首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Local adaptation at range edges influences species’ distributions and how they respond to environmental change. However, the factors that affect adaptation, including gene flow and local selection pressures, are likely to vary across different types of range edge. We performed a reciprocal transplant experiment to investigate local adaptation in populations of Plantago lanceolata and P. major from central locations in their European range and from their latitudinal and elevation range edges (in northern Scandinavia and Swiss Alps, respectively). We also characterized patterns of genetic diversity and differentiation in populations using molecular markers. Range‐centre plants of P. major were adapted to conditions at the range centre, but performed similarly to range‐edge plants when grown at the range edges. There was no evidence for local adaptation when comparing central and edge populations of P. lanceolata. However, plants of both species from high elevation were locally adapted when compared with plants from high latitude, although the reverse was not true. This asymmetry was associated with greater genetic diversity and less genetic differentiation over the elevation gradient than over the latitudinal gradient. Our results suggest that adaptation in some range‐edge populations could increase their performance following climate change. However, responses are likely to differ along elevation and latitudinal gradients, with adaptation more likely at high‐elevation. Furthermore, based upon these results, we suggest that gene flow is unlikely to constrain adaptation in range‐edge populations of these species.  相似文献   

2.
Parasites typically have broader thermal limits than hosts, so large performance gaps between pathogens and their cold‐ and warm‐adapted hosts should occur at relatively warm and cold temperatures, respectively. We tested this thermal mismatch hypothesis by quantifying the temperature‐dependent susceptibility of cold‐ and warm‐adapted amphibian species to the fungal pathogen Batrachochytrium dendrobatidis (Bd) using laboratory experiments and field prevalence estimates from 15 410 individuals in 598 populations. In both the laboratory and field, we found that the greatest susceptibility of cold‐ and warm‐adapted hosts occurred at relatively warm and cool temperatures, respectively, providing support for the thermal mismatch hypothesis. Our results suggest that as climate change shifts hosts away from their optimal temperatures, the probability of increased host susceptibility to infectious disease might increase, but the effect will depend on the host species and the direction of the climate shift. Our findings help explain the tremendous variation in species responses to Bd across climates and spatial, temporal and species‐level variation in disease outbreaks associated with extreme weather events that are becoming more common with climate change.  相似文献   

3.
According to broad‐scale application of biogeographical theory, widespread retractions of species' rear edges should be seen in response to ongoing climate change. This prediction rests on the assumption that rear edge populations are “marginal” since they occur at the limit of the species' ecological tolerance and are expected to decline in performance as climate warming pushes them to extirpation. However, conflicts between observations and predictions are increasingly accumulating and little progress has been made in explaining this disparity. We argue that a revision of the concept of marginality is necessary, together with explicit testing of population decline, which is increasingly possible as data availability improves. Such action should be based on taking the population perspective across a species' rear edge, encompassing the ecological, geographical and genetic dimensions of marginality. Refining our understanding of rear edge populations is essential to advance our ability to monitor, predict and plan for the impacts of environmental change on species range dynamics.  相似文献   

4.
Aim We tested whether a hybrid zone that has formed between an endemic and an invasive species of marine mussel has shifted poleward as expected under a general hypothesis of global warming or has responded instead to decadal climate oscillations. Location We sampled 15 locations on the coast of California, USA, that span the distributions of the two species of marine mussels and their hybrids. Methods Mussels were sampled in 2005–08 and analysed at three nuclear gene loci using methods identical to those used in a study a decade earlier in order to document the genetic architecture of this system. Change in the system was determined by comparing the frequency of species‐specific alleles and multi‐locus genotypes over the intervening decade. Climate variation over the same period was examined by comparing the Pacific Decadal Oscillation (PDO), El Niño/Southern Oscillation (ENSO), upwelling indices and sea surface temperature (SST) during and prior to the study period. Results Contrary to the general expectations of global warming we show that the highly invasive warm‐water mussel Mytilus galloprovincialis and the hybrid zone formed with the endemic species Mytilus trossulus has rapidly contracted southwards. Mytilus galloprovincialis declined in abundance over the northern third of its geographic range (c. 540 km) and has become rare or absent across the northern 200 km of the range it previously colonized during its initial invasion. The distribution of the native species M. trossulus has remained unchanged over the same time period. Main conclusions The large‐scale range shift in the warm‐water invasive species M. galloprovincialis and the hybrid zone it forms with M. trossulus has been exceptionally rapid and is in the opposite direction to that predicted by the global warming hypotheses. This shift, however, is consistent with decadal climate variation associated with the ENSO and the PDO. Since the biogeography of this system was first described in 1999, the PDO has shifted from a warm phase, dominated by frequent and large El Niño events, to a cold‐phase period, with minimal ENSO activity. Thus recent decadal climate variation can oppose global trends in average temperature and this study illustrates the need to integrate the effects of climate change across multiple time‐scales.  相似文献   

