首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Only 1 genus (Nucleospora) within 1 family (Enterocytozoonidae) of the Microsporidia contains species that are parasitic within the nuclei of their host cells; to date, all described intranuclear Nucleospora spp. parasitise fish. This study describes the first intranuclear microsporidian parasite of an invertebrate, the European edible crab Cancer pagurus L. (Decapoda: Cancridae). Infected crabs displayed no obvious external signs, and maximum apparent prevalence of infection within a monthly sample was 3.45%. Infected hepatopancreatic tubules were characterised by varying numbers of hypertrophic and eosinophilic nuclei within epithelial cells. Parasite stages appeared as eosinophilic granular accumulations causing margination of host chromatin. In advanced cases, the tubule epithelia degenerated, with parasites and sloughed epithelial cells appearing in tubule lumens. All life stages of the parasite were observed within host nuclei. Uninucleate meronts were not detected, although binucleate stages were observed. Multinucleate plasmodia (sporogonal plasmodia) contained up to 22 nuclei in section, and late-stage plasmodia contained multiple copies of apparatus resembling the polar filament and anchoring disk, apparently associated with individual plasmodial nuclei. As such, aggregation and early assembly of sporoblast components took place within the intact sporogonial plasmodium, a feature unique to the Enterocytozoonidae. Liberation of sporoblasts from plasmodia or the presence of liberated sporoblasts was not observed in this study. However, large numbers of maturing and mature spores (measuring 1.3 +/- 0.02 x 0.7 +/- 0.01 microm) were frequently observed in direct contact with the host nucleoplasm. Considering the shared features of this parasite with microsporidians of the family Enterocytozoonidae, and the unique presence of this parasite within the nucleoplasm of decapod crustacean hepatopancreatocytes, this parasite (Enterospora canceri) is proposed as the type species of a new genus (Enterospora) of microsporidian. Molecular taxonomic work is now required, comparing Enterospora to Enterocytozoon and Nucleospora, the 2 other genera within the Enterocytozoonidae.  相似文献   

2.
We describe a microsporidian parasite infecting non-native Chinese mitten crabs (Eriochier sinensis) from Europe. Electron microscopy revealed merogonic and sporogonic life stages bound within a plasmalemma. The crab parasite develops polar tube precursors at the sporont stage but does not complete formation of the intact spore extrusion apparatus at the stage of the sporogonial plasmodium like Enterocytozoon bienuesi and other representatives of the Enterocytozoonidae. Its presence within an aquatic crustacean host, and a distinct molecular phylogeny based on partial small subunit ribosomal RNA (SSU rRNA) gene sequences also place it relatively close, though distinct to, existing genera within the Enterocytozoonidae. Consideration of morphological and phylogenetic characteristics of other hepatopancreas-infecting microsporidia from crustaceans suggests that certain ones (e.g. Enterospora canceri) are retained within the clade corresponding to the existing family Enterocytozoonidae, while others, including the parasite described here, may eventually be grouped in a sister taxon potentially of family rank. Based upon morphological and host similarity, it is likely that the parasite described here is the same as Endoreticulatus eriocheir (Wang and Chen, 2007), previously described from Chinese mitten crabs in Asia. However, using a combined taxonomic approach based upon morphological and phylogenetic data, we propose the formation of a new genus (Hepatospora) to replace the previous generic classification of the Asian parasite as Endoreticulatus. The microsporidian from the hepatopancreas of E. sinensis is named Hepatospora eriocheir (Wang and Chen, 2007) gen. et comb. nov. It is assumed that the parasite was introduced during initial invasions of this crab to Europe during the early 20th Century.  相似文献   

