首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background: CO-releasing molecules (CO-RMs) are potential therapeutic agents, able to deliver CO – a critical gasotransmitter – in biological environments. CO-RMs are also effective antimicrobial agents; although the mechanisms of action are poorly defined, haem-containing terminal oxidases are primary targets. Nevertheless, it is clear from several studies that the effects of CO-RMs on biological systems are frequently not adequately explained by the release of CO: CO-RMs are generally more potent inhibitors than is CO gas and other effects of the molecules are evident. Methods: Because sensitivity to CO-RMs cannot be predicted by sensitivity to CO gas, we assess the differential susceptibilities of strains, each expressing only one of the three terminal oxidases of E. coli — cytochrome bd-I, cytochrome bd-II and cytochrome bo′, to inhibition by CORM-3. We present the first sensitive measurement of the oxygen affinity of cytochrome bd-II (Km 0.24 μM) employing globin deoxygenation. Finally, we investigate the way(s) in which thiol compounds abolish the inhibitory effects of CORM-2 and CORM-3 on respiration, growth and viability, a phenomenon that is well documented, but poorly understood. Results: We show that a strain expressing cytochrome bd-I as the sole oxidase is least susceptible to inhibition by CORM-3 in its growth and respiration of both intact cells and membranes. Growth studies show that cytochrome bd-II has similar CORM-3 sensitivity to cytochrome bo′. Cytochromes bo′ and bd-II also have considerably lower affinities for oxygen than bd-I. We show that the ability of N-acetylcysteine to abrogate the toxic effects of CO-RMs is not attributable to its antioxidant effects, or prevention of CO targeting to the oxidases, but may be largely due to the inhibition of CO-RM uptake by bacterial cells. Conclusions: A strain expressing cytochrome bd-I as the sole terminal oxidase is least susceptible to inhibition by CORM-3. N-acetylcysteine is a potent inhibitor of CO-RM uptake by E. coli. General significance: Rational design and exploitation of CO-RMs require a fundamental understanding of their activity. CO and CO-RMs have multifaceted effects on mammalian and microbial cells; here we show that the quinol oxidases of E. coli are differentially sensitive to CORM-3. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   

2.
To counter antibiotic-resistant bacteria, we screened the Kitasato Institute for Life Sciences Chemical Library with bacterial quinol oxidase, which does not exist in the mitochondrial respiratory chain. We identified five prenylphenols, LL-Z1272β, γ, δ, ? and ζ, as new inhibitors for the Escherichia coli cytochrome bd. We found that these compounds also inhibited the E. coli bo-type ubiquinol oxidase and trypanosome alternative oxidase, although these three oxidases are structurally unrelated. LL-Z1272β and ? (dechlorinated derivatives) were more active against cytochrome bd while LL-Z1272γ, δ, and ζ (chlorinated derivatives) were potent inhibitors of cytochrome bo and trypanosome alternative oxidase. Thus prenylphenols are useful for the selective inhibition of quinol oxidases and for understanding the molecular mechanisms of respiratory quinol oxidases as a probe for the quinol oxidation site. Since quinol oxidases are absent from mammalian mitochondria, LL-Z1272β and δ, which are less toxic to human cells, could be used as lead compounds for development of novel chemotherapeutic agents against pathogenic bacteria and African trypanosomiasis.  相似文献   

3.
Microcin J25 has two targets in sensitive bacteria, the RNA polymerase, and the respiratory chain through inhibition of cellular respiration. In this work, the effect of microcin J25 in E. coli mutants that lack the terminal oxidases cytochrome bd-I and cytochrome bo3 was analyzed. The mutant strains lacking cytochrome bo3 or cytochrome bd-I were less sensitive to the peptide. In membranes obtained from the strain that only expresses cytochrome bd-I a great ROS overproduction was observed in the presence of microcin J25. Nevertheless, the oxygen consumption was less inhibited in this strain, probably because the oxygen is partially reduced to superoxide. There was no overproduction of ROS in membranes isolated from the mutant strain that only express cytochrome bo3 and the inhibition of the cellular respiration was similar to the wild type. It is concluded that both cytochromes bd-I and bo3 are affected by the peptide. The results establish for the first time a relationship between the terminal oxygen reductases and the mechanism of action of microcin J25.  相似文献   