5.
Many predictions of how climate change will impact biodiversity have focused on range shifts using species‐wide climate tolerances, an approach that ignores the demographic mechanisms that enable species to attain broad geographic distributions. But these mechanisms matter, as responses to climate change could fundamentally differ depending on the contributions of life‐history plasticity vs. local adaptation to species‐wide climate tolerances. In particular, if local adaptation to climate is strong, populations across a species’ range—not only those at the trailing range edge—could decline sharply with global climate change. Indeed, faster rates of climate change in many high latitude regions could combine with local adaptation to generate sharper declines well away from trailing edges. Combining 15 years of demographic data from field populations across North America with growth chamber warming experiments, we show that growth and survival in a widespread tundra plant show compensatory responses to warming throughout the species’ latitudinal range, buffering overall performance across a range of temperatures. However, populations also differ in their temperature responses, consistent with adaptation to local climate, especially growing season temperature. In particular, warming begins to negatively impact plant growth at cooler temperatures for plants from colder, northern populations than for those from warmer, southern populations, both in the field and in growth chambers. Furthermore, the individuals and maternal families with the fastest growth also have the lowest water use efficiency at all temperatures, suggesting that a trade‐off between growth and water use efficiency could further constrain responses to forecasted warming and drying. Taken together, these results suggest that populations throughout species’ ranges could be at risk of decline with continued climate change, and that the focus on trailing edge populations risks overlooking the largest potential impacts of climate change on species’ abundance and distribution.  相似文献   

6.
Under climate change, the reduction of frost risk, onset of warm temperatures and depletion of soil moisture are all likely to occur earlier in the year in many temperate regions. The resilience of tree species will depend on their ability to track these changes in climate with shifts in phenology that lead to earlier growth initiation in the spring. Exposure to warm temperatures (‘forcing’) typically triggers growth initiation, but many trees also require exposure to cool temperatures (‘chilling’) while dormant to readily initiate growth in the spring. If warming increases forcing and decreases chilling, climate change could maintain, advance or delay growth initiation phenology relative to the onset of favorable conditions. We modeled the timing of height‐ and diameter‐growth initiation in coast Douglas‐fir (an ecologically and economically vital tree in western North America) to determine whether changes in phenology are likely to track changes in climate using data from field‐based and controlled‐environment studies, which included conditions warmer than those currently experienced in the tree's range. For high latitude and elevation portions of the tree's range, our models predicted that warming will lead to earlier growth initiation and allow trees to track changes in the onset of the warm but still moist conditions that favor growth, generally without substantially greater exposure to frost. In contrast, toward lower latitude and elevation range limits, the models predicted that warming will lead to delayed growth initiation relative to changes in climate due to reduced chilling, with trees failing to capture favorable conditions in the earlier parts of the spring. This maladaptive response to climate change was more prevalent for diameter‐growth initiation than height‐growth initiation. The decoupling of growth initiation with the onset of favorable climatic conditions could reduce the resilience of coast Douglas‐fir to climate change at the warm edges of its distribution.  相似文献   

7.
Determining the position of range edges is the first step in developing an understanding of the ecological and evolutionary dynamics in play as species’ ranges shift in response to climate change. Here, we study the leading (poleward) range edge of Ocypode cordimanus, a ghost crab that is common along the central to northern east coast of Australia. Our study establishes the poleward range edge of adults of this species to be at Merimbula (36.90°S, 149.93°E), 270 km (along the coast) south of the previous southernmost museum record. We also establish that dispersal of pelagic larvae results in recruitment to beaches 248 km (along the coast; 0.9° of latitude) beyond the adult range edge we have documented here. Although we cannot conclusively demonstrate that the leading range edge for this species has moved polewards in response to climate change, this range edge does fall within a “hotspot” of ocean warming, where surface isotherms are moving southwards along the coast at 20–50 km.decade-1; coastal air temperatures in the region are also warming. If these patterns persist, future range extensions could be anticipated. On the basis of their ecology, allied with their occupancy of ocean beaches, which are home to taxa that are particularly amenable to climate-change studies, we propose that ghost crabs like O. cordimanus represent ideal model organisms with which to study ecological and evolutionary processes associated with climate change. The fact that “hotspots” of ocean warming on four other continents correspond with poleward range edges of ghost crab species suggests that results of hypothesis tests could be generalized, yielding excellent opportunities to rapidly progress knowledge in this field.  相似文献   

