首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Experimental data on photoreactivation of damage induced by ionizing radiation in yeast cells are presented. The value of photoreactivation was found to be the highest for the following conditions predicted by us as optimum ones: large volume of irradiated suspension, hypoxia and high energy sparsely ionizing radiation. A comparison of data for yeast and bacterial cells shows that Cerenkov emission from ionizing radiation may produce photoreactivated pyrimidine dimers in both prokaryotic and eukaryotic cell systems.  相似文献   

2.
It is shown that in diploid yeast there are significant differences in the extent of irreparable damage after irradiation with X-rays, 60Co-gamma-rays and 30 MeV electrons. At extremely low dose rates, 60Co-gamma-rays were found to produce almost no irreparable damage at least up to 1200 Gy. X-rays, however, at the same low dose rate caused irreparable damage in the same dose range yielding a surviving fraction of 0.25 at 1200 Gy. For irradiations at high dose rate followed by liquid holding recovery the relative biological effectiveness of X-rays amounted to at least 4 for absorbed doses of up to 1000 Gy. With 30 MeV electrons at high dose rates an accumulation of sublethal and potentially lethal damage resulting in irreparable damage occurred above 1000 Gy. It is suggested that irreparable damage in yeast is due to a cooperative effect of neighbouring track ends.  相似文献   

3.
Biochemical effects of high doses of 0.8 Mev electrons onEscherichia coli B were studied using infrared spectroscopy (IR). Aqueous suspensions of the bacterial cells were irradiated in open petri dishes. After exposure, films of these cells were examined for absorption of light between 4000 cm–1 to 600 cm–1. The qualitative aspects of the changes in the absorption spectra indicative of molecular alteration were noted and attempts were made to interpret them. The damage is selective in that some molecular groups are affected more than others. In general the changes indicate breakup of biopolymers and overall oxidation. All exposure doses given were above 1.0×106 Roentgen.  相似文献   

4.
A "hypermutable" genome is a common characteristic of cancer cells, and it may contribute to the progressive accumulation of mutations required for the development of cancer. It has been reported that mammalian cells surviving exposure to gamma radiation display several highly persistent genomic instability phenotypes which may reflect a hypermutability similar to that seen in cancer. These phenotypes include an increased mutation frequency and a decreased plating efficiency, and they continue to be observed many generations after the radiation exposure. The underlying causes of this genomic instability have not been fully determined. We show here that exposure to gamma radiation and other DNA-damaging treatments induces a similar genomic instability in the yeast Saccharomyces cerevisiae. A dose-dependent increase in intrachromosomal recombination was observed in cultures derived from cells surviving gamma irradiation as many as 50 generations after the exposure. Increased forward mutation frequencies and low colony-forming efficiencies were also observed. Persistently elevated recombination frequencies in haploid cells were dominant after these cells were mated to nonirradiated partners, and the elevated recombination phenotype was also observed after treatment with the DNA-damaging agents ultraviolet light, hydrogen peroxide, and ethyl methanesulfonate. Radiation-induced genomic instability in yeast may represent a convenient model for the hypermutability observed in cancer cells.  相似文献   

5.
The importance of radiation modification of epigenetic activity in the general mechanism of radiobiological reactions is proved. The inheritable epigenetic changes induced by irradiation are one of the basic reasons of formation of the remote radiation pathology. It is noted that epigenetic inheritable changes of cells have the determined character distinguishing them from mutation changes, being individual and not directed. It is underlined the ability of ionizing radiation to modify a level of spontaneous genetic instability inherited in a number of cell generations on the epigenetic mechanism.  相似文献   

6.
Non-targeted bystander effects induced by ionizing radiation   总被引:1,自引:0,他引:1  
Morgan WF  Sowa MB 《Mutation research》2007,616(1-2):159-164
Radiation-induced bystander effects refer to those responses occurring in cells that were not subject to energy deposition events following ionizing radiation. These bystander cells may have been neighbors of irradiated cells, or physically separated but subject to soluble secreted signals from irradiated cells. Bystander effects have been observed in vitro and in vivo and for various radiation qualities. In tribute to an old friend and colleague, Anthony V. Carrano, who would have said "well what are the critical questions that should be addressed, and so what?", we review the evidence for non-targeted radiation-induced bystander effects with emphasis on prevailing questions in this rapidly developing research field, and the potential significance of bystander effects in evaluating the detrimental health effects of radiation exposure.  相似文献   

