首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intracellular bacterial pathogen Listeria monocytogenes moves inside the host-cell cytoplasm propelled by continuous actin assembly at one pole of the bacterium. This process requires expression of the bacterial surface protein ActA. Recently, in order to identify the regions of ActA which are required for actin assembly, we and others have expressed different domains of ActA by transfection in eukaryotic cells. As this type of approach cannot address the role of ActA in the actin-driven bacterial propulsion, we have now generated several L. monocytogenes strains expressing different domains of ActA and analysed the ability of the different domains to trigger actin assembly and bacterial movement in both infected cells and cytoplasmic extracts. We show here that the amino-terminal part is critical for F-actin assembly and movement. The internal proline-rich repeats and the carboxy-terminal domains are not essential. However, in vitro motility assays have demonstrated that mutants lacking the proline-rich repeats domain of ActA moved two times slower (6±2 µm min−1) than the wild type (13±3µm min−1}). In addition, phosphatase treatment of protein extracts of cells infected with the L. monocytogenes strains expressing the ActA variants suggested that phosphorylation may not be essential for ActA activity.  相似文献   

2.
Mechanism of polarization of Listeria monocytogenes surface protein ActA   总被引:3,自引:0,他引:3  
The polar distribution of the ActA protein on the surface of the Gram-positive intracellular bacterial pathogen, Listeria monocytogenes, is required for bacterial actin-based motility and successful infection. ActA spans both the bacterial membrane and the peptidoglycan cell wall. We have directly examined the de novo ActA polarization process in vitro by using an ActA-RFP (red fluorescent protein) fusion. After induction of expression, ActA initially appeared at distinct sites along the sides of bacteria and was then redistributed over the entire cylindrical cell body through helical cell wall growth. The accumulation of ActA at the bacterial poles displayed slower kinetics, occurring over several bacterial generations. ActA accumulated more efficiently at younger, less inert poles, and proper polarization required an optimal balance between protein secretion and bacterial growth rates. Within infected host cells, younger generations of L. monocytogenes initiated motility more quickly than older ones, consistent with our in vitro observations of de novo ActA polarization. We propose a model in which the polarization of ActA, and possibly other Gram-positive cell wall-associated proteins, may be a direct consequence of the differential cell wall growth rates along the bacterium and dependent on the relative rates of protein secretion, protein degradation and bacterial growth.  相似文献   

3.
The bacterial pathogen, Listeria monocytogenes, grows in the cytoplasm of host cells and spreads intercellularly using a form of actin-based motility mediated by the bacterial protein ActA. Tightly adherent monolayers of MDCK cells that constitutively express GFP-actin were infected with L. monocytogenes, and intercellular spread of bacteria was observed by video microscopy. The probability of formation of membrane-bound protrusions containing bacteria decreased with host cell monolayer age and the establishment of extensive cell-cell contacts. After their extension into a recipient cell, intercellular membrane-bound protrusions underwent a period of bacterium-dependent fitful movement, followed by their collapse into a vacuole and rapid vacuolar lysis. Actin filaments in protrusions exhibited decreased turnover rates compared with bacterially associated cytoplasmic actin comet tails. Recovery of motility in the recipient cell required 1-2 bacterial generations. This delay may be explained by acid-dependent cleavage of ActA by the bacterial metalloprotease, Mpl. Importantly, we have observed that low levels of endocytosis of neighboring MDCK cell surface fragments occurs in the absence of bacteria, implying that intercellular spread of bacteria may exploit an endogenous process of paracytophagy.  相似文献   

4.
Networks of polymerizing actin filaments can propel intracellular pathogens and drive movement of artificial particles in reconstituted systems. While biochemical mechanisms activating actin network assembly have been well characterized, it remains unclear how particle geometry and large-scale force balance affect emergent properties of movement. We reconstituted actin-based motility using ellipsoidal beads resembling the geometry of Listeria monocytogenes. Beads coated uniformly with the L. monocytogenes ActA protein migrated equally well in either of two distinct orientations, with their long axes parallel or perpendicular to the direction of motion, while intermediate orientations were unstable. When beads were coated with a fluid lipid bilayer rendering ActA laterally mobile, beads predominantly migrated with their long axes parallel to the direction of motion, mimicking the orientation of motile L. monocytogenes. Generating an accurate biophysical model to account for our observations required the combination of elastic-propulsion and tethered-ratchet actin-polymerization theories. Our results indicate that the characteristic orientation of L. monocytogenes must be due to polarized ActA rather than intrinsic actin network forces. Furthermore, viscoelastic stresses, forces, and torques produced by individual actin filaments and lateral movement of molecular complexes must all be incorporated to correctly predict large-scale behavior in the actin-based movement of nonspherical particles.  相似文献   

