首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Refolding of denatured RNase A as a model of inclusion bodies was performed by reversed micelles formulated with sodium di-2-ethylhexyl sulfosuccinate (AOT) in isooctane. In the novel refolding process, a solid-liquid extraction was utilized as an alternative to the ordinary protein extraction by reversed micelles based on a liquid-liquid extraction. First, the effects of operational parameters such as concentration of AOT, W(o) (= [H(2)O]/[AOT]), and pH were examined on the solubilization of solid denatured proteins into a reversed micellar solution. The solubilization was facilitated by a high AOT concentration, a high W(o) value, and a high pH in water pools. These conditions are favorable for the dispersion of the solid protein aggregates in an organic solvent. Second, the renaturation of the denatured RNase A solubilized into the reversed micellar solution was conducted by addition of glutathione as a redox reagent. A complete renaturation of RNase A was accomplished by adjusting the composition of the redox reagent even at a high protein concentration in which protein aggregation would usually occur in aqueous media. In addition, the renaturation rates were improved by optimizing water content (W(o)) and the pH of water pools in reversed micelles. Finally, the recovery of renatured RNase A from the reversed micellar solution was performed by adding a polar organic solvent such as acetone into the reversed micellar solution. This precipitation method was effective for recovering proteins from reversed micellar media without any significant reduction in enzymatic activity.  相似文献   

2.
Protein extractions using aerosol OT (AOT)-isooctane reverse micelle solutions have been studied to explore the potential for separating and enriching proteins with the reversed micellar extraction. The effects of pH, ionic strength, and different cations of chlorides in a bulk aqueous phase and of AOT concentration in an organic phase on the partitioning of lysozyme and myoglobin and the solubilization of water are presented in detail. The extraction of lysozyme was affected by the concentration of potassium or barium but was almost independent of that of sodium or calcium, whose ionic diameter is smaller than that of potassium and barium. For the extraction of myoglobin, however, the effect of barium concentration was not appreciable. Lysozyme could be enriched into the reversed micellar phase up to 30 times the aqueous feed concentration. (c) 1993 John Wiley & Sons, Inc.  相似文献   

3.
Chymotrypsin is easily extracted from an aqueous solution into isooctane containing the anionic surfactant aerosol OT (AOT). The concentration of AOT needed to efficiently extract 0.5 mg/mL CMT is as low as 1 mM and as low as 0.2 mM AOT was sufficient to extract the protein into isooctane. The extraction process was unaffected by 10% (v/v) ethyl acetate in the isooctane phase. Moreover, spectroscopic analysis by electron paramagnetic resonance indicated that CMT did not exist inside a discreet water pool of a reversed micelle. Calculations of the number of AOT molecules associated per extracted CMT molecule indicate that only ca. 30 surfactant molecules interact with the protein, a value too low for reversed micellar incorporation of the protein in isooctane. These studies suggested that reversed micelles do not need to be involved in the actual transfer of the protein from the aqueous to the organic phase and protein solubilization in the organic phase is possible in the absence of reversed micelles. Based on these findings, a new mechanism has been proposed herein for protein extraction via the phase transfer method involving ionic surfactants. The central theme of this mechanism is the formation of an electrostatic complex between CMT and AOT at the aqueous/organic interface between AOT and CMT, thereby leading to the formation of a hydrophobic species that partitions into the organic phase. Consistent with this mechanism, the efficiency of extraction is dependent on the interfacial mass transfer, the concentrations of CMT and AOT in the aqueous and organic phases, respectively; the ionic strength of the aqueous phase; and the presence of various cosolvents. (c) 1994 John Wiley & Sons, Inc.  相似文献   