7.
The effects of ionizing irradiation (0, 600, 1,500, or 3,000 rads) on the permeability of pulmonary endothelial monolayers to albumin were studied. Pulmonary endothelial cells were grown to confluence on gelatin-coated polycarbonate filters, placed in serum-free medium, and exposed to a 60Co source. The monolayers were placed in modified flux chambers 24 hours after irradiation; 125I-albumin was added to the upper well, and both the upper and lower wells were serially sampled over 4 hours. The amount of albumin transferred from the upper well/hour over the period of steady-state clearance (90-240 min after addition of 125I-albumin) was 2.8 +/- 0.2% in control monolayers and was increased in monolayers exposed to 1,500 or 3,000 rads (increase of 63 +/- 10% and 61 +/- 10%, respectively, P less than 0.01). No increase was found in monolayers exposed to 600 rads. The increases in endothelial albumin transfer rates were associated with morphologic evidence of monolayer disruption and endothelial injury which paralleled the changes in albumin permeability. Dose-dependent alterations in endothelial actin filament organization were also found. Incubation of the monolayers exposed to 3,000 rads with medium supplemented with 10% fetal calf serum for 24 hours resulted in normalization of albumin permeability, improvement in morphologic appearance of the monolayers, and reorganization of the actin filament structure. These studies demonstrate that ionizing radiation is an active principle in the reversible disorganization of cultured pulmonary endothelial cell monolayers without the need of other cell types or serum components.  相似文献   

8.
Summary Early effects of ionizing radiation were investigated in an experimental in vitro system using the ciliary cells of the tracheal mucous membrane of the rabbit, irradiated at 30° C and at more than 90% humidity. The changes in physiological activities of the ciliary cells caused by irradiation were continuously registered during the irradiation. The specimens were examined immediately after irradiation electron microscopically. The morphological changes in irradiated material after 10–70 Gy are compared with normal material. After 40–70 Gy, scanning electron microscopy revealed the formation of vesicles on cilia, and club-like protrusions and adhesion of their tips. After 30–70 Gy, a swelling of mitochondrial membranes and cristae was apparent transmission electron microscopically. The membrane alterations caused by irradiation are assumed to disturb the permeability and flow of ATP from the mitochondria, which in turn leads to the recorded changes in the activity of the ciliated cells.This investigation was supported by grants from Konung Gustaf V:s Jubileumsfond, John and Augusta Perssons Stiftelse, B. Kamprads Fond, the Faculty of Medicine, University of Lund, Sweden and the Swedish Medical Research Council (No. B77-17X-03897-05)The authors are greatly indebted to Miss Inger Norling, Miss Marianne Palmegren and Miss Birgitta Sandström for their excellent technical assistance  相似文献   

9.
We examined the influence of dose on the spectrum of mutations induced at the hypoxanthine guanine phosphoribosyltransferase (Hprt) locus in Chinese hamster ovary (CHO) cells. Independent CHO-K1 cell mutants at the Hprt locus were isolated from cells exposed to 0, 0.5, 1.5, 3.0 and 6.0 Gy (137)Cs gamma rays, and the genetic changes responsible for the mutations were determined by multiplex polymerase chain reaction (PCR)-based exon deletion analysis. We observed dose-dependent changes in mutation spectra. At low doses, the principal radiation-induced mutations were point mutations. With increasing dose, multibase deletion mutations became the predominant mutation type such that by 6.0 Gy, there were almost three times more deletion mutations than point mutations. The dose response for induction of point mutations was linear while that for multibase deletions fit a linear-quadratic response. There was a biphasic distribution of deletion sizes, and different dose responses for small compared to large deletions. The frequency of large (>36 kb) total gene deletions increased exponentially, implying that they develop from the interaction between two independent events. In contrast, the dose response for deletion mutations of less than 10 kb was nearly linear, suggesting that these types of mutations develop mostly from single events and not the interactions between two independently produced lesions. The observation of dose-dependent changes in radiation-induced mutation spectra suggests that the types of alterations and therefore the risks from low-dose radiation exposure cannot be easily extrapolated from high-dose effects.  相似文献   