4.
Shewanella species are a group of facultative Gram-negative microorganisms with remarkable respiration abilities that allow the use of a diverse array of terminal electron acceptors (EA). Like most bacteria, S. oneidensis possesses multiple terminal oxidases, including two heme-copper oxidases (caa3- and cbb3-type) and a bd-type quinol oxidase. As aerobic respiration is energetically favored, mechanisms underlying the fact that these microorganisms thrive in redox-stratified environments remain vastly unexplored. In this work, we discovered that the cbb3-type oxidase is the predominant system for respiration of oxygen (O2), especially when O2 is abundant. Under microaerobic conditions, the bd-type quinol oxidase has a significant role in addition to the cbb3-type oxidase. In contrast, multiple lines of evidence suggest that under test conditions the caa3-type oxidase, an analog to the mitochondrial enzyme, has no physiological significance, likely because of its extremely low expression. In addition, expression of both cbb3- and bd-type oxidases is under direct control of Crp (cAMP receptor protein) but not the well-established redox regulator Fnr (fumarate nitrate regulator) of canonical systems typified in Escherichia coli. These data, collectively, suggest that adaptation of S. oneidensis to redox-stratified environments is likely due to functional loss of the caa3-type oxidase and switch of the regulatory system for respiration.  相似文献   

5.
The genome of the facultative anaerobic γ-proteobacterium Shewanella oneidensis MR-1 encodes for three terminal oxidases: a bd-type quinol oxidase and two heme-copper oxidases, a A-type cytochrome c oxidase and a cbb 3-type oxidase. In this study, we used a biochemical approach and directly measured oxidase activities coupled to mass-spectrometry analysis to investigate the physiological role of the three terminal oxidases under aerobic and microaerobic conditions. Our data revealed that the cbb 3-type oxidase is the major terminal oxidase under aerobic conditions while both cbb 3-type and bd-type oxidases are involved in respiration at low-O2 tensions. On the contrary, the low O2-affinity A-type cytochrome c oxidase was not detected in our experimental conditions even under aerobic conditions and would therefore not be required for aerobic respiration in S. oneidensis MR-1. In addition, the deduced amino acid sequence suggests that the A-type cytochrome c oxidase is a ccaa 3-type oxidase since an uncommon extra-C terminal domain contains two c-type heme binding motifs. The particularity of the aerobic respiratory pathway and the physiological implication of the presence of a ccaa 3-type oxidase in S. oneidensis MR-1 are discussed.  相似文献   

6.
Isogenic strains of Escherichia coli that were defective in either of the two major aerobic terminal respiratory oxidases (cytochromes bo and bd) or in the putative third oxidase (cytochrome bd-II) were studied to elucidate role(s) for oxidases in protecting cells from oxidative stress in the form of H2O2 and paraquat. Exponential phase cultures of all three oxidase mutants exhibited a greater decline in cell viability when exposed to H2O2 stress compared to the isogenic parent wild-type strain. Cytochrome bo mutants showed the greatest sensitivity to H2O2 under all conditions studied indicating that this oxidase was crucial for protection from H2O2 in E. coli. Cell killing of all oxidase mutants by H2O2 was by an uncharacterized mechanism (mode 2 killing) with cell growth rate affected. The expression of (katG-lacZ), an indicator of intracellular H2O2, was 2-fold higher in a cydAB::kan mutant compared to the wild-type strain at low H2O2 concentrations (< 100 M) suggesting that cytochrome bd mutants were experiencing higher intracellular levels of H2O2. Protein fusions to the three oxidase genes demonstrated that expression of genes encoding cytochrome bd, but not cytochrome bo or cytochrome bd-II was increased in the presence of external H2O2. This increase in expression of (cydA-lacZ) by H2O2 was further enhanced in a cyo::kan mutant. The level of cytochrome bd determined spectrally and (cydA-lacZ) expression was 5-fold and 2-fold higher respectively in an rpoS mutant compared to isogenic wild-type cells suggesting that RpoS was a negative regulator of cytochrome bd. Whether the effect of RpoS is direct or indirect remains to be determined.  相似文献   