4.
Solubilizing water involved in protein extraction using reversed micelles   总被引:4,自引:0,他引:4  
The extraction of protein using reversed micelles was investigated in relation to the amount of solubilizing water in the reversed micellar organic phase. The minimal concentration of amphiphilic molecule di-2-ethylhexyl sodium sulfosuccinate (C(20)H(37)O(7)Na) (AOT) required for 100% cytochrome c extraction was recognized. This critical AOT concentration increased with protein concentration in the aqueous phase. On this minimal AOT condition, the molar ratio of solubilizing water to extracted protein was found to be a constant of 3500 under C(KCI) = 1.0 x 10(2) mol . m(-3) in this system. This ratio means the hydrophillic surroundings required for extracting one protein molecule into the micellar organic phase under the suitable pH and salt concentration for the forward extraction. In this regard, AOT molecules seemed to take the part of water solubilizing agent in the reversed micellar extraction. This role of AOT is important to extract protein under the suitable pH and salt concentration. The amount of solubilizing water in the protein-containing system was larger than in the protein-free system. This difference shows that the water molecules accompany the extracted protein into the reversed micellar organic phase at constant ratio 2200 under C(KCI) = 1.0 x 10(2) mol . m(-3), i.e., accompanying water molecules per one extracted protein. The minimal AOT concentration increased with ionic strength. On this minimal AOT condition, the molar ratio of solubilizing water to extracted protein also increased with ionic strength, so that in higher ionic strength, more solubilizing water was required. Then more AOT was required to provide the hydrophillic surroundings for protein. The pH affected the minimal AOT concentration required for 100% protein extraction.  相似文献   

5.
The enzymatic conversion of cholesterol to cholestenone by cholesterol oxidase (Brevibacterium sp.)in reversed micelles in a system composed of AOT/isooctane/water/cholesterol has been examined. The catalytic activity of the enzyme was correlated with the physicochemical properties of water in water-in-oil (w/o) microemulsion systems. In a system consisting of 3 wt % AOT in isooctane, reversed micelles started to form as the [H(2)O]/[AOT] (e.g., the w(0)) ratio increased above 4-5. The formation of reversed micelles with a core of neat (bulk) water was verified from determinations of both the partial molar volume of water and the scissors vibration of water [with Fourier transform infrared (FTIR) spectroscopy] in the w/o microemulsion systems. A plot of enzyme activity vs. w(0) indicated that the hydration of enzyme molecules per se was not sufficient to give rise to catalytic activity. Instead, it appeared that the formation of an aqueous micellar core was necessary for full activation of the enzyme. Based on micelle size distribution analysis, it was estimated that about one micelle per one thousand contained an enzyme molecule. Since the apparent reaction rate could be markedly enhanced by increasing the enzyme/water ratio, we conclude that the number of enzyme-containing micelles was an important rate-limiting factor in the system.  相似文献   

6.
In order to use reverse micellar solutions successfully for the separation of proteins, good methods are needed to recover the biomolecules into an aqueous environment after solubilization into organic micellar media. Usually the recovery is accomplished by equilibrating the protein-loaded reverse micellar solution with a water phase containing an appropriate salt (back-transfer). In this article we describe an alternative "back extraction" procedure which is based on the addition of silica to the protein-containing reverse micellar solution. In this way, the water is stripped from the reverse micellar solution. [i.e., bis(2-ethylhexyl) sodium sulfosuccinate (AOT)/isooctane/water] and the proteins adsorb to the silica particles. The adsorption process is shown to be practically quantitative. The subsequent recovery of the proteins form the silica into an aqueous solution turns out to be most efficient at alkaline pH (pH 8); 60-80 of the total protein (alpha-chymotrypsin or trypsin) could be recovered. The specific enzyme activity at the end of the whole cycle can be as high as 80-100%. The procedure is applied also for the back extraction from micellar solutions in which, instead of AOT, a biocompatible surfactant such as a synthetic short-chain lecithin was used. It is shown that the recovery of a alpha-chymotrypsin and trypsin is also achievable under these conditions in quite good yield and under good maintenance of the enzyme's catalytic activity. (c) 1993 John Wiley & Sons, Inc.  相似文献   

7.
Catalytic and spectroscopic properties of alcohol dehydrogenase from horse liver, incorporated in reversed micellar media, have been studied. Two different reversed micellar systems have been used, one containing an anionic [sodium bis(2-ethylhexyl)sulfosuccinate, AOT], the other containing a cationic (cetyltrimethylammonium bromide, CTAB) surfactant. With 1-hexanol as substrate the turnover number of the enzyme in AOT-reversed micelles is strongly dependent on the water content of the system. At low wo ([H2O]/[surfactant]) (wo less than 20) no enzymatic activity can be detected whereas at high wo (wo = 40) the turnover is only slightly lower than in aqueous solution. In CTAB-reversed micelles the dependence of the turnover number on wo is much less. The enzymatic activity is in this case significantly lower than in aqueous solution and increases only slightly with an increasing water content of the reversed micelles. Possible interactions of the protein with the surfactant interfaces in the reversed micellar media were studied via circular dichroism and fluorescence measurements. From the circular dichroism of the protein backbone it is observed that the protein secondary structure is not significantly affected upon incorporation in the reversed micelles since the far-ultraviolet spectrum is not altered. Results from time-resolved fluorescence anisotropy experiments indicate that, especially in AOT-reversed micelles, interactions between the protein and the surfactant interface are largely electrostatic in nature, as evident from the dependence on the pH of the buffer used. In CTAB-reversed micellar solutions such interactions appear to be much less pronounced than in AOT.  相似文献   