3.
4.
南海石斑鱼苗种肠道微孢子虫病病原的鉴定   总被引:1,自引:0,他引:1  
研究通过组织病理分析、超微结构观察以及分子特征分析对石斑鱼(Epinephelus spp.)苗种肠道微孢子虫病病原进行了鉴定。其为一肠孢虫属新种, 命名为石斑鱼肠孢虫(Enterospora epinepheli sp. n.), 专性寄生于细胞核内, 发育过程与肠孢虫属模式种黄道蟹肠孢虫(Enterospora canceri)一致。早期单核裂殖体通过一层简单的电子薄膜与宿主细胞核质隔离。随后, 单核裂殖体发育形成多核裂殖原质团。此时, 细胞核出现明显肥大, 有的甚至被裂殖子胀破。裂殖原质团进一步发育形成多核产孢体, 并开始出现许多高电子密度的囊泡状结构。这些与极丝及锚状盘有关的囊泡状结构聚集在藕核周围, 并组装形成微孢子虫特征性结构(挤出装置)前体。随后, 产孢体原生质团通过连续分裂形成一个个孢子母细胞。孢子母细胞与细胞核直接接触, 并直接发育形成成熟孢子。成熟孢子椭圆形, 孢子长(1.56±0.31) μm (1.07—1.96 μm), 宽(1.08±0.98) μm (0.93—1.28 μm)。 孢壁分为3层, 外壁电子密度高, 厚(15.51±0.95) nm (9.87—26.18 nm), 内壁为电子透明层, 较外层更厚(81.13±2.71) nm (57.16—110.81 nm), 最里面为孢质膜。极丝为同型极丝, 共5—6圈, 分2排排列。组织病理学分析发现该微孢子虫寄生于肠道上皮杯状细胞核内, 肠壁脱落的内容物中也发现大量的微孢子虫。序列比对发现该种与之前报道的石斑鱼肠道微孢子虫待定种(Microsporidium sp.)序列基本一致, 与其他相似性较高的种类的遗传距离在0.162—0.225。系统发育关系分析显示肠胞虫科的种类明显分为两支, 石斑鱼肠孢虫和肠孢虫属其他种类及毕氏肠胞虫聚为一个独立分支, 但不与该分枝中任何种类形成姊妹支。  相似文献   

5.
ABSTRACT. An intranuclear microsporidian was observed in lymphoblasts from the kidney of farmed Atlantic halibut larvae ( Hippoglossus hippoglossus ). In addition to spores, intranuclear pre-spore stages were observed. Uninucleated stages with a slight thickening of the cell membrane were the most simple developmental stages observed. Multinucleated developmental stages contain electron-lucent vesicles and electron-dense discs. The spores are ovoid and measure 2.9 × 1.2 μm (mean). Sporophorous vesicles, diplokarya and mitochondria were not observed in any of the developmental stages. The developmental stages observed are similar to those of the family Enterocytozoonidae, genus Enterocytozoon. However, there are several differences between the present species and E. bieneusi from enterocytes in man. The relationship to the other species in the genus, E. salmonis can only be determined when all the developmental stages of the species from Atlantic halibut are identified.  相似文献   

6.
A new microsporidian species, Enterocytozoon hepatopenaei sp. nov., is described from the hepatopancreas of the black tiger shrimp Penaeus monodon (Crustacea: Decapoda). Different stages of the parasite are described, from early sporogonal plasmodia to mature spores in the cytoplasm of host-cells. The multinucleate sporogonal plasmodia existed in direct contact with the host-cell cytoplasm and contained numerous small blebs at the surface. Binary fission of the plasmodial nuclei occurred during early plasmodial development and numerous pre-sporoblasts were formed within the plasmodium. Electron-dense disks and precursors of the polar tubule developed in the cytoplasm of the plasmodium prior to budding of early sporoblasts from the plasmodial surface. Mature spores were oval, measuring 0.7 × 1.1 μm and contained a single nucleus, 5-6 coils of the polar filament, a posterior vacuole, an anchoring disk attached to the polar filament, and a thick electron-dense wall. The wall was composed of a plasmalemma, an electron-lucent endospore (10 nm) and an electron-dense exospore (2 nm). DNA primers designed from microsporidian SSU rRNA were used to amplify an 848 bp product from the parasite genome (GenBank FJ496356). The sequenced product had 84% identity to the matching region of SSU rRNA from Enterocytozoon bieneusi. Based upon ultrastructural features unique to the family Enterocytozoonidae, cytoplasmic location of the plasmodia and SSU rRNA sequence identity 16% different from E. bieneusi, the parasite was considered to be a new species, E. hepatopenaei, within the genus Enterocytozoon.  相似文献   