7.
Cytochrome bd is a prokaryotic respiratory quinol:O2 oxidoreductase, phylogenetically unrelated to the extensively studied heme–copper oxidases (HCOs). The enzyme contributes to energy conservation by generating a proton motive force, though working with a lower energetic efficiency as compared to HCOs. Relevant to patho-physiology, members of the bd-family were shown to promote virulence in some pathogenic bacteria, which makes these enzymes of interest also as potential drug targets. Beyond its role in cell bioenergetics, cytochrome bd accomplishes several additional physiological functions, being apparently implicated in the response of the bacterial cell to a number of stress conditions. Compelling experimental evidence suggests that the enzyme enhances bacterial tolerance to oxidative and nitrosative stress conditions, owing to its unusually high nitric oxide (NO) dissociation rate and a notable catalase activity; the latter has been recently documented in one of the two bd-type oxidases of Escherichia coli. Current knowledge on cytochrome bd and its reactivity with O2, NO and H2O2 is summarized in this review in the light of the hypothesis that the preferential (over HCOs) expression of cytochrome bd in pathogenic bacteria may represent a strategy to evade the host immune attack based on production of NO and reactive oxygen species (ROS). This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   

8.
9.
《BBA》2020,1861(5-6):148175
Cytochrome bd, a component of the prokaryotic respiratory chain, is important under physiological stress and during pathogenicity. Electrons from quinol substrates are passed on via heme groups in the CydA subunit and used to reduce molecular oxygen. Close to the quinol binding site, CydA displays a periplasmic hydrophilic loop called Q-loop that is essential for quinol oxidation. In the carboxy-terminal part of this loop, CydA from Escherichia coli and other proteobacteria harbors an insert of ~60 residues with unknown function. In the current work, we demonstrate that growth of the multiple-deletion strain E. coli MB43∆cydA (∆cydAcydBappBcyoBnuoB) can be enhanced by transformation with E. coli cytochrome bd-I and we utilize this system for assessment of Q-loop mutants. Deletion of the cytochrome bd-I Q-loop insert abolished MB43∆cydA growth recovery. Swapping the cytochrome bd-I Q-loop for the Q-loop from Geobacillus thermodenitrificans or Mycobacterium tuberculosis CydA, which lack the insert, did not enhance the growth of MB43∆cydA, whereas swapping for the Q-loop from E. coli cytochrome bd-II recovered growth. Alanine scanning experiments identified the cytochrome bd-I Q-loop insert regions Ile318-Met322, Gln338-Asp342, Tyr353-Leu357, and Thr368-Ile372 as important for enzyme functionality. Those mutants that completely failed to recover growth of MB43∆cydA also lacked oxygen consumption activity and heme absorption peaks. Moreover, we were not able to isolate cytochrome bd-I from these inactive mutants. The results indicate that the cytochrome bd Q-loop exhibits low plasticity and that the Q-loop insert in E. coli is needed for complete, stable, assembly of cytochrome bd-I.  相似文献   