8.
Temperature increases because of climate change are expected to cause expansions at the high latitude margins of species distributions, but, in practice, fragmented landscapes act as barriers to colonization for most species. Understanding how species distributions will shift in response to climate change therefore requires techniques that incorporate the combined effects of climate and landscape‐scale habitat availability on colonization rates. We use a metapopulation model (Incidence Function Model, IFM) to test effects of fine‐scale habitat use on patterns and rates of range expansion by the butterfly Hesperia comma. At its northern range margin in Britain, this species has increased its breadth of microhabitat use because of climate warming, leading to increased colonization rates. We validated the IFM by reconstructing expansions in five habitat networks between 1982 and 2000, before using it to predict metapopulation dynamics over 100 yr, for three scenarios based on observed changes to habitat use. We define the scenarios as “cold‐world” (only hot, south‐facing 150–250° hillsides are deemed warm enough), “warm‐world” in which 100–300° hillsides can be populated, and “hot‐world”, where the background climate is warm enough to enable use of all aspects (as increasingly observed). In the simulations, increased habitat availability in the hot‐world scenario led to faster range expansion rates, and to long‐term differences in distribution size and pattern. Thus, fine‐scale changes in the distribution of suitable microclimates led to landscape‐scale changes in population size and colonization rate, resulting in coarse‐scale changes to the species distribution. Despite use of a wider range of habitats associated with climate change, H. comma is still expected to occupy a small fraction of available habitat in 100 yr. The research shows that metapopulation models represent a potential framework to identify barriers to range expansion, and to predict the effects of environmental change or conservation interventions on species distributions and persistence.  相似文献   

9.
The phenology of diameter‐growth cessation in trees will likely play a key role in mediating species and ecosystem responses to climate change. A common expectation is that warming will delay cessation, but the environmental and genetic influences on this process are poorly understood. We modeled the effects of temperature, photoperiod, and seed‐source climate on diameter‐growth‐cessation timing in coast Douglas‐fir (an ecologically and economically vital tree) using high‐frequency growth measurements across broad environmental gradients for a range of genotypes from different seed sources. Our model suggests that cool temperatures or short photoperiods can induce cessation in autumn. At cool locations (high latitude and elevation), cessation seems to be induced primarily by low temperatures in early autumn (under relatively long photoperiods), so warming will likely delay cessation and extend the growing season. But at warm locations (low latitude or elevation), cessation seems to be induced primarily by short photoperiods later in autumn, so warming will likely lead to only slight extensions of the growing season, reflecting photoperiod limitations on phenological shifts. Trees from seed sources experiencing frequent frosts in autumn or early winter tended to cease growth earlier in the autumn, potentially as an adaptation to avoid frost. Thus, gene flow into populations in warm locations with little frost will likely have limited potential to delay mean cessation dates because these populations already cease growth relatively late. In addition, data from an abnormal heat wave suggested that very high temperatures during long photoperiods in early summer might also induce cessation. Climate change could make these conditions more common in warm locations, leading to much earlier cessation. Thus, photoperiod cues, patterns of genetic variation, and summer heat waves could limit the capacity of coast Douglas‐fir to extend its growing season in response to climate change in the warm parts of its range.  相似文献   

10.
Global warming is a nonlinear process, and temperature may increase in a stepwise manner. Periods of abrupt warming can trigger persistent changes in the state of ecosystems, also called regime shifts. The responses of organisms to abrupt warming and associated regime shifts can be unlike responses to periods of slow or moderate change. Understanding of nonlinearity in the biological responses to climate warming is needed to assess the consequences of ongoing climate change. Here, we demonstrate that the population dynamics of a long‐lived, wide‐ranging marine predator are associated with changes in the rate of ocean warming. Data from 556 colonies of black‐legged kittiwakes Rissa tridactyla distributed throughout its breeding range revealed that an abrupt warming of sea‐surface temperature in the 1990s coincided with steep kittiwake population decline. Periods of moderate warming in sea temperatures did not seem to affect kittiwake dynamics. The rapid warming observed in the 1990s may have driven large‐scale, circumpolar marine ecosystem shifts that strongly affected kittiwakes through bottom‐up effects. Our study sheds light on the nonlinear response of a circumpolar seabird to large‐scale changes in oceanographic conditions and indicates that marine top predators may be more sensitive to the rate of ocean warming rather than to warming itself.  相似文献   