7.
Fish microsporidia: fine structural diversity and phylogeny   总被引:1,自引:0,他引:1  
Structural diversity of fish microsporidian life cycle stages and of the host-parasite interface is reviewed. In the infected cell of the fish host, microsporidia may either cause serious degradation of the cytoplasm and demise of the cell, or they may elicit host cell hypertrophy, producing a parasite-hypertrophic host cell complex, the xenoma. The structure of the xenoma and of its cell wall may differ according to the genus of the parasite, and seems to express properties of the parasite rather than those of the host. In merogony, the parasite cell surface interacts with the host cell in diverse ways, the most conspicuous being the production of thick envelopes of different types. Sporogony stages reveal different types of walls or membranes encasing the sporoblasts and later the spores and these envelopes may be of host or parasite origin. Nucleospora differs from all other fish microsporidia by its unique process of sporogony. Except for the formation of conspicuous xenomas, there are no essentially different structures in fish-infecting microsporidia compared with microsporidia from other hosts. Although the structures associated with the development of fish microsporidia cannot be attributed importance in tracing the phylogeny, they are relevant for practical determination and assessing the relation to the host. The possibility of the existence of an intermediate host is discussed. Higher-level classification of Microsporidia is briefly discussed and structure and evolutionary rates in microsporidian rDNA are reviewed. Discussion of rDNA molecular phylogeny of fish-infecting microsporidia is followed by classification of these parasites. Most form a rather cohesive clade. Outside this clade is the genus Nucleospora, separated at least at the level of Order. Within the main clade, however, there are six species infecting hosts other than fish. Based on data available for analysis, a tentative classification of fish-infecting microsporidia into five groups is proposed. Morphologically defined groups represent families, others are referred to as clades. Group 1, represented by family Pleistophoridae, includes Pleistophora, Ovipleistophora and Heterosporis; Vavraia and Trachipleistophora infect non-fish hosts. Group 2, represented by family Glugeidae, is restricted to genus Glugea and Tuzetia weidneri from crustaceans. Group 3 comprises three clades: Loma and a hyperparasitic microsporidian from a myxosporean; Ichthyosporidium and Pseudoloma clade and the Loma acerinae clade. For the latter species a new genus has to be established. Group 4 contains two families, Spragueidae with the genus Spraguea and Tetramicridae with genera Microgemma and Tetramicra, and the Kabatana and Microsporidium seriolae clade. Group 5 is represented by the family Enterocytozoonidae with the genus Nucleospora and mammal-infecting genus Enterocytozoon.  相似文献   

8.
A microsporidian pathogen, infecting the epithelial cells of the hepatopancreas of Chinese mitten crab, Eriocheir sinensis, was studied by electron microscopy. The detailed ultrastructure of life cycle of the pathogen including proliferative and sporogonic developmental stages are provided. All stages of the parasite are haplokaryotic and develop in a vacuole bounded by a single membrane in contact with host cell cytoplasm. Sporogenesis is synchronous with the same developmental stage in one vacuole. Sporogony shows a characteristic of multinucleate sporogonial plasmodia divided by rosette-like division, producing 4 or 8 sporoblasts. The mature spore is ellipsoidal, length (mean) 1.7 microm, width 1.0 microm, with a uninucleate in the center of the sporoplasm, 7 turns of the polar filament, a bell-like polaroplast of compact membranes and obliquely positioned posterior vacuole. The morphological characteristics of this novel microsporidian pathogen have led us to assign the parasite to a new species of Endoreticulatus, E. eriocheir sp. nov., that has not been reported previously from crab.  相似文献   

9.
10.
The classification of a microsporidian parasite observed in the abdominal muscles of amphipod hosts has been repeatedly revised but still remains inconclusive. This parasite has variable spore numbers within a sporophorous vesicle and has been assigned to the genera Glugea, Pleistophora, Stempellia, and Thelohania. We used electron microscopy and molecular evidence to resolve the previous taxonomic confusion and confirm its identification as Pleistophora mulleri. The life cycle of P. mulleri is described from the freshwater amphipod host Gammarus duebeni celticus. Infection appeared as white tubular masses within the abdominal muscle of the host. Light and transmission electron microscope examination revealed the presence of an active microsporidian infection that was diffuse within the muscle block with no evidence of xenoma formation. Paucinucleate merogonial plasmodia were surrounded by an amorphous coat immediately external to the plasmalemma. The amorphous coat developed into a merontogenetic sporophorous vesicle that was present throughout sporulation. Sporogony was polysporous resulting in uninucleate spores, with a bipartite polaroplast, an anisofilar polar filament and a large posterior vacuole. SSU rDNA analysis supported the ultrastructural evidence clearly placing this parasite within the genus Pleistophora. This paper indicates that Pleistophora species are not restricted to vertebrate hosts.  相似文献   