10.
The respiratory chain of Escherichia coli is usually considered a device to conserve energy via the generation of a proton motive force, which subsequently may drive ATP synthesis by the ATP synthetase. It is known that in this system a fixed amount of ATP per oxygen molecule reduced (P/O ratio) is not synthesized due to alternative NADH dehydrogenases and terminal oxidases with different proton pumping stoichiometries. Here we show that P/O ratios can vary much more than previously thought. First, we show that in wild-type E. coli cytochrome bo, cytochrome bd-I, and cytochrome bd-II are the major terminal oxidases; deletion of all of the genes encoding these enzymes results in a fermentative phenotype in the presence of oxygen. Second, we provide evidence that the electron flux through cytochrome bd-II oxidase is significant but does not contribute to the generation of a proton motive force. The kinetics support the view that this system is as an energy-independent system gives the cell metabolic flexibility by uncoupling catabolism from ATP synthesis under non-steady-state conditions. The nonelectrogenic nature of cytochrome bd-II oxidase implies that the respiratory chain can function in a fully uncoupled mode such that ATP synthesis occurs solely by substrate level phosphorylation. As a consequence, the yield with a carbon and energy source can vary five- to sevenfold depending on the electron flux distribution in the respiratory chain. A full understanding and control of this distribution open new avenues for optimization of biotechnological processes.The aerobic respiratory chain of Escherichia coli can function with a variety of different membrane-bound NADH dehydrogenases, including NDH-I, NDH-II, and WrbA (8, 26-28), as well as YhdH and QOR (15, 38, 39), on the electron input side and three ubiquinol oxidases (cytochromes bd-I, bd-II, and bo) (12, 14, 19, 22, 29) on the output side (Fig. (Fig.1).1). The stoichiometry for the number of protons pumped for each two electrons transferred (H+/2e ratio) has unequivocally been determined for NDH-I (H+/2e, 4) and NDH-II (H+/2e, 0) (10, 23, 41). Although no specific data are available for WrbA, YhdH, and QOR, it is generally assumed that these NADH:quinone oxidoreductases are not electrogenic because of the absence of (predicted) transmembrane alpha-helices (15, 38, 39). Similarly, the energy-conserving efficiencies of the cytochrome bd-I oxidase and the cytochrome bo oxidase are different; the cytochrome bd-I complex does not actively pump protons, but due to the oxidation of the quinol on the periplasmic side of the membrane and subsequent uptake of protons from the cytoplasmic side of the membrane, which are used in the formation of water, net electron transfer results in proton translocation with an H+/2e stoichiometry of 2 (32). In contrast, the cytochrome bo complex actively pumps protons over the membrane, resulting in an H+/2e stoichiometry of 4 (33, 42). The stoichiometry of proton translocation of the cytochrome bd-II complex is unknown.Open in a separate windowFIG. 1.Diagram of all NADH:quinone oxidoreductases and quinol:oxygen oxidoreductases in E. coli and their proton translocation properties. Cyt, cytochrome; Q, quinone.Due to the differences in the H+/e ratios of the dehydrogenases involved, two-electron transfer from NADH to the quinone pool may be accompanied by the translocation of any number of protons between 0 and 4, and subsequent reoxidation of the quinol pool may contribute to proton translocation again with a stoichiometry that depends on the relative activities of the terminal oxidases. The loose coupling between energy conservation and electron flow in respiration has been interpreted as a physiological means for the cell to cope with sudden changes in the rate of electron influx into the respiratory chain and/or in the availability of terminal electron acceptors on its terminal side (10). The fact that this energetic efficiency can vary is of great interest, both for understanding the physiological adaptive responses of the microbial cell and for biotechnological applications (e.g., synthesis of any oxidized compound with minimal biomass production). For this, it is important to quantify the flux distribution over and the efficiencies of the components of the respiratory machinery in relation to environmental conditions.Previous studies (10) have shown that NDH-I, NDH-II, and the two well-characterized cytochrome oxidases contribute significantly to the overall electron flux and furthermore that the distribution of fluxes over these components depends on environmental conditions, such as the growth rate in glucose-limited chemostats (10). In addition, it has been suggested that the flux distribution over the terminal oxidases of E. coli is dependent on the culture pH (40). However, the cytochrome bd-II oxidase was not taken into account in these previous studies.Here we present data that show that cytochrome bd-II oxidase participates significantly in oxygen reduction both during nonlimited growth in batch cultures and in glucose-limited chemostat cultures. For further quantification of the contribution of the respiratory chain to oxidative phosphorylation, it is essential to assess the in vivo H+/2e stoichiometry of the cytochrome bd-II oxidase (4, 37). Essentially, the approach used in previous studies by Calhoun et al. (10) was followed: strains with respiratory chains that were modified such that their H+/2e stoichiometry was fixed and known were grown under identical, glucose-limited conditions in chemostat culture. A flux analysis with respect to glucose catabolism and respiration allowed calculation of the rate of ATP synthesis for these strains. The data were then used as reference flux data for a strain that contained the cytochrome bd-II oxidase as the sole terminal oxidase. This strain showed a decreased yield with respect to oxygen and glucose. In this way we demonstrated that electron flow through the cytochrome bd-II oxidase does not contribute to the generation of a proton motive force. The results are discussed in view of the biochemical characterization of the enzyme and its physiological importance to adaptive responses by E. coli to an ever-changing environment.  相似文献   