5.
Listeria monocytogenes and Shigella flexneri are two unrelated facultative intracellular pathogens which spread from cell to cell by using a similar mode of intracellular movement based on continuous actin assembly at one pole of the bacterium. This process requires the asymmetrical expression of the ActA surface protein in L. monocytogenes and the lcsA (VirG) surface protein in S. flexneri . ActA and lcsA share no sequence homology. To assess the role of the two proteins in the generation of actin-based movement, we expressed them in the genetic context of two non-actin polymerizing, non-pathogenic bacterial species, Listeria innocua and Escherichia coli . In the absence of any additional bacterial pathogenicity determinants, both proteins induced actin assembly and propulsion of the bacteria in cytoplasmic extracts from Xenopus eggs, as visualized by the formation of characteristic actin comet tails. E. coli expressing lcsA moved about two times faster than Listeria and displayed longer actin tails. However, actin dynamics (actin filament distribution and filament half-lives) were similar in lcsA- and ActA-induced actin tails suggesting that by using unrelated surface molecules, L. monocytogenes and S. flexneri move intracellularly by interacting with the same host cytoskeleton components or by interfering with the same host cell signal transduction pathway.  相似文献   

6.
Actin assembly on the surface of Listeria monocytogenes in the cytoplasm of infected cells provides a model to study actin-based motility and changes in cell shape. We have shown previously that the ActA protein, exposed on the bacterial surface, is required for polarized nucleation of actin filaments. To investigate whether plasma membrane-associated ActA can control the organization of microfilaments and cell shape, variants of ActA, in which the bacterial membrane signal had been replaced by a plasma membrane anchor sequence, were produced in mammalian cells. While both cytoplasmic and membrane-bound forms of ActA increased the F-actin content, only membrane-associated ActA caused the formation of plasma membrane extensions. This finding suggests that ActA acts as an actin filament nucleator and shows that permanent association with the inner face of the plasma membrane is required for changes in cell shape. Based on the observation that the amino-terminal segment of ActA and the remaining portion which includes the proline-rich repeats cause distinct phenotypic modifications in transfected cells, we propose a model in which two functional domains of ActA cooperate in the nucleation and dynamic turnover of actin filaments. The present approach is a new model system to dissect the mechanism of action of ActA and to further investigate interactions of the plasma membrane and the actin cytoskeleton during dynamic changes of cell shape.  相似文献   

7.
The Listeria monocytogenes surface protein ActA mediates actin-based motility by interacting with a number of host cytoskeletal components, including Ena/VASP family proteins, which in turn interact with actin and the actin-binding protein profilin. We employed a bidirectional genetic approach to study Ena/VASP's contribution to L. monocytogenes movement and pathogenesis. We generated an ActA allelic series within the defined Ena/VASP-binding sites and introduced the resulting mutant L. monocytogenes into cell lines expressing different Ena/VASP derivatives. Our findings indicate that Ena/VASP proteins contribute to the persistence of both speed and directionality of L. monocytogenes movement. In the absence of the Ena/VASP proline-rich central domain, speed consistency decreased by sixfold. In addition, the Ena/VASP F-actin-binding region increased directionality of bacterial movement by fourfold. We further show that both regions of Ena/VASP enhanced L. monocytogenes cell-to-cell spread to a similar degree, although the Ena/VASP F-actin-binding region did so in an ActA-independent manner. Surprisingly, our ActA allelic series enabled us to uncouple L. monocytogenes speed from directionality although both were controlled by Ena/VASP proteins. Lastly, we showed the pathogenic relevance of these findings by the observation that L. monocytogenes lacking ActA Ena/VASP-binding sites were up to 400-fold less virulent during an adaptive immune response.  相似文献   