11.
Enterocytozoon was 1st described in 1985, in an AIDS patient with intestinal malabsorption and diarrhea. Since then, additional cases of infection with this organism have been observed, but only in individuals with AIDS and malabsorption. Intestinal tissue biopsies were obtained from a 45-year-old man prior to AIDS diagnosis, again nine months later and then at autopsy two months later. When the biopsies were examined electron microscopically, both sets contained the microsporidian parasite. However, the 2nd intestinal biopsy, when wasting was much more severe, contained infection in almost every small intestinal enterocyte examined. The parasite was actively developing, allowing us to detail its life cycle. The parasite is apansporoblastic, polysporous and has characteristics not previously reported in the Microsporida: (1) an electron lucent inclusion not usually seen in Microsporida is prominent and always present; (2) extremely elongated sausage-shaped nuclei occur in the proliferative phase of parasite development; (3) the polar tube development uniquely involves the production of electron dense discs, yet results in the formation of a typical spore; and (4) polar tube development occurs prior to the final division of the multi-nucleate sporont. On the basis of these characteristics, we are placing this genus in a new family, Enterocytozoonidae, n. fam.  相似文献   

12.
Enterocytozoon was 1st described in 1985, in an AIDS patient with intestinal malabsorption and diarrhea. Since then, additional cases of infection with this organism have been observed, but only in individuals with AIDS and malabsorption. Intestinal tissue biopsies were obtained from a 45-year-old man prior to AIDS diagnosis, again nine months later and then at autopsy two months later. When the biopsies were examined electron microscopically, both sets contained the microsporidian parasite. However, the 2nd intestinal biopsy, when wasting was much more severe, contained infection in almost every small intestinal enterocyte examined. The parasite was actively developing, allowing us to detail its life cycle. The parasite is apansporoblastic, polysporous and has characteristics not previously reported in the Microsporida: (1) an electron lucent inclusion not usually seen in Microsporida is prominent and always present; (2) extremely elongated sausage-shaped nuclei occur in the proliferative phase of parasite development; (3) the polar tube development uniquely involves the production of electron dense discs, yet results in the formation of a typical spore; and (4) polar tube development occurs prior to the final division of the multi-nucleate sporont. On the basis of these characteristics, we are placing this genus in a new family, Enterocytozoonidae, n. fam.  相似文献   

13.
We describe a new species of carcinoecium-forming sea anemone, Stylobates birtlesisp. n., from sites 590-964 m deep in the Coral Sea, off the coast of Queensland, Australia. An anemone of this genus settles on a gastropod shell inhabited by a hermit crab, then covers and extends the shell to produce a chitinous structure termed a carcinoecium. Stylobates birtlesisp. n. is symbiotic with the hermit crab Sympagurus trispinosus (Balss, 1911). The nature of marginal sphincter muscle and nematocyst size and distribution distinguish Stylobates birtlesi sp. n. from other species in the genus. The four known species of Stylobates are allopatric, each inhabiting a separate ocean basin of the Indo-West Pacific. We also extend the known range of Stylobates loisetteae in the Indian Ocean off the coast of Western Australia.  相似文献   

