首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 811 毫秒
1.
The cardiovascular effects of endothelin (ET)-1 and the recently sequenced homologous trout ET were examined in unanesthetized trout, and vascular capacitance curves were constructed to evaluate the responsiveness of the venous system to ET-1. A bolus dose of 667 pmol/kg ET-1 doubled ventral aortic pressure; produced a triphasic pressor-depressor-pressor response in dorsal aortic pressure (P(DA)); increased central venous pressure, gill resistance, and systemic resistance; and decreased cardiac output, heart rate, and stroke volume. These responses were dose dependent. Bolus injection of trout ET (333 or 1,000 pmol/kg) produced essentially identical, dose-dependent cardiovascular responses as ET-1. Dorsal aortic infusion of 1 and 3 pmol. kg(-1). min(-1) ET-1 and central venous infusion into the ductus Cuvier of 0.3 and 1 pmol. kg(-1). min(-1) produced similar dose-dependent cardiovascular responses, although the increase in P(DA) became monophasic. The heightened sensitivity to central venous infusion was presumably due to the more immediate exposure of the branchial vasculature to the peptide. Infusion of 1 pmol. kg(-1). min(-1) ET-1 decreased vascular compliance but had no effect on unstressed blood volume. These results show that ETs affect a variety of cardiovascular functions in trout and that branchial vascular resistance and venous compliance are especially sensitive. The multiplicity of effectors stimulated by ET suggests that this peptide was extensively integrated into cardiovascular function early on in vertebrate phylogeny.  相似文献   

2.
This study addressed the effects of apnea in air and apnea with face immersion in cold water (10 degrees C) on the diving response and arterial oxygen saturation during dynamic exercise. Eight trained breath-hold divers performed steady-state exercise on a cycle ergometer at 100 W. During exercise, each subject performed 30-s apneas in air and 30-s apneas with face immersion. The heart rate and arterial oxygen saturation decreased and blood pressure increased during the apneas. Compared with apneas in air, apneas with face immersion augmented the heart rate reduction from 21 to 33% (P < 0.001) and the blood pressure increase from 34 to 42% (P < 0.05). The reduction in arterial oxygen saturation from eupneic control was 6.8% during apneas in air and 5.2% during apneas with face immersion (P < 0.05). The results indicate that augmentation of the diving response slows down the depletion of the lung oxygen store, possibly associated with a larger reduction in peripheral venous oxygen stores and increased anaerobiosis. This mechanism delays the fall in alveolar and arterial PO(2) and, thereby, the development of hypoxia in vital organs. Accordingly, we conclude that the human diving response has an oxygen-conserving effect during exercise.  相似文献   

3.
R K Handa  V M Buckalew 《Life sciences》1992,51(20):1571-1575
The effect of myristoyl-lysophosphatidylcholine (myristoyl-LPC) on renal hemodynamics, electrolyte and water excretion was examined over a 90 min period in sodium pentobarbital anesthetized male Sprague Dawley rats. Intravenous infusion of myristoyl-LPC at 13 +/- 3 pmol/min resulted in a small fall in systemic blood pressure, a 13% decrease in renal plasma flow without significantly altering glomerular filtration rate and produced a slightly greater excretion of sodium and water than vehicle controls. These results suggest that short term myristoyl-LPC administration can significantly alter renal function producing a weak natriuresis and diuresis which is not dependent on systemic blood pressure and renal hemodynamic changes.  相似文献   