11.
Oxygen is favoured as terminal electron acceptor in aerobic and facultative microorganisms because of its appropriate physical state, satisfactory solubility and its desirable combinations of kinetic and thermodynamic properties. Oxygen is generally reduced by four electrons to yield oxygen, but there are important biological consequences of, and roles for, the partial reduction to superoxide and peroxide. Complex and multiple regulatory networks ensure (i) the utilization of oxygen in preference to other oxidants, (ii) the synthesis of oxygen-consuming enzymes with appropriate properties (particularly affinity for the ligand), and (iii) appropriate cellular protection in the event of oxidative stress. This contribution reviews the terminal respiratory oxidases of selected Gram-negative bacteria and microbial haemoglobin-like proteins.Recent studies of the cytochromebd-type oxidases ofEscherichia coli andAzotobacter vinelandii suggest that, despite probable similarity at the amino acid level, the reactivities of these oxidases with oxygen are strikingly different. The respiratory protection afforded to nitrogenase in the obligately aerobic diazotrophA. vinelandii by the cytochromebd complex appears to be accompanied by, and may be the result of, a low affinity for oxygen and a high Vmax. The poorly characterized cytochromeo-containing oxidase in this bacterium is not required for respiratory protection. InE. coli, the cytochromebd-type oxidase has a remarkably high affinity for oxygen, consistent with the view that this is an oxygen-scavenging oxidase utilized under microaerobic conditions. The demonstration of substrate (i.e. oxygen) inhibition in this complex suggests a mechanism whereby wasteful electron flux through a non-proton-pumping oxidase is avoided at higher dissolved oxygen tensions. The demonstration of two ligandbinding sites (haemsd andb 595) in oxidases of this type suggests plausible mechanisms for this phenomenon. InE. coli, assembly of the cytochromebd-type oxidase (and of periplasmic cytochromesb andc) requires the presence of an ABC transporter, which may serve to export haem or some assembly factor' to the periplasm.There is at least one additional oxygen-consuming protein inE. coli — the flavohaemoglobin encoded by thehmp gene. Globin-like proteins are also widely distributed in other bacteria, fungi and protozoa, but most have unknown functions. The function of HMP and the related chimaeric flavohaemoglobins in other bacteria and yeast is unknown; one of several possibilities for HMP is that its relatively low affinity for oxygen during turnover with NADH as substrate could enable it to function as a sensor of falling (or rising) cytoplasmic oxygen concentrations.(until October 1994: Section of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14853-8101, USA)  相似文献   

12.
Cytochrome aa3-600 is one of the principle respiratory oxidases from Bacillus subtilis and is a member of the heme-copper superfamily of oxygen reductases. This enzyme catalyzes the two-electron oxidation of menaquinol and the four-electron reduction of O2 to 2H2O. Cytochrome aa3-600 is of interest because it is a very close homologue of the cytochrome bo3 ubiquinol oxidase from Escherichia coli, except that it uses menaquinol instead of ubiquinol as a substrate. One question of interest is how the proteins differ in response to the differences in structure and electrochemical properties between ubiquinol and menaquinol. Cytochrome bo3 has a high affinity binding site for ubiquinol that stabilizes a ubi-semiquinone. This has permitted the use of pulsed EPR techniques to investigate the protein interaction with the ubiquinone. The current work initiates studies to characterize the equivalent site in cytochrome aa3-600. Cytochrome aa3-600 has been cloned and expressed in a His-tagged form in B. subtilis. After isolation of the enzyme in dodecylmaltoside, it is shown that the pure enzyme contains 1 eq of menaquinone-7 and that the enzyme stabilizes a mena-semiquinone. Pulsed EPR studies have shown that there are both similarities as well as significant differences in the interactions of the mena-semiquinone with cytochrome aa3-600 in comparison with the ubi-semiquinone in cytochrome bo3. Our data indicate weaker hydrogen bonds of the menaquinone in cytochrome aa3-600 in comparison with ubiquinone in cytochrome bo3. In addition, the electronic structure of the semiquinone cyt aa3-600 is more shifted toward the anionic form from the neutral state in cyt bo3.  相似文献   