14.
A fish-infecting Microsporidia Potaspora morhaphis n. gen., n. sp. found adherent to the wall of the coelomic cavity of the freshwater fish, Potamorhaphis guianensis, from lower Amazon River is described, based on light microscope and ultrastructural characteristics. This microsporidian forms whitish xenomas distinguished by the numerous filiform and anastomosed microvilli. The xenoma was completely filled by several developmental stages. In all of these stages, the nuclei are monokaryotic and develop in direct contact with host cell cytoplasm. The merogonial plasmodium divides by binary fission and the disporoblastic pyriform spores of sporont origin measure 2.8+/-0.3 x 1.5+/-0.2 microm. In mature spores the polar filament was arranged into 9-10 coils in 2 layers. The polaroplast had 2 distinct regions around the manubrium and an electron-dense globule was observed. The small subunit, intergenic space and partial large subunit rRNA gene were sequenced and maximum parsimony analysis placed the microsporidian described here in the clade that includes the genera Kabatana, Microgemma, Spraguea and Tetramicra. The ultrastructural morphology of the xenoma, and the developmental stages including the spores of this microsporidian parasite, as well as the phylogenetic analysis, suggest the erection of a new genus and species.  相似文献   

15.
We describe the microsporidian Amazonspora hassar n. gen., n. sp. from the gill xenomas of the teleost Hassar orestis (Doradidae) collected in the estuarine region of the Amazon River. The parasite appeared as a small whitish xenoma located in the gill filaments near the blood vessels. Each xenoma consisted of a single hypertrophic host cell (HHC) in the cytoplasm of which the microsporidian developed and proliferated. The xenoma wall was composed of up to approximately 22 juxtaposed crossed layers of collagen fibers. The plasmalemma of the HHC presented numerous anastomosed, microvilli-like structures projecting outward through the 1-3 first internal layers of the collagen fibrils. The parasite was in direct contact with host cell cytoplasm in all stages of the cycle (merogony and sporogony). Sporogony appears to divide by plasmotomy, giving rise to 4 uninucleate sporoblasts, which develop into uninucleate spores. The ellipsoidal spores measured 2.69 +/- 0.45 x 1.78 +/- 0.18 microm, and the wall measured approximately 75 nm. The anchoring disk of the polar filament was subterminal, being shifted laterally from the anterior pole. The polar filament was arranged into 7-8 coils in a single layer in the posterior half of the spore, surrounding the posterior vacuole. The polaroplast surrounded the uncoiled portion of the polar filament, and it was exclusively lamellar. The spores and different life-cycle stages were intermingled within the cytoplasm of the HHC, surrounding the central hypertrophic deeply branched nucleus. The ultrastructural morphology of this microsporidian parasite suggests the erection of a new genus and species.  相似文献   

16.
Single and nested polymerase chain reaction (PCR) assays were developed for the detection of the microsporidian parasite Microsporidium seriolae, which is responsible for emaciation and even death in farmed Japanese yellowtail. Extremely high rDNA identities exist between this parasite and other members of the as yet unclassified genus, necessitating the design of generic, rather than species-specific primer sets. The nested PCR was several orders of magnitude more sensitive than the standard single PCRs, with visible target product amplified from as little as 0.01 pg of parasite DNA (equivalent to that extracted from a single spore). The specificity of the assays was tested against a range of potential host fishes and 6 other microsporidians infecting either fish or the musculature of their hosts. Single PCRs were found to be specific to the target genus, but the nested PCR replicated rDNA from several different microsporidian genera, limiting its utility. This study highlights problems associated with the use of the rRNA gene for PCR assays of certain microsporidians, but nevertheless provides a rapid and sensitive means for the detection of pre-spore forms not possible by current staining methods. Consequently, these assays may be employed for further studies on the portals of entry, migration to the musculature and transmission of this economically important pathogen.  相似文献   

17.
In this study we describe, the first microsporidian parasite from nephropid lobsters. Metanephrops challengeri were captured from an important marine fishery situated off the south coast of New Zealand. Infected lobsters displayed an unusual external appearance and were lethargic. Histology was used to demonstrate replacement of skeletal and other muscles by merogonic and sporogonic stages of the parasite, while transmission electron microscopy revealed the presence of diplokaryotic meronts, sporonts, sporoblasts and spore stages, all in direct contact with the host sarcoplasm. Analysis of the ssrDNA gene sequence from the lobster microsporidian suggested a close affinity with Thelohania butleri, a morphologically dissimilar microsporidian from marine shrimps. Whilst morphological features of the lobster parasite are consistent with members of the family Nosematidae, molecular data place the parasite closer to members of the family Thelohanidae. Due to the contradiction between morphological and molecular taxonomic data, we propose the erection of a new genus in which the lobster parasite is the type species (Myospora metanephrops). Furthermore, we recommend the erection of a new family (Myosporidae) and a new order (Crustaceacida) to contain this genus. The taxonomic framework presented could be further applied to the re-classification of existing members of the Phylum Microsporidia.  相似文献   