4.
The influence of VIP, a potent vasodilator, on central hemodynamics, splanchnic blood flow and glucose metabolism was studied in six healthy subjects. Teflon catheters were inserted into an artery, a femoral vein and a right-sided hepatic vein. A Swan-Ganz catheter was introduced percutaneously and its tip placed in the pulmonary artery. Determinations of cardiac output, systemic, pulmonary arterial and hepatic venous pressures as well as splanchnic blood flow were made in the basal state and at the end of two consecutive 45 min periods of VIP infusion at 5 and 10 ng/kg/min, respectively. Arterial blood samples for analysis of glucose, FFA, insulin and glucagon were drawn at timed intervals. VIP infusion at 5 ng/kg/min resulted in an increase in cardiac output (55%) and heart rate (25%) as well as a reduction in mean systemic arterial pressure (15%) and vascular resistance (45%). With the higher rate of VIP infusion heart rate tended to rise further while cardiac output and arterial pressure remained unchanged. At 15 min after the end of VIP infusion the above variables had returned to basal levels. Splanchnic blood flow and free hepatic venous pressure did not change significantly. Arterial concentrations of glucose, FFA, insulin and glucagon increased during VIP infusion. At 15 min after the end of infusion the glucose levels were still significantly higher than basal (20%). Net splanchnic glucose output did not change in response to VIP infusion. It is concluded that VIP exerts a potent vasodilatory effect resulting in augmented cardiac output and lowered systemic blood pressure and vascular resistance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The circulatory and metabolic effects of inhalation of oxygen in high concentration were investigated in 50 patients with acute myocardial infarction. The heart rate, arterial blood pressure, cardiac out-put, blood gas tensions, pH, and lactate and pyruvate levels were measured. In general, oxygen inhalation produced a fall in cardiac output and stroke volume and a rise in blood pressure and systemic vascular resistance. In a small number of patients with very low cardiac out-puts there was a rise in output. A substantial rise in arterial oxygen tension was obtained even in patients with low initial values. The raised arterial blood lactate levels which were frequently present were reduced after oxygen. The therapeutic implications of these effects are discussed.  相似文献   

6.
The mechanism of early pulmonary and systemic haemodynamic response to intravenous infusion of LPS from Escherichia coli was investigated in anesthetised Wistar rats. 10 mg of LPS given at a rate of 4 mg/kg/min but not at a rate of 1 mg/kg/min induced an increase in pulmonary arterial pressure (PAP) and a fall in systemic arterial pressure (SAP). Pretreatment with a PAF receptor antagonist; WEB 2170 (5 and 25 mg/kg) inhibited both PAP and SAP responses to LPS (4 mg/kg/min) while an inhibitor of thromboxane synthesis; Camonagrel (10 and 20 mg/kg) abolished PAP response without a major effect on SAP response to LPS. In conclusion, both PAF and TXA2 mediate LPS induced rise in pulmonary arterial pressure while LPS-induced fall in systemic arterial pressure is mediated by PAF.  相似文献   

7.
The effects of intravenous norepinephrine (NE, group 1) and vasopressin (AVP, group 2) infusions on systemic, splanchnic, and renal circulations were studied in anesthetized dogs under basal conditions and during endotoxic shock. Under basal conditions, AVP infusion induced a 12 +/- 7% drop in left ventricular stroke work, a 45 +/- 5% fall in portal venous blood flow, and a 31 +/- 13% decrease in intestinal mucosal blood flow (P < 0.05). AVP also decreased splanchnic oxygen delivery (Do2) and increased splanchnic and renal oxygen extraction significantly during basal conditions. Except for more pronounced brady-cardia among animals in group 2, the systemic and splanchnic changes were comparable between study groups during endotoxic shock. AVP infusion restored renal blood flow and Do2 in endotoxic shock compared with animals resuscitated with NE, which had persistently low renal blood flow and Do2. Our data demonstrate that, in contrast to NE, administration of AVP effectively restores renal blood flow and Do2 with comparable systemic and splanchnic hemodynamic and metabolic effects in endotoxin-induced circulatory shock.  相似文献   