10.
Effects of ionizing radiation on biological membranes include alterations in membrane proteins, peroxidation of unsaturated lipids accompanied by perturbations of the lipid bilayer polarity. We have measured radiation-induced membrane modifications using two fluorescent lipophilic membrane probes (TMA-DPH and DPH) by the technique of fluorescence polarization on two different cell lines (Chinese hamster ovary CHO-K1 and lymphoblastic RPMI 1788 cell lines). γ-Irradiation was performed using a 60Co source with dose rates of 0.1 and 1 Gy/min for final doses of 4 and 8 Gy. Irradiation induced a decrease of fluorescence intensity and anisotropy of DPH and TMA-DPH in both cell lines, which was dose-dependent but varied inversely with the dose rate. Moreover, the fluorescence anisotropy measured in lymphoblastic cells using TMA-DPH was found to decrease as early as 1 h after irradiation, and remained significantly lower 24 h after irradiation. This study indicates that some alterations of membrane fluidity are observed after low irradiation doses and for some time thereafter. The changes in membrane fluidity might reflect oxidative damage, thus confirming a radiation-induced fluidization of biological membranes. The use of membrane fluidity changes as a potential biological indicator of radiation injury is discussed. Received: 14 May 1996 / Accepted in revised form: 30 September 1996  相似文献   

11.
The protective role of superoxide dismutases (SODs) against ionizing radiation, which generates reactive oxygen species (ROS) harmful to cellular function, was investigated in the wild-type and in mutant yeast strains lacking cytosolic CuZnSOD (sod1Delta), mitochondrial MnSOD (sod2Delta), or both SODs (sod1Deltasod2Delta). Upon exposure to ionizing radiation, there was a distinct difference between these strains in regard to viability and the level of protein carbonyl content, which is the indicative marker of oxidative damage to protein, intracellular H2O2 level, as well as lipid peroxidation. When the oxidation of 2',7'-dichlorofluorescin was used to examine the hydroperoxide production in yeast cells, the SOD mutants showed a higher degree of increase in fluorescence upon exposure to ionizing radiation as compared to wild-type cells. These results indicated that mutants deleted for SOD genes were more sensitive to ionizing radiation than isogenic wild-type cells. Induction and inactivation of other antioxidant enzymes, such as catalase, glucose 6-phosphate dehydrogenase, and glutathione reductase, were observed after their exposure to ionizing radiation both in wild-type and in mutant cells. However, wild-type cells maintained significantly higher activities of antioxidant enzymes than did mutant cells. These results suggest that both CuZnSOD and MnSOD may play a central role in protecting cells against ionizing radiation through the removal of ROS, as well as in the protection of antioxidant enzymes.  相似文献   

12.
Gamma irradiation (60Co) reduced KCl-stimulated voltage-dependent 45Ca2+ uptake in whole-brain, cortical, and striatal synaptosomes. The time course (3, 10, 30, and 60 s) of calcium uptake by irradiated (3 Gy) and nonirradiated synaptosomes, as well as the effect of KCl (15-65 mM), was measured in whole-brain synaptosomes. The fastest and highest rate of depolarization-dependent calcium uptake occurred at 3 s with 65 mM KCl. Irradiation reduced calcium uptake at all incubation times and KCl concentrations. Bay K 8644 enhancement of KCl-stimulated calcium influx was also reduced by radiation exposure. Nimodipine binding to dihydropyridine (DHP) L-type calcium channel receptors was not altered following radiation exposure. These results demonstrate an inhibitory effect of ionizing radiation on the voltage-sensitive calcium channels in rat brain synaptosomes that are not mediated by DHP receptors.  相似文献   

13.
c-IAP2 is induced by ionizing radiation through NF-kappaB binding sites   总被引:3,自引:0,他引:3  
  相似文献   