11.
Aim We test the prediction that hybrid zones between warm‐ and cold‐adapted species will move towards the territory formerly occupied by the cold‐adapted species in response to a warming climate. We use multiple tests of this prediction to distinguish amongst potential mechanistic hypotheses of responses to climate change. Location We sampled 97 locations on the Atlantic coast of Spain and France and the English Channel that span three hybrid zones formed between two species of marine mussels (Mytilus galloprovincialis and M. edulis). Methods Mussels were sampled in 2005–07 and analysed at a nuclear gene (Glu‐5′) that is diagnostically differentiated between the subject species. Results were compared to those of studies made in the same region over the past two decades. Historical change in sea surface temperature (SST) was analysed using National Oceanic and Atmospheric Administration (NOAA) Optimum Interpolation Daily SST. Species distribution models (random forest and maximum entropy) of the current distribution of mussels were constructed and validated by hindcasting the historical distributions of these species. Validated models were used in combination with forecasts of SST to predict changes in mussel distribution to 2050 and 2100. Results We show that over the past two decades two of the hybrid zones in France have not changed in either position or shape. The third hybrid zone, however, has shifted in the predicted direction, c. 100 km eastward into the warming English Channel. Species distribution modelling strongly implicates changes in winter cold SST as driving this change in the position of one of the hybrid zones. Forecasts of future SST indicate that rapid changes in distribution will occur over the next century. Main conclusions Hybrid zones can be used to conduct repeated tests of ecological responses to climate change and can be valuable in sorting among prospective mechanistic hypotheses that underlie that change. Winter temperatures, but not seasonal high temperature, appear to control the distribution of both species. Species distribution modelling indicates that the collapse of these hybrid zones is imminent, with the rapid expansion of the subtropical species in response to continuing SST warming.  相似文献   

12.
Aim The magnitude of predicted range shifts during climate change is likely to be different for species living in mountainous environments compared with those living in flatland environments. The southern edges of ranges in mountain species may not shift northwards during warming as populations instead migrate up available elevational gradients; overall latitudinal range appears therefore to expand. In contrast, flatland species should shift range centroids northwards but not expand or contract their latitudinal range extent. These hypotheses were tested utilizing Late Pleistocene and modern occurrence data. Location North America. Methods The location and elevation of modern and Late Pleistocene species occurrences were collected from data bases for 26 species living in mountain or flatland environments. Regressions of elevation change over latitude, and southern and northern range edges were calculated for each species for modern and fossil data sets. A combination of regressions and anova s were used to test whether flatland species shift range edges and latitudinal extents more than mountain species do. Results Flatland species had significantly larger northward shifts at southern range edges than did mountain‐dwelling species from the Late Pleistocene to the present. There was also a significant negative correlation between the amount of change in the latitude of the southern edge of the range and the amount of elevational shifting from the Late Pleistocene to the present. Although significant, only c. 25% of the variance could be explained by this relationship. In addition, there was a weak indication that overall range expansion was less in flatland‐dwelling than in mountain‐dwelling species. Main conclusions The approach used here was to examine past species’ range responses to warming that occurred after the last ice ages as a means to better predict potential future responses to continued warming. The results confirm predictions of differential southern edge and overall range shifts for species occupying mountain and flatland regions in North America. The findings may be broadly applicable in other regions, thus allowing better modelling of future range and distribution related responses.  相似文献   

13.
Long‐term demographic studies have recently shown that global climate change together with increasing direct impacts of human activities, such as fisheries, are affecting the population dynamics of marine top predators. However, the effects of these factors on species distribution and abundance at sea are still poorly understood, particularly in marine ecosystems of the southern hemisphere. Using a unique long‐term data set of at‐sea observations, we tested for interdecadal (1980s vs. 2000s) changes in summer abundance and distribution of 12 species of Albatrosses and Petrels along a 30° latitudinal gradient between tropical and Antarctic waters of the southern Indian Ocean. There were contrasting effects of climate change on subantarctic seabird distribution and abundance at sea. While subtropical waters showed the highest rate of warming, the species that visited this water mass showed the greatest changes in distribution and abundance. The abundance of Wandering Albatrosses (Diomedea exulans), White‐chinned Petrels (Procellaria aequinoctialis) and Giant Petrels (Macronectes sp.) declined markedly, whereas the other species showed contrasting trends or did not change. With the exception of the White‐chinned Petrel, these decreases were at least partly related to regional increase in sea surface temperature. The southward shift of Wandering Albatross and Prions (Pachyptila spp.) distributions could be ascribed to species redistribution or decrease in abundance due to warming of the subtropical waters. Surprisingly, White‐chinned Petrel distribution shifted northward, suggesting more complex mechanisms. This study is the first to document a shift in species range in the Southern Ocean related to climate change and contrasting abundance changes. It suggests that some species might experience more severe impacts from climate change depending on the water masses they visit. As climate changes are predicted to continue in the next decades, understanding species responses to climate change is crucial for conservation management, especially when their conservation status is critical or unknown.  相似文献   