8.
The effects of Prostaglandin F2a (PGF2a) on cerebral blood flow, cerebral vascular resistance, and cerebrospinal and systemic arterial pressures were determined in anesthetized dogs. Flow was measured from the cannulated sinus confluens after occlusion of the transverse canals. Infusion of 1 to 100 ug/ml of PGF2a into the cerebral ventricular system did not affect cerebral venous outflow but increased cerebral vascular resistance, arterial blood pressure, and cerebrospinal fluid pressure at the higher concentrations. Systemic, intra-aortic arch infusion of PGF2a from 50 to 200 ug/min decreased cerebral venous outflow and increased cerebral vascular resistance slightly. Bilateral, intra-carotid artery infusion of PGF2a at 20 to 80 ug/min produced effects similar in magnitude and direction to systemic, intra-aortic infusion. PGF2a appears to increase cerebral vascular resistance by active vasomotion, dependent upon the route of administration. However, the magnitude of this constriction is not great considering the dose used. Also, PGF2a can increase systemic arterial blood pressure via a central effect.  相似文献   

9.
We have recently shown that a saline infusion in the veins of an arterially occluded human forearm evokes a systemic response with increases in muscle sympathetic nerve activity (MSNA) and blood pressure. In this report, we examined whether this response was a reflex that was due to venous distension. Blood pressure (Finometer), heart rate, and MSNA (microneurography) were assessed in 14 young healthy subjects. In the saline trial (n = 14), 5% forearm volume normal saline was infused in an arterially occluded arm. To block afferents in the limb, 90 mg of lidocaine were added to the same volume of saline in six subjects during a separate visit. To examine whether interstitial perfusion of normal saline alone induced the responses, the same volume of albumin solution (5% concentration) was infused in 11 subjects in separate studies. Lidocaine abolished the MSNA and blood pressure responses seen with saline infusion. Moreover, compared with the saline infusion, an albumin infusion induced a larger (MSNA: Δ14.3 ± 2.7 vs. Δ8.5 ± 1.3 bursts/min, P < 0.01) and more sustained MSNA and blood pressure responses. These data suggest that venous distension activates afferent nerves and evokes a powerful systemic sympathoexcitatory reflex. We posit that the venous distension plays an important role in evoking the autonomic adjustments seen with postural stress in human subjects.  相似文献   

10.
In adults, the responses to acute haemorrhage vary greatly depending on the amount of blood lost. While many studies have documented fetal responses to mild haemorrhage, fetal responses to severe haemorrhage are not known. In this study we examined the effect of acute, severe haemorrhage in fetal lambs. Despite the severity of haemorrhage, we found that mean arterial blood pressure was restored within 2 min, and heart rate was restored within 30 min. This restoration of blood pressure and heart rate was facilitated by an increase in peripheral vascular resistance mediated in part by secretion of catecholamines and plasma renin. In addition, about 40% of the shed blood volume was restored within 30 min by fluid from either the fetal interstitium or placenta. The PO2 of umbilical venous blood increased from 33 +/- 9 mmHg to 49 +/- 17 mmHg 2 min post-haemorrhage, and to 47 +/- 15 mmHg 30 min post-haemorrhage. However, this increase was not sufficient to offset the fall in both haemoglobin concentration and umbilical-placental blood flow, so that oxygen delivery decreased from 21.1 +/- 5.5 ml/min per kg to 9.1 +/- 5.2 ml/min per kg 2 min post-haemorrhage, and 14.1 +/- 9.2 ml/min per kg 30 min post-haemorrhage. Because of this decrease in oxygen delivery, oxygen consumption fell and a metabolic acidemia ensued. Nevertheless, oxygen delivery to the heart and brain was maintained because hepatic vasoconstriction diverted more of the well oxygenated umbilical venous return through the ductus venosus. Although the fetus was able to tolerate acute loss of 40% of blood volume, larger volumes of haemorrhage resulted in fetal death.  相似文献   