18.
ABSTRACT. Paranucleospora theridion n. gen, n. sp., infecting both Atlantic salmon (Salmo salar) and its copepod parasite Lepeophtheirus salmonis is described. The microsporidian exhibits nuclei in diplokaryotic arrangement during all known life‐cycle stages in salmon, but only in the merogonal stages and early sporogonal stage in salmon lice. All developmental stages of P. theridion are in direct contact with the host cell cytoplasm or nucleoplasm. In salmon, two developmental cycles were observed, producing spores in the cytoplasm of phagocytes or epidermal cells (Cycle‐I) and in the nuclei of epidermal cells (Cycle‐II), respectively. Cycle‐I spores are small and thin walled with a short polar tube, and are believed to be autoinfective. The larger oval intranuclear Cycle‐II spores have a thick endospore and a longer polar tube, and are probably responsible for transmission from salmon to L. salmonis. Parasite development in the salmon louse occurs in several different cell types that may be extremely hypertrophied due to P. theridion proliferation. Diplokaryotic merogony precedes monokaryotic sporogony. The rounded spores produced are comparable to the intranuclear spores in the salmon in most aspects, and likely transmit the infection to salmon. Phylogenetic analysis of P. theridion partial rDNA sequences place the parasite in a position between Nucleospora salmonis and Enterocytozoon bieneusi. Based on characteristics of the morphology, unique development involving a vertebrate fish as well as a crustacean ectoparasite host, and the results of the phylogenetic analyses it is suggested that P. theridion should be given status as a new species in a new genus.  相似文献   

19.
Hyalophysa clampi Browning and Landers, 2012 was reexamined to determine all stages in the life cycle of this symbiotic ciliate. The cell feeds as a normal exuviotroph within the exoskeleton of its molted crayfish host but does not encyst following the trophont stage. Trophonts transform into swimming tomont stages, which divide by palintomy over successive divisions, splitting to two cells, separating, and repeating. The divisions cease when the daughter cells attain the size of the infestive tomite stage, which attaches to a new crayfish. This unique life cycle is most similar to the European hermit crab symbiont Polyspira delagei, which forms chains of daughter cells during division. Scanning electron microscopy confirmed the unusual presence of two contractile vacuoles in H. clampi, unique among the Apostomatida, and provided ultrastructural details to better understand light microscopy silver staining. The genus diagnosis for Hyalophysa is modified herein to accommodate this new life cycle.  相似文献   

20.
A new microsporidian infecting the Mediterranean common stingray Dasyatis pastinaca (Linnaeus, 1758) is described from Iskenderun Bay, Turkey. The parasite invades the disc muscles, producing slender, spindle-shaped subcutaneous swellings that develop into massive, elongated, tumor-like protuberances measuring up to 11 x 4 cm. Severity of the infection may vary from light (1 or 2 small lesions) to intense, with large parts of the dorsal surface covered with lumps and protrusions. These masses contained a yellowish-white caseous substance consisting of degraded host tissue and microsporidian sporophorous vesicles, which in turn contained developing sporonts, sporoblasts and spores. The ripe spore contained a uni-nucleate sporoplasm and large posterior vacuole, and measured 3.8-4.3 x 2.6-2.8 microm. Infection prevalence was 21% in a sample of 143 host individuals examined. All the infected stingray individuals were within the weight class of 300 to 800 g (200 to 305 mm disc width). Phylogenetic analyses of rDNA sequences indicate that this microsporidian belongs to the Pleistophoridae and clusters with species of the genera Ovipleistophora Pekkarinen, Lom & Nilsen, 2002 and Heterosporis Schubert, 1969. However, the morphology, development and host differ distinctly from all reported species, including those belonging to these 2 genera, and it is thus assigned to a newly erected genus and named Dasyatispora levantinae gen. et sp. nov. This is the first record of a microsporidian infection in a batoid. It is also the first microsporidian species to be formally described from an elasmobranch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号