8.
We have examined the process by which the intracellular bacterial pathogen Listeria monocytogenes initiates actin-based motility and determined the contribution of the variable surface distribution of the ActA protein to initiation and steady-state movement. To directly correlate ActA distributions to actin dynamics and motility of live bacteria, ActA was fused to a monomeric red fluorescent protein (mRFP1). Actin comet tail formation and steady-state bacterial movement rates both depended on ActA distribution, which in turn was tightly coupled to the bacterial cell cycle. Motility initiation was found to be a highly complex, multistep process for bacteria, in contrast to the simple symmetry breaking previously observed for ActA-coated spherical beads. F-actin initially accumulated along the sides of the bacterium and then slowly migrated to the bacterial pole expressing the highest density of ActA as a tail formed. Early movement was highly unstable with extreme changes in speed and frequent stops. Over time, saltatory motility and sensitivity to the immediate environment decreased as bacterial movement became robust at a constant steady-state speed.  相似文献   

9.
Upon infection of mammalian cells, Listeria monocytogenes lyses the phagosome and enters the cytosol, where it secretes proteins necessary for its intracellular growth cycle. Consequently, bacterial proteins exposed to the cytosol are potential targets for degradation by host cytosolic proteases. One pathway for degradation of host cytosolic proteins, the N-end rule pathway, involves recognition of the N-terminal amino acid and is mediated by the proteasome. However, very few natural N-end rule substrates have been identified. We have examined the L. monocytogenes ActA protein as a potential target for this pathway. ActA is an essential determinant of L. monocytogenes pathogenesis that is required to induce actin-based motility and cell-to-cell spread. We show that the half-life of a secreted form of ActA can be altered in the mammalian cytosol by changing the N-terminal amino acid. Moreover, the introduction of a destabilizing N-terminus into the functional, surface-bound form of ActA results in a small-plaque phenotype in L2 cells, which is partially reversible by an inhibitor of the proteasome. These results indicate that the L. monocytogenes ActA protein is a natural N-end rule substrate, and that optimal function of ActA in mediating cell-to-cell spread is dependent upon its intracellular turnover rate.  相似文献   

10.
The Listeria monocytogenes ActA protein mediates actin-based motility by recruiting and stimulating the Arp2/3 complex. In vitro, the actin monomer-binding region of ActA is critical for stimulating Arp2/3-dependent actin nucleation; however, this region is dispensable for actin-based motility in cells. Here, we provide genetic and biochemical evidence that vasodilator-stimulated phosphoprotein (VASP) recruitment by ActA can bypass defects in actin monomer-binding. Furthermore, purified VASP enhances the actin-nucleating activity of wild-type ActA and the Arp2/3 complex while also reducing the frequency of actin branch formation. These data suggest that ActA stimulates the Arp2/3 complex by both VASP-dependent and -independent mechanisms that generate distinct populations of actin filaments in the comet tails of L. monocytogenes. The ability of VASP to contribute to actin filament nucleation and to regulate actin filament architecture highlights the central role of VASP in actin-based motility.  相似文献   

11.
Abstract Within infected eukaryotic cells the two pathogenic Listeria species, L. monocytogenes and L. ivanovii , induce polymerization of cellular actin and the formation of a propulsive actin tail at one bacterial pole. For L. monocytogenes it has been shown that the product of the listerial actA gene is required for this process which is regarded as a model for actin-based motility. We have now cloned and sequenced a functionally analogous gene from L. ivanovii ; its product, as deduced from the DNA sequence, is considerably larger (108 kDa) than L. monocytogenes ActA (67 kDa) and shares only a limited amino acid sequence homology (46% similarity on average) with the latter protein. This is the first example of a virulence gene product from L. ivanovii which is significantly different from its L. monocytogenes counterpart. Comparison of the two ActA proteins gives new insight into the structure of this class of actin-polymerization proteins, in particular with respect to their proline-rich repeat region.  相似文献   

12.
Using a biochemically complex cytoplasmic extract to reconstitute actin-based motility of Listeria monocytogenes and polystyrene beads coated with the bacterial protein ActA, we have systematically varied a series of biophysical parameters and examined their effects on initiation of motility, particle speed, speed variability, and path trajectory. Bead size had a profound effect on all aspects of motility, with increasing size causing slower, straighter movement and inhibiting symmetry-breaking. Speed also was reduced by extract dilution, by addition of methylcellulose, and paradoxically by addition of excess skeletal muscle actin, but it was enhanced by addition of nonmuscle (platelet) actin. Large, persistent individual variations in speed were observed for all conditions and their relative magnitude increased with extract dilution, indicating that persistent alterations in particle surface properties may be responsible for intrinsic speed variations. Trajectory curvature was increased for smaller beads and also for particles moving in the presence of methylcellulose or excess skeletal muscle actin. Symmetry breaking and movement initiation occurred by two distinct modes: either stochastic amplification of local variation for small beads in concentrated extracts, or gradual accumulation of strain in the actin gel for large beads in dilute extracts. Neither mode was sufficient to enable spherical particles to break symmetry in the cytoplasm of living cells.  相似文献   