8.
Protein refolding in reversed micelles   总被引:8,自引:0,他引:8  
A novel process has been developed which uses reversed micelles to isolate denatured protein molecules from each other and allows them to refold individually. These reversed micelles are aqueous phase droplets stabilized by the surfactant AOT and suspended in isooctane. By adjusting conditions such that only one protein molecule is present per reversed micelle, it was possible to achieve independent folding without encountering the problem of aggregation due to interactions with neighboring molecules. The feasibility of this process was demonstrated using bovine pancreatic ribonuclease A as a model system. It was shown that denatured and reduced ribonuclease can be transferred from a buffered solution containing guanidine hydrochloride into reversed micelles to a greater extent than native enzyme under the same conditions. The denaturant concentration can then be significantly reduced in the reversed micellar phase, while retaining most of the protein, by means of extractive contacting stages with a denaturant-free aqueous solution. Denatured and reduced ribonuclease will subsequently recover full activity inside reversed micelles within 24 h upon addition of a mixture of reduced and oxidized glutathione to reoxidize disulfide bonds. Extraction of this refolded enzyme from reversed micelles back into aqueous solution can be accomplished by contacting the reversed micelle phase with a high ionic strength (1.0M KCl) aqueous solution containing ethyl acetate.  相似文献   

9.
A kinetic theory is proposed for enzymatic reactions proceeding in reversed micellar systems in organic solvents, and involving substrates capable of partitioning among all pseudophases of the micellar system i.e. aqueous cores of reversed micelles, micellar membranes and organic solvent. The theory permits determination of true (i.e. with reference to the aqueous phase, where solubilized enzyme is localized) catalytic parameters of the enzyme, provided partition coefficients of the substrate between different phases are known. The validity of the kinetic theory was verified by the example of oxidation of aliphatic alcohols catalyzed by horse liver alcohol dehydrogenase in the system of reversed sodium bis(2-ethylhexyl)sulfosuccinate (AOT, aerosol OT) micelles in octane. In order to determine partition coefficients of alcohols between phases of the micellar system, flow microcalorimetry technique was used. It was shown that in the first approximation, the partition coefficient of the substrate in a simple biphasic system consisting of water and corresponding organic solvent can be used as an estimate for the partition coefficient of the substrate between aqueous and organic solvent phases of the micellar system. True values of the Michaelis constant of alcohols in the micellar system, determined using suggested approach, are equal to those obtained in aqueous solution and differ from apparent values referred to the total volume of the system. The results clearly show that the previously reported shift in the substrate specificity of HLADH, observed on changing from aqueous solution to the system of reversed aerosol OT micelles in octane, is apparent and can be explained on the basis of partitioning effects of alcoholic substrates between phases of the micellar system.  相似文献   

10.
This work deals with the extraction and back-extraction of a recombinant cutinase using AOT reversed micelles in isooctane. The effect of pH, ionic strength, AOT concentration and temperature on the extraction and back-extraction of the cutinase was investigated. High extraction (97%) of the cutinase was achieved at pH 7.0 with a 50 mM Tris-HCl buffer solution containing 100 mM KCl, but a low activity was detected in the reversed micellar phase. At pH 9.0, cutinase was extracted (75%) to the reversed micelles with higher activity. Cutinase was recovered (50%) from a reversed micellar phase (100 mM AOT/isooctane) into a 50 mM Tris-HCl buffered solution at pH 9.0 with 100 mM KCl, and 20°C. Protein and cutinase activity global yields of 38 and 45%, respectively, were obtained for the global process, extraction and back-extraction steps, using low ionic strength, pH 9.0, 100 mM AOT and 20°C.Maria das Graças Carneiro da Cunha acknowledges a Ph.D. fellowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Centro de Pesquisas Aggeu Magalhães, Brasil. This work was partly financed by the BRIDGE Programme (Contract BIOT-CT91-0274(DTEE)).  相似文献   