11.
We investigated the effect of intravenous isotonic crystalloid solution infusion on lung lymph flow. Tracheobronchial lung lymph vessels were cannulated in 13 anesthetized dogs. The lymph flow rate was measured 1) with the lymph flowing against atmospheric pressure (QL), and 2) with the pressure at the outflow end of the lymph cannula equal to systemic venous pressure (QLV). QL and QLV were measured alternately in each lymph vessel. In one group of nine dogs, the base-line QL and QLV were 18 +/- 9 and 13 +/- 6 (SD) microliter/min, respectively (P less than 0.05). QL increased by 4.8 +/- 1.4-fold, and QLV increased by 3.5 +/- 2.1-fold during a 4-h infusion of 25 ml X kg-1 X h-1 of Ringer solution. QLV was significantly less than QL at all times. The increases in lymph flow were caused primarily by a reduction in the effective resistance of the lymph vessels with little rise in the pressure driving lymph from the lungs. Because QLV flowed against systemic venous pressure, the increase in QLV was blunted by a 3.1 +/- 2.3 cmH2O rise in venous pressure during the infusions. In the remaining four dogs, we infused Ringer solution rapidly in order to raise venous pressure to greater than 15 cmH2O. This caused QL to increase by 25 +/- 7-fold; however, QLV decreased to zero. We conclude that elevations in venous pressure which occur during volume infusions oppose lung lymph flow and lead to accumulation of excess fluid in the lungs.  相似文献   

12.
Sodium nitroprusside (SNP) has been commonly used as a vasodilator agent for deliberate hypotension with general anesthesia. The purpose of this study was to observe whether cerebral blood flow (CBF) was significantly reduced when SNP infusion was accomplished to decrease peripheral blood flows with systemic hypotension. We conducted the experiments in 15 pentobarbital-anesthetized dogs. CBF was measured in 7 dogs using a venous outflow method. Hindlimb blood flow (HBF) serving as a representative of the peripheral circulations was obtained by flow measurement in the femoral artery in 8 dogs. The systemic arteral pressure (SAP) was decreased stepwise (approximately 5 mmHg for each step) by adjusting the SNP infusion rate. During the systemic hypotension, the CBF remained fairly constant despite a marked decline in the mean SAP to 40 mmHg. The calculated cerebral vascular resistance was progressively decreased with the systemic hypotension. On the contrary, a reduction in the HBF was observed accompanying the fall in SAP. When the mean SAP was decreased to 50 mmHg, the HBF was only 46.3 +/- 7.6% of the control value. The calculated hindlimb vascular resistance was slightly elevated during the whole course of SNP-induced hypotension. The results reveal the disparity between the brain and hindlimb in the resistance and flow responses to SNP-induced hypotension. The constancy of CBF subserves adequate brain perfusion when deliberate hypotension is conducted for surgery in the peripheral organs.  相似文献   

13.
The haemodynamic effects of intravenous morphine sulphate (0.2 mg/kg body weight) were measured in 10 patients with acute myocardial infarction complicated by severe left ventricular failure. Fifteen minutes after morphine injection there was a significant fall in mean heart rate (from 109 to 101 beats/min) and mean systemic arterial pressure (from 80 to 65 mm HG), and a small fall in mean cardiac index (from 2.4 to 2.21/min/m2). Haemodynamic changes at 45 minutes were similar. Neither stroke index nor indirect left ventricular filling pressure (measured as pulmonary artery end-diastolic pressure) were consistently improved 15 or 45 minutes after injection. The useful action of morphine in relieving distressing cardiac dyspnoea is not adequately explained by systemic venous blood pooling. These results suggest that the effects of morphine on the central nervous system are more important.  相似文献   

14.
The rapid fall in blood pressure after removal of the constricting clip in two-kidney one-clip (2K-1C) hypertension in the rat is not fully explained by inhibition of the renin-angiotensin system or change in sodium balance. It has been postulated that compounds released in the renal venous effluent following unclipping of 2K-1C rats have a central opiate-like action and endogenous opioids are recognized to have profound hypotensive properties. To investigate this, we removed the clip from, or performed a sham operation in, early phase (less than 6 weeks) 2K-1C hypertensive rats during an infusion of naloxone, an opioid antagonist, or vehicle alone. The infusion of naloxone did not affect the pattern of blood pressure fall in either unclipped or sham-operated rats. Both naloxone-treated and control groups were similarly normotensive at 24 hr postoperation, the MAP being significantly lower than in the sham-operated groups, which regained previously hypertensive levels. Heart rate was unchanged 24 hr postoperatively in all groups. Morphine-induced bradycardia and hypotension were significantly reduced by naloxone infusion. Thus, naloxone infusion had no effect on blood pressure or heart rate in either the sham-operated or the unclipped groups, indicating that endogenous opioids do not have a major role in the reversal of renovascular hypertension under these circumstances.  相似文献   