13.
Intracellular propulsion of Listeria monocytogenes is the best understood form of motility dependent on actin polymerization. We have used in vitro motility assays of Listeria in platelet and brain extracts to elucidate the function of the focal adhesion proteins of the Ena (Drosophila Enabled)/VASP (vasodilator-stimulated phosphoprotein) family in actin-based motility. Immunodepletion of VASP from platelet extracts and of Evl (Ena/VASP-like protein) from brain extracts of Mena knockout (-/-) mice combined with add-back of recombinant (bacterial or eukaryotic) VASP and Evl show that VASP, Mena, and Evl play interchangeable roles and are required to transform actin polymerization into active movement and propulsive force. The EVH1 (Ena/VASP homology 1) domain of VASP is in slow association-dissociation equilibrium high-affinity binding to the zyxin-homologous, proline-rich region of ActA. VASP also interacts with F-actin via its COOH-terminal EVH2 domain. Hence VASP/ Ena/Evl link the bacterium to the actin tail, which is required for movement. The affinity of VASP for F-actin is controlled by phosphorylation of serine 157 by cAMP-dependent protein kinase. Phospho-VASP binds with high affinity (0.5 x 10(8) M-1); dephospho-VASP binds 40-fold less tightly. We propose a molecular ratchet model for insertional polymerization of actin, within which frequent attachment-detachment of VASP to F-actin allows its sliding along the growing filament.  相似文献   

14.
Studies of the biochemistry of Listeria monocytogenes virulence protein ActA have typically focused on the behavior of bacteria in complex systems or on the characterization of the protein after expression and purification. Although prior in vivo work has proposed that ActA forms dimers on the surface of L. monocytogenes, dimerization has not been demonstrated in vitro, and little consideration has been given to the surface environment where ActA performs its pivotal role in bacterial actin-based motility. We have synthesized and characterized an ActA dimer and provide evidence that the two ActA molecules do not interact with each other even when tethered together. However, we also demonstrate that artificial dimers provide superior activation of actin nucleation by the Arp2/3 complex compared with monomers and that increased activation of the Arp2/3 complex by dimers may be a general property of Arp2/3 activators. It appears that the close packing ( approximately 19 nm) of ActA molecules on the surface of L. monocytogenes is so dense that the kinetics of actin nucleation mimic that of synthetic ActA dimers. We also present observations indicating that ActA is a natively unfolded protein, largely random coil that is responsible for many of the unique physical properties of ActA including its extended structure, aberrant mobility during SDS-PAGE, and ability to resist irreversible denaturation upon heating.  相似文献   

15.
The Listeria monocytogenes ActA protein acts as a scaffold to assemble and activate host cell actin cytoskeletal factors at the bacterial surface, resulting in directional actin polymerization and propulsion of the bacterium through the cytoplasm. We have constructed 20 clustered charged-to-alanine mutations in the NH2-terminal domain of ActA and replaced the endogenous actA gene with these molecular variants. These 20 clones were evaluated in several biological assays for phenotypes associated with particular amino acid changes. Additionally, each protein variant was purified and tested for stimulation of the Arp2/3 complex, and a subset was tested for actin monomer binding. These specific mutations refined the two regions involved in Arp2/3 activation and suggest that the actin-binding sequence of ActA spans 40 amino acids. We also identified a 'motility rate and cloud-to-tail transition' region in which nine contiguous mutations spanning amino acids 165-260 caused motility rate defects and changed the ratio of intracellular bacteria associated with actin clouds and comet tails without affecting Arp2/3 activation. Several unusual motility phenotypes were associated with amino acid changes in this region, including altered paths through the cytoplasm, discontinuous actin tails in host cells and the tendency to 'skid' or dramatically change direction while moving. These unusual phenotypes illustrate the complexity of ActA functions that control the actin-based motility of L. monocytogenes.  相似文献   