13.
For the study of the dinuclear center of heme-copper oxidases cytochrome bo 3 from Escherichia coli offers several advantages over the extensively charactererized bovine cytochrome c oxidase. The availability of strains with enhanced levels of expression allows purification of the significant amounts of enzyme required for detailed spectroscopic studies. Cytochrome bo 3 is readily prepared as the fast form, with a homogeneous dinuclear center which gives rise to characteristic broad EPR signals not seen in CcO. The absence of CuA and the incorporation of protohemes allows for a detailed interpretation of the MCD spectra arising from the dinuclear center heme o 3. Careful analysis allows us to distinguish between small molecules that bind to heme o 3, those which are ligands of CuB, and those which react to yield higher oxidation states of heme o 3. Here we review results from our studies of the reactions of fast cytochrome bo 3 with formate, fluoride, chloride, azide, cyanide, NO, and H2O2.  相似文献   

14.
15.
The respiratory heme-copper oxidases catalyze reduction of O2 to H2O, linking this process to transmembrane proton pumping. These oxidases have been classified according to the architecture, location and number of proton pathways. Most structural and functional studies to date have been performed on the A-class oxidases, which includes those that are found in the inner mitochondrial membrane and bacteria such as Rhodobacter sphaeroides and Paracoccus denitrificans (aa3-type oxidases in these bacteria). These oxidases pump protons with a stoichiometry of one proton per electron transferred to the catalytic site. The bacterial A-class oxidases use two proton pathways (denoted by letters D and K, respectively), for the transfer of protons to the catalytic site, and protons that are pumped across the membrane. The B-type oxidases such as, for example, the ba3 oxidase from Thermus thermophilus, pump protons with a lower stoichiometry of 0.5 H+/electron and use only one proton pathway for the transfer of all protons. This pathway overlaps in space with the K pathway in the A class oxidases without showing any sequence homology though. Here, we review the functional properties of the A- and the B-class ba3 oxidases with a focus on mechanisms of proton transfer and pumping. This article is part of a Special Issue entitled: Respiratory Oxidases.  相似文献   

16.
《BBA》2023,1864(2):148952
Escherichia coli contains two cytochrome bd oxidases, bd-I and bd-II. The structure of both enzymes is highly similar, but they exhibit subtle differences such as the accessibility of the active site through a putative proton channel. Here, we demonstrate that the duroquinol:dioxygen oxidoreductase activity of bd-I increased with alkaline pH, whereas bd-II showed a broad activity maximum around pH 7. Likewise, the pH dependence of NO release from the reduced active site, an essential property of bd oxidases, differed between the two oxidases as detected by UV/vis spectroscopy. Both findings may be attributed to differences in the proton channel leading to the active site heme d. The channel comprises a titratable residue (Asp58B in bd-I and Glu58B in bd-II). Conservative mutations at this position drastically altered NO release demonstrating its contribution to the process.  相似文献   

17.
It has recently become evident that many bacterial respiratory oxidases are members of a superfamily that is related to the eukaryotic cytochrome c oxidase. These oxidases catalyze the reduction of oxygen to water at a heme-copper binuclear center. Fourier transform infrared (FTIR) spectroscopy has been used to examine the heme-copper-containing respiratory oxidases of Rhodobacter sphaeroides Ga. This technique monitors the stretching frequency of CO bound at the oxygen binding site and can be used to characterize the oxidases in situ with membrane preparations. Oxidases that have a heme-copper binuclear center are recognizable by FTIR spectroscopy because the bound CO moves from the heme iron to the nearby copper upon photolysis at low temperature, where it exhibits a diagnostic spectrum. The FTIR spectra indicate that the binuclear center of the R. sphaeroides aa3-type cytochrome c oxidase is remarkably similar to that of the bovine mitochondrial oxidase. Upon deletion of the ctaD gene, encoding subunit I of the aa3-type oxidase, substantial cytochrome c oxidase remains in the membranes of aerobically grown R. sphaeroides. This correlates with a second wild-type R. sphaeroides is grown photosynthetically, the chromatophore membranes lack the aa3-type oxidase but have this second heme-copper oxidase. Subunit I of the heme-copper oxidase superfamily contains the binuclear center. Amino acid sequence alignments show that this subunit is structurally very highly conserved among both eukaryotic and prokaryotic species. The polymerase chain reaction was used to show that the chromosome of R. sphaeroides contains at least one other gene that is a homolog of ctaD, the gene encoding subunit I of the aa3-type cytochrome c oxidase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Upon nitrogen step-down, some filamentous cyanobacteria differentiate heterocysts, cells specialized for dinitrogen fixation, a highly oxygen sensitive process. Aerobic respiration is one of the mechanisms responsible for a microaerobic environment in heterocysts and respiratory terminal oxidases are the key enzymes of the respiratory chains. We used Anabaena variabilis strain ATCC 29413, because it is one of the few heterocyst-forming facultatively chemoheterotrophic cyanobacteria amenable to genetic manipulation. Using PCR with degenerate primers, we found four gene loci for respiratory terminal oxidases, three of which code for putative cytochrome c oxidases and one whose genes are homologous to cytochrome bd-type quinol oxidases. One cytochrome c oxidase, Cox2, was the only enzyme whose expression, tested by RT-PCR, was evidently up-regulated in diazotrophy, and therefore cloned, sequenced, and characterized. Up-regulation of Cox2 was corroborated by Northern and primer extension analyses. Strains were constructed lacking Cox1 (a previously characterized cytochrome c oxidase), Cox2, or both, which all grew diazotrophically. In vitro cytochrome c oxidase and respiratory activities were determined in all strains, allowing for the first time to estimate the relative contributions to total respiration of the different respiratory electron transport branches under different external conditions. Especially adding fructose to the growth medium led to a dramatic enhancement of in vitro cytochrome c oxidation and in vivo respiratory activity without significantly influencing gene expression.  相似文献   