11.
Summary A continuous perforated rotating disc contactor was used for the extraction of a recombinant cutinase from an aqueous solution to a reversed micellar phase of AOT in isooctane. Cutinase was extracted to the organic phase with protein yield of 78% after 70 minutes of operation.  相似文献   

12.
Chromobacterium viscosum lipase, solubilized in microemulsion droplets of glycerol containing small amounts of water and stabilized by a surfactant, could catalyze the glycerolysis of triolein. Kinetic analysis of the lipase-catalyzed reaction was possible in the reversed micellar system. Among surfactants and organic solvents tested, bis(2-ethylhexyl)sodiumsulfosuccinate (AOT) and isooctane were respectively most effective, for the glycerolysis of triolein in reversed micelles. Temperature effects, pH profile, Km,app, and Vmax,app were determined. Among various chemical compounds, Fe3+, Cu2+, and Hg2+ inhibited the lipase-catalyzed glycerolysis severely. However, the glycerolysis activity was partially restorable by adding histidine or glycine to the system containing these metal ions. The glycerolysis activity was dependent on water content and maximum activity was obtained at an R value of 1.21. Higher stability of the lipase was obtained in the reversed micellar system.  相似文献   

13.
Selective separation and purification of two lipases form Chromobacterium viscosum were carried out by liquid-liquid extraction using a reversed micellar system. Optimum parameters for extraction were determined using a 250 mM AOT micellar solution in isooctane. Complete separation of the two lipases was achieved at pH 6.0 with a 50mM potassium phosphate buffer solution containing 50 mM KCI. By adding 2.5% by volume of ethanol to the lipase-loaded micellar solution, 85% of the extracted lipase could be recovered in a new aqueous phase, 50 mM K(2)HPO(4) with 50 mM KCl, at pH 9.0. Lipase A was purified 2.6-fold with a recovery of 86%, and lipase B by 1.5-fold with a recovery of 76%.  相似文献   

14.
The influence of micelle hydration degree (w0) and AOT concentration on fluorescence, circular dichroism (CD), catalytic activity, and stability of catalase in Aerosol OT (AOT) reversed micelles in heptane was investigated. The quantitative parameters--differential fluorescence of catalase (DeltaI), protein molar ellipticity ([theta]lambda), initial rate of catalytic reaction, catalase efficiency (kcat/Km), and rate constant of enzyme inactivation (kin, sec-1)--decreased with increasing AOT concentration in micellar systems, reflecting the interaction of solubilized catalase with the AOT micellar aggregates in heptane. The dependences of all these parameters on increasing hydration degree of micelles (w0) were characterized by the appearance of maxima at w0 of 8, 15-18, and 26-30. These maxima are suggested to reflect three different states of catalase in the micellar system, distinguished by their conformations and catalytic activity, which is determined by the micellar microenvironment of the enzyme.  相似文献   

15.
In this work, the forward and back extraction of soybean protein by reverse micelles was studied. The reverse micellar systems were formed by anionic surfactant sodium bis(2-ethyl hexyl) sulfosuccinate (AOT), isooctane and KCl solution. The effects of AOT concentration, aqueous pH, KCl concentration and phase volume ratio on the extraction efficiency of soybean protein were tested. Suitability of reverse micelles of AOT and Triton-X-100/AOT mixture in organic solvent toluene for soybean protein extraction was also investigated. The experimental results lead to complete forward extraction at the AOT concentration 120 mmol l−1, aqueous pH 5.5 and KCl concentration 0.8 mol l−1. The backward extraction with aqueous phase (pH 5.5) resulted in 100% extraction of soybean protein from the organic phase.  相似文献   

16.
Sodium di(2-ethylhexyl) sulfosuccinate, referred to as Aerosol-OT or AOT, was used to remove lysozyme from an aqueous phase via reverse micellar extraction and precipitation method. For both methods, when the surfactant was in excess, a complete removal of lysozyme from the aqueous phase was obtained at the values of pH below the pI of lysozyme. However, for the reverse micellar method, a solubilization limit of lysozyme in the organic phase was observed, and a white precipitate was formed at the aqueous-organic interface. This observation suggested using AOT directly as a precipitating ligand. The lysozyme precipitated with AOT was fully recovered, with its original enzymatic activity, using acetone as a recovery solvent. A mechanism is suggested to explain the solubilization of lysozyme in an AOT reverse micellar system. It is shown that a direct precipitation method can be used with advantage instead of using the reverse micellar extraction method to recover lysozyme from an aqueous phase.  相似文献   