16.
Here we report that Caenorhabditis elegans nematodes fed Listeria monocytogenes die over the course of several days, as a consequence of an accumulation of bacteria in the worm intestine. Mutant strains previously shown to be important for virulence in mammalian models were also found to be attenuated in their virulence in C. elegans. However, ActA, which is required for actin-based intracellular motility, appears to be dispensable during infection of C. elegans, indicating that L. monocytogenes remains extracellular in C. elegans.  相似文献   

17.
How does subcellular architecture influence the intracellular movements of large organelles and macromolecular assemblies? To investigate the effects of mechanical changes in cytoplasmic structure on intracellular motility, we have characterized the actin-based motility of the intracellular bacterial pathogen Listeria monocytogenes in normal mouse fibroblasts and in fibroblasts lacking intermediate filaments. The apparent diffusion coefficient of L. monocytogenes was two-fold greater in vimentin-null fibroblasts than in wild-type fibroblasts, indicating that intermediate filaments significantly restrict the Brownian motion of bacteria. However, the mean speed of L. monocytogenes actin-based motility was statistically identical in vimentin-null and wild-type cells. Thus, environmental drag is not rate limiting for bacterial motility. Analysis of the temporal variations in speed measurements indicated that bacteria in vimentin-null cells displayed larger fluctuations in speed than did trajectories in wild-type cells. Similarly, the presence of the vimentin meshwork influenced the turning behavior of the bacteria; in the vimentin-null cells, bacteria made sharper turns than they did in wild-type cells. Taken together, these results suggest that a network of intermediate filaments constrains bacterial movement and operates over distances of several microns to reduce fluctuations in motile behavior.  相似文献   

18.
At the border line between microbiology and cell biology, the spectacular capacity o f some intracellular bacterial pathogens, including Listeria monocytogenes, Shigella flexneri and several Rickettsias, to use actin polymerization as a driving force for intracellular movement, cell-to-cell spreading and dissemination within the infected tissue is being increasingly studied. Now that it is possible to manipulate the bacterial surface proteins involved in this process - ActA o f L. monocytogenes and IcsA of S. flexneri - these bacterial systems are providing experimental models in which to investigate the role o f actin filament dynamics in cell motility.  相似文献   

19.
《Autophagy》2013,9(8):1220-1221
Autophagy is a pivotal bulk degradation system that eliminates undesirable molecules, damaged organelles, and misfolded protein aggregates in response to diverse stimuli, including infection. Autophagy acts to limit intracellular microbial growth but intracellular pathogens have evolved strategies to subvert host autophagic responses for their survival. We found that Listeria monocytogenes ActA, a surface protein required for actin polymerization and actin-based bacterial motility, plays a pivotal role in evading autophagy, but in a manner independent of bacterial motility. We show that L. monocytogenes exploits the biomimetic property of ActA to camouflage itself with host proteins comprised of Ena/VASP and the Arp2/3 complex, thereby escaping recognition by autophagy (Fig. 1).  相似文献   

20.
The Listeria monocytogenes surface protein ActA is an important virulence factor required for listerial intracellular movement by inducing actin polymerization. The only host cell protein known that directly interacts with ActA is the phosphoprotein VASP, which binds to the central proline-rich repeat region of ActA. To identify additional ActA-binding proteins, we applied the yeast two-hybrid system to search for mouse proteins that interact with ActA. A mouse cDNA library was screened for ActA-interacting proteins (AIPs) using ActA from strain L. monocytogen es EGD as bait. Three different AIPs were identified, one of which was identical to the human protein LaXp180 (also called CC1). Binding of LaXp180 to ActA was also demonstrated in vitro using recombinant histidine-tagged LaXp180 and recombinant ActA. Using an anti-LaXp180 antibody and fluorescence microscopy, we showed that LaXp180 co-localizes with a subset of intracellular, ActA-expressing L. monocytogenes but was never detected on intracellularly growing but ActA-deficient mutants. Furthermore, LaXp180 binding to intracellular L. monocytogenes was asymmetrical and mutually exclusive with F-actin polymerization on the bacterial surface. LaXp180 is a putative binding partner of stathmin, a protein involved in signal transduction pathways and in the regulation of microtubule dynamics. Using immunofluorescence, we showed that stathmin co-localizes with intracellular ActA-expressing L. monocytogenes .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号