19.
When sulfur compounds are scarce or difficult to process, Escherichia coli adapts by inducing the high‐level expression of sulfur‐compound importers. If cystine then becomes available, the cystine is rapidly overimported and reduced, leading to a burgeoning pool of intracellular cysteine. Most of the excess cysteine is exported, but some is adventitiously degraded, with the consequent release of sulfide. Sulfide is a potent ligand of copper and heme moieties, raising the prospect that it interferes with enzymes. We observed that when cystine was provided and sulfide levels rose, E. coli became strictly dependent upon cytochrome bd oxidase for continued respiration. Inspection revealed that low‐micromolar levels of sulfide inhibited the proton‐pumping cytochrome bo oxidase that is regarded as the primary respiratory oxidase. In the absence of the back‐up cytochrome bd oxidase, growth failed. Exogenous sulfide elicited the same effect. The potency of sulfide was enhanced when oxygen concentrations were low. Natural oxic‐anoxic interfaces are often sulfidic, including the intestinal environment where E. coli dwells. We propose that the sulfide resistance of the cytochrome bd oxidase is a key trait that permits respiration in such habitats.  相似文献   

20.
Heme–copper oxidases (HCuOs) are the terminal components of the respiratory chain in the mitochondrial membrane or the cell membrane in many bacteria. These enzymes reduce oxygen to water and use the free energy from this reaction to maintain a proton-motive force across the membrane in which they are embedded. The heme–copper oxidases of the cbb3-type are only found in bacteria, often pathogenic ones since they have a low Km for O2, enabling the bacteria to colonize semi-anoxic environments. Cbb3-type (C) oxidases are highly divergent from the mitochondrial-like aa3-type (A) oxidases, and within the heme–copper oxidase family, cbb3 is the closest relative to the most divergent member, the bacterial nitric oxide reductase (NOR). Nitric oxide reductases reduce NO to N2O without coupling the reaction to the generation of any electrochemical proton gradient. The significant structural differences between A- and C-type heme–copper oxidases are manifested in the lack in cbb3 of most of the amino acids found to be important for proton pumping in the A-type, as well as in the different binding characteristics of ligands such as CO, O2 and NO. Investigations of the reasons for these differences at a molecular level have provided insights into the mechanism of O2 and NO reduction as well as the proton-pumping mechanism in all heme–copper oxidases. In this paper, we discuss results from these studies with the focus on the relationship between proton transfer and ligand binding and reduction. In addition, we present new data, which show that CO binding to one of the c-type hemes of CcoP is modulated by protein–lipid interactions in the membrane. These results show that the heme c-CO binding can be used as a probe of protein–membrane interactions in cbb3 oxidases, and possible physiological consequences for this behavior are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号