17.
Amidase, an amide hydrolase enzyme (E.C.3.5.1.4) with acyl transferase activity, was encapsulated in a reversed micellar system composed of the cationic surfactant tetradecyltrimethyl ammonium bromide (TTAB) in heptane/octanol (80/20%) and phosphate buffer at w0 11. The reaction used to study the effect of the reversed micellar system on the enzyme behaviour was a transamidation reaction. The effect of surfactant concentration, buffer molarity and pH on the enzyme kinetics was evaluated. Both initial velocities and product yield were measured. The results indicated that a high initial velocity of hydroxamic acid synthesis and also the highest yield (98%) were obtained using the lowest pH value. The effect of TTAB concentration was dependent on the buffer molarity used. The effect of buffer molarity on reversed micelle dimensions was analysed by light scattering. These results showed that the buffer molarity had a strong influence on the reversed micelle radius that correlated with enzyme activity.  相似文献   

18.
Enzymatic hydrolysis of microcrystalline cellulose in reverse micelles   总被引:2,自引:0,他引:2  
The activities of cellulases from Trichoderma reesei entrapped in three types of reverse micelles have been investigated using microcrystalline cellulose as the substrate. The reverse micellar systems are formed by nonionic surfactant Triton X-100, anionic surfactant Aerosol OT (AOT), and cationic surfactant cetyltrimethyl ammonium bromide (CTAB) in organic solvent media, respectively. The influences of the molar ratio of water to surfactant omega0, one of characteristic parameters of reverse micelles, and other environmental conditions including pH and temperature, on the enzymatic activity have been studied in these reverse micellar systems. The results obtained indicate that these three reverse micelles are more effective than aqueous systems for microcrystalline cellulose hydrolysis, and cellulases show "superactivity" in these reverse micelles compared with that in aqueous systems under the same pH and temperature conditions. The enzymatic activity decreases with the increase of omega0 in both AOT and Triton X-100 reverse micellar systems, but reaches a maximum at omega0 of 16.7 for CTAB reverse micelles. Temperature and pH also influence the cellulose hydrolysis process. The structural changes of cellulases in AOT reverse micelles have been measured by intrinsic fluorescence method and a possible explanation for the activity changes of cellulases has been proposed.  相似文献   

19.
Chromobacterium viscosum lipase, solubilized in microemulsion droplets of glycerol containing small amounts of water and stabilized by a surfactant, could catalyze the glycerolysis of triolein. Kinetic analysis of the lipase-catalyzed reaction was possible in the reversed micellar system. Among surfactants and organic solvents tested, bis(2-ethylhexyl)sodiumsulfosuccinate (AOT) and isooctane were respectively most effective, for the glycerolysis of triolein in reversed micelles. Temperature effects, pH profile, Km,app, and Vmax,app were determined. Among various chemical compounds, Fe3+, Cu2+, and Hg2+ inhibited the lipase-catalyzed glycerolysis severely. However, the glycerolysis activity was partially restorable by adding histidine or glycine to the system containing these metal ions. The glycerolysis activity was dependent on water content and maximum activity was obtained at an R value of 1.21. Higher stability of the lipase was obtained in the reversed micellar system.  相似文献   

20.
Amidase, an amide hydrolase enzyme (E.C.3.5.1.4) with acyl transferase activity, was encapsulated in a reversed micellar system composed of the cationic surfactant tetradecyltrimethyl ammonium bromide (TTAB) in heptane/octanol (80/20%) and phosphate buffer at w 0 11. The reaction used to study the effect of the reversed micellar system on the enzyme behaviour was a transamidation reaction. The effect of surfactant concentration, buffer molarity and pH on the enzyme kinetics was evaluated. Both initial velocities and product yield were measured. The results indicated that a high initial velocity of hydroxamic acid synthesis and also the highest yield (98%) were obtained using the lowest pH value. The effect of TTAB concentration was dependent on the buffer molarity used. The effect of buffer molarity on reversed micelle dimensions was analysed by light scattering. These results showed that the buffer molarity had a strong influence on the reversed micelle radius that correlated with enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号