14.
Point mutations and deletions in mitochondrial DNA (mtDNA) accumulate as a result of oxidative stress, including ionizing radiation. As a result, dysfunctional mitochondria suffer from a decline in oxidative phosphorylation and increased release of superoxides and other reactive oxygen species (ROS). Through this mechanism, mitochondria have been implicated in a host of degenerative diseases. Associated with this type of damage, and serving as a marker of total mtDNA mutations and deletions, the accumulation of a specific 4977-bp deletion, known as the common deletion (Delta-mtDNA(4977)), takes place. The Delta-mtDNA(4977) has been reported to increase with age and during the progression of mitochondrial degeneration. The purpose of this study was to investigate whether ionizing radiation induces the formation of the common deletion in a variety of human cell lines and to determine if it is associated with cellular radiosensitivity. Cell lines used included eight normal human skin fibroblast lines, a radiosensitive non-transformed and an SV40 transformed ataxia telangiectasia (AT) homozygous fibroblast line, a Kearns Sayre Syndrome (KSS) line known to contain mitochondrial deletions, and five human tumor lines. The Delta-mtDNA(4977) was assessed by polymerase chain reaction (PCR). Significant levels of Delta-mtDNA(4977) accumulated 72 h after irradiation doses of 2, 5, 10 or 20 Gy in all of the normal lines with lower response in tumor cell lines, but the absolute amounts of the induced deletion were variable. There was no consistent dose-response relationship. SV40 transformed and non-transformed AT cell lines both showed significant induction of the deletion. However, the five tumor cell lines showed only a modest induction of the deletion, including the one line that was deficient in DNA damage repair. No relationship was found between sensitivity to radiation-induced deletions and sensitivity to cell killing by radiation.  相似文献   

15.
16.
Summary This communication reports the observation of synergistic relationships between ultrasound and gamma-irradiation of stationary phase cultures ofSaccharomyces cerevisiae of different strains. The gamma-ray dose was applied before or after the sound. The extent of synergism depended upon the sequence of application; it was smaller for (US +-ray)-exposure in comparison with (-ray + US)-treatment. The combined action of both modalities had smaller or no synergistic effect for mutant (rad51) yeast cells incapable of recovery. On this basis, it was concluded that possible mechanisms for ultrasound radiosensitization of yeast cells may involve the reduced capacity of cells to recover damages resulted from the combined action and/or the enhanced expression of lethal damage.  相似文献   

17.
18.
Astronauts participating in extended lunar missions or the projected mission to Mars would likely be exposed to significant doses of high-linear energy transfer (LET) heavy energetic charged (HZE) particles. Exposure to even relatively low doses of such space radiation may result in a reduced latent period for and an increased incidence of lens opacification. However, the determinants of cataractogenesis induced by densely ionizing radiation have not been clearly elucidated. In the current study, we show that age at the time of exposure is a key determinant of cataractogenesis in rats whose eyes have been exposed to 2 Gy of (56)Fe ions. The rate of progression of cataractogenesis was significantly greater in the irradiated eyes of 1-year-old rats compared to young (56-day-old) rats. Furthermore, older ovariectomized rats that received exogenous estrogen treatment (17-β-estradiol) commencing 1 week prior to irradiation and continuing throughout the period of observation of up to approximately 600 days after irradiation showed an increased incidence of cataracts and faster progression of opacification compared to intact rats with endogenous estrogen or ovariectomized rats. The same potentiating effect (higher incidence, reduced latent period) was observed for irradiated eyes of young rats. Modulation of estrogen status in the 1-year-old animals (e.g., removal of estrogen by ovariectomy or continuous exposure to estrogen) did not increase the latent period or reduce the incidence to that of intact 56-day-old rats. Since the rapid onset and progression of cataracts in 1-year-old compared to 56-day-old rats was independent of estrogen status, we conclude that estrogen cannot account for the age-dependent differences in cataractogenesis induced by high-LET radiation.  相似文献   

19.
20.
It was shown by the immunochemical method that DNA of X-irradiated E. coli cells of a radiosensitive mutant ABA88uvr A6 can react with the antiserum to thymine dimers which, in all appearance, are induced by ionizing radiation in bacterial DNA. The number of thymine dimers in DNA of E. coli AB1886uvr A6 increased with the dose increase. No dimers were detected in radioresistant cells of M. radioproteolyticus probably due to the effective excision thereof.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号