15.
We tested the hypothesis that the changes in venous tone induced by changes in arterial blood oxygen or carbon dioxide require intact cardiovascular reflexes. Mongrel dogs were anesthetized with sodium pentobarbital and paralyzed with veruronium bromide. Cardiac output and central blood volume were measured by indocyanine green dilution. Mean circulatory filling pressure, an index of venous tone at constant blood volume, was estimated from the central venous pressure during transient electrical fibrillation of the heart. With intact reflexes, hypoxia (arterial PaO2 = 38 mmHg), hypercapnia (PaCO2 = 72 mmHg), or hypoxic hypercapnia (PaO2 = 41; PaCO2 = 69 mmHg) (1 mmHg = 133.32 Pa) significantly increased the mean circulatory filling pressure and cardiac output. Hypoxia, but not normoxic hypercapnia, increased the mean systemic arterial pressure and maintained the control level of total peripheral resistance. With reflexes blocked with hexamethonium and atropine, systemic arterial pressure supported with a constant infusion of norepinephrine, and the mean circulatory filling pressure restored toward control with 5 mL/kg blood, each experimental gas mixture caused a decrease in total peripheral resistance and arterial pressure, while the mean circulatory filling pressure and cardiac output were unchanged or increased slightly. We conclude that hypoxia, hypercapnia, and hypoxic hypercapnia have little direct influence on vascular capacitance, but with reflexes intact, there is a significant reflex increase in mean circulatory filling pressure.  相似文献   

16.
Microgravity is associated with an impaired stroke volume and, therefore, cardiac output response to orthostatic stress. We hypothesized that a decreased venous filling pressure due to increased venous compliance may be an important contributing factor in this response. We used a constant flow, constant right atrial pressure cardiopulmonary bypass procedure to measure total systemic vascular compliance (C(T)), arterial compliance (C(A)), and venous compliance (C(V)) in seven control and seven 21-day hindlimb unweighted (HLU) rats. These compliance values were calculated under baseline conditions and during an infusion of 0.2 microg*kg(-1)*min(-1) norepinephrine (NE). The change in reservoir volume, which reflects changes in unstressed vascular volume (DeltaV(0)) that occurred upon infusion of NE, was also measured. C(T) and C(V) were larger in HLU rats both at baseline and during the NE infusion (P < 0.05). Infusion of NE decreased C(T) and C(V) by ~20% in both HLU and control rats (P < 0.01). C(A) was also significantly decreased in both groups of rats by NE (P < 0.01), but values of C(A) were similar between HLU and control rats both at baseline and during the NE infusion. Additionally, the NE-induced DeltaV(0) was attenuated by 53% in HLU rats compared with control rats (P < 0.05). The larger C(V) and attenuated DeltaV(0) in HLU rats could contribute to a decreased filling pressure during orthostasis and thus may partially underlie the mechanism leading to the exaggerated fall in stroke volume and cardiac output seen in astronauts during an orthostatic stress after exposure to microgravity.  相似文献   

