 1,20 g/cm3 in K-tartrate, of 1,18–1,21 g/cm3 in sucrose, 1,19–1,23 g/cm3 in CsCl and 1,19 g/cm3 in metrizamide gradients. Metrizamide reduced measles virus infectivity. In sucrose gradients sometimes more than one infectious peak was observed. Control Vero cells produced particles of the same densities as measles virus peaks. These peaks did contain actin as the major protein. The relevance of this finding in relation to the presence of actin in measles virus is discussed.  相似文献   

19.
We have identified an F-actin cytoskeletal network that remains throughout interphase, mitosis, and cytokinesis of higher plant endosperm cells. Fluorescent labeling was obtained using actin monoclonal antibodies and/or rhodamine-phalloidin. Video-enhanced microscopy and ultrastructural observations of immunogold-labeled preparations illustrated microfilament-microtubule co-distribution and interactions. Actin was also identified in cell crude extract with Western blotting. During interphase, microfilament and microtubule arrays formed two distinct networks that intermingled. At the onset of mitosis, when microtubules rearranged into the mitotic spindle, microfilaments were redistributed to the cell cortex, while few microfilaments remained in the spindle. During mitosis, the cortical actin network remained as an elastic cage around the mitotic apparatus and was stretched parallel to the spindle axis during poleward movement of chromosomes. This suggested the presence of dynamic cross-links that rearrange when they are submitted to slow and regular mitotic forces. At the poles, the regular network is maintained. After midanaphase, new, short microfilaments invaded the equator when interzonal vesicles were transported along the phragmoplast microtubules. Colchicine did not affect actin distribution, and cytochalasin B or D did not inhibit chromosome transport. Our data on endosperm cells suggested that plant cytoplasmic actin has an important role in the cell cortex integrity and in the structural dynamics of the poorly understood cytoplasm-mitotic spindle interface. F-actin may contribute to the regulatory mechanisms of microtubule-dependent or guided transport of vesicles during mitosis and cytokinesis in higher plant cells.  相似文献   

20.
To understand the role of microtubules and microfilaments in regulating endothelial monolayer integrity and repair, and since microtubules and microfilaments show some co-alignment in endothelial cells, we tested the hypothesis that microtubules organize microfilament distribution. Disruption of microtubules with colchicine in resting confluent aortic endothelial monolayers resulted in disruption of microfilament distribution with a loss of dense peripheral bands, an increase in actin microfilament bundles, and an associated increase of focal adhesion proteins at the periphery of the cells. However, when microfilaments were disrupted with cytochalasin B, microtubule distribution did not change. During the early stages of wound repair of aortic endothelial monolayers, microtubules and microfilaments undergo a sequential series of changes in distribution prior to cell migration. They are initially distributed randomly relative to the wound edge, then align parallel to the wound edge and then elongate perpendicular to the wound edge. When microtubules in wounded cultures were disrupted, dense peripheral bands and lamellipodia formation were lost with increases in central stress fibers. However, following microfilament disruption, microtubule redistribution was not disrupted and the microtubules elongated perpendicular to the wound edge similar to non-treated cultures. Microtubules may organize independently of microfilaments while microfilaments require microtubules to maintain normal organization in confluent and repairing aortic endothelial monolayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号