17.
G E Sander  T D Giles 《Life sciences》1985,36(23):2201-2207
The preproenkephalin A molecule from the adrenal medulla contains the opioid peptides methionine-enkephalin (Met-ENK), leucine-enkephalin (Leu-ENK), methionine-enkephalin-Arg6-Phe7 (heptapeptide), and methionine-enkephalin-Arg6-Gly7-Leu8 (octapeptide). In the conscious, chronically instrumented dog, Met-ENK and Leu-ENK simultaneously increase heart rate and systemic arterial pressure following intravenous administration. In 19 of 23 dogs, heptapeptide produced a response identical to Met-ENK and Leu-ENK, which was inhibited by naloxone but unaffected by the dipeptidyl carboxypeptidase inhibitor SQ20881. However, in four dogs, heptapeptide produced only a fall in systemic pressure associated with an increase in heart rate despite characteristic Met-ENK responses in the same dogs; naloxone did not appear to alter this hypotensive response. Octapeptide produced slight increases in systemic pressure and heart rate. These data suggest that heptapeptide may possess intrinsic cardiovascular activity at opiate receptors; however, in certain dogs, non-opiate mechanisms, perhaps histamine release, may predominate.  相似文献   

18.
Intravenous injection of methionineenkephalin (10 μg/kg) into the conscious dog increased both heart rate and mean systemic arterial pressure. Progressive shortening of the inter-dose time interval from 5 min to 1 min and then to 30 sec did not alter the response, as the maximal mean systemic arterial pressure elevation was maintained and the maximal heart rate response increased slightly. In contrast to the results after discrete bolus dosing, continuous infusion of methionine-enkephalin at a constant rate of 10 μg/kg/min produced an initial elevation in heart rate and mean arterial pressure, but these parameters then began to return toward pretreatment levels despite continuous infusion at the same rate, indicating receptor desensitization. This desensitization pattern is most compatible with receptors of the nicotinic-cholinergic type. These data indicate the importance of dosing techniques in assessing cardiovascular responses to systemically administered enkephalins.  相似文献   

19.
In order to investigate the impact of high oxygen and carbon dioxide concentrations, Escherichia coli was grown in batch cultivations where the air supply was enriched with either oxygen or carbon dioxide. The effect of elevated concentrations of oxygen and carbon dioxide on stochiometric and kinetic constants was studied this way. The maximum growth rate was significantly reduced, the production of acetic acid and the biomass yield coefficient on glucose increased in cultures with carbon dioxide enriched air, compared to reference cultivations and cultivations with oxygen enriched air. The application of oxygen enriched air was studied in high cell density cultivations of Escherichia coli. Two production processes were chosen to investigate the impact of oxygen enrichment. Biomass concentration, specific growth rate, yield coefficient, respiration, mixed acid fermentation products and the product yield and quality for the recombinant product were investigated. First, a process for the production of biomass was investigated. Exponential growth could proceed for a longer time and higher growth rates could be maintained with oxygen enriched air supply. However, a higher specific oxygen consumption rate per glucose was measured after the start of the oxygen enrichment, indicating higher maintenance and consequently the growth rate and yield coefficient decreased drastically in the end of the process. Second, a process for the production of recombinant human growth hormone (rhGH) was investigated. Although the glucose feed rate and all medium components were doubled, the amount of produced biomass could only be increased by 77% when oxygen enriched air (40% oxygen) supply was applied. This was due to a decreased yield coefficient of biomass per glucose. The total amount of produced product was decreased by almost 50% compared to the control, although less proteolytically degraded variants were produced.  相似文献   

20.
The acute effects of capsaicin on the cardiovascular system   总被引:1,自引:0,他引:1  
Arterial blood pressure and heart rate were recorded from male Wistar rats anaesthetized with urethane. Intravenous injection of capsaicin, 1 microgram, produced a reproducible triphasic effect on blood pressure, comprising an initial fall in blood pressure and heart rate, followed by a transient and then a sustained pressor response. The depressor response and bradycardia were abolished by vagal section. The transient pressor response was altered in shape by hexamethonium. Slow intravenous infusion of capsaicin, 50 micrograms over 12 min, produced only a sustained pressor response accompanied by tachycardia, which was resistant to hexamethonium but abolished by morphine and pithing. Responses to both 1 microgram injection and 50 micrograms infusion of capsaicin were unaffected by the SP antagonist, spantide, but were abolished by capsaicin pretreatment of the rats. Capsaicin induces complex effects on the cardiovascular system, the nature of which varies with the dose and speed of administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号