14.
Polewards expansions of species' distributions have been attributed to climate warming, but evidence for climate‐driven local extinctions at warm (low latitude/elevation) boundaries is equivocal. We surveyed the four species of butterflies that reach their southern limits in Britain. We visited 421 sites where the species had been recorded previously to determine whether recent extinctions were primarily due to climate or habitat changes. Coenonympha tullia had become extinct at 52% of study sites and all losses were associated with habitat degradation. Aricia artaxerxes was extinct from 50% of sites, with approximately one‐third to half of extinctions associated with climate‐related factors and the remainder with habitat loss. For Erebia aethiops (extinct from 24% of sites), approximately a quarter of the extinctions were associated with habitat and three‐quarters with climate. For Erebia epiphron, extinctions (37% of sites) were attributed mainly to climate with almost no habitat effects. For the three species affected by climate, range boundaries retracted 70–100 km northwards (A. artaxerxes, E. aethiops) and 130–150 m uphill (E. epiphron) in the sample of sites analysed. These shifts are consistent with estimated latitudinal and elevational temperature shifts of 88 km northwards and 98 m uphill over the 19‐year study period. These results suggest that the southern/warm range margins of some species are as sensitive to climate change as are northern/cool margins. Our data indicate that climate warming has been of comparable importance to habitat loss in driving local extinctions of northern species over the past few decades; future climate warming is likely to jeopardize the long‐term survival of many northern and mountain species.  相似文献   

15.
Global climate change is leading to redistribution of marine species and altering ecosystem dynamics. Given recent poleward range extension of the barrens‐forming sea urchin Centrostephanus rodgersii (Diadematidae) from mainland Australia to Tasmania, there is a need to understand the population dynamics of this ecologically important species in the Tasmanian environment. This paper informs possible population dynamics of C. rodgersii in Tasmania by examining its reproductive ecology in this new environment. Reproductive periodicity (gonad index and propensity to spawn) was assessed bimonthly over 18 months at four sites in eastern Tasmania spanning ~2° in latitude. At all sites, C. rodgersii displayed a strong seasonal cycle in gonad production with major spawning occurring in winter (~August) at minimum annual water temperature. Gametes from Tasmanian C. rodgersii were viable as determined by fertilization and early development trials. However, development to the two‐arm stage at ~3 weeks was strongly dependent on water temperature across the 8–20 °C temperature range, with poor development occurring below 12 °C. The range of temperatures tolerated by Tasmanian C. rodgersii larvae was similar to that of larvae from its native New South Wales range, indicating that this species has not undergone an adaptive shift to the cooler Tasmanian environment. There was also no evidence for an adaptive shift in reproductive phenology. Importantly, coastal water temperatures in eastern Tasmania during the peak spawning in August fluctuate about the 12 °C larval development threshold. Recent warming of the eastern Tasmanian coast and further warming predicted by global climate change will result in an environment increasingly favourable for the reproduction and development of C. rodgersii.  相似文献   

16.
Southeastern Australian waters are warming at nearly four times the global average rate (~0.7°C · century?1) driven by strengthening incursions of the warm oligotrophic East Australian Current. The growth rate hypothesis (GRH) predicts that nutrient depletion will impact more severely on seaweeds at high latitudes with compressed growth seasons. This study investigates the effects of temperature and nutrients on the ecophysiology of the habitat‐forming seaweed Phyllospora comosa in a laboratory experiment using temperature (12°C, 17°C, 22°C) and nutrient (0.5, 1.0, 3.0 μM NO3?) scenarios representative of observed variation among geographic regions. Changes in growth, photosynthetic characteristics (via chlorophyll fluorescence), pigment content, tissue chemistry (δ13C, % C, % N, C:N) and nucleic acid characteristics (absolute RNA and DNA, RNA:DNA ratios) were determined in seaweeds derived from cool, high‐latitude and warm, low‐latitude portions of the species’ range. Performance of P. comosa was unaffected by nitrate availability but was strongly temperature‐dependent, with photosynthetic efficiency, growth, and survival significantly impaired at 22°C. While some physiological processes (photosynthesis, nucleic acid, and accessory pigment synthesis) responded rapidly to temperature, others (C/N dynamics, carbon concentrating processes) were largely invariant and biogeographic variation in these characteristics may only occur through genetic adaptation. No link was detected between nutrient availability, RNA synthesis and growth, and the GRH was not supported in this species. While P. comosa at high latitudes may be less susceptible to oligotrophy than predicted by the GRH, warming water temperatures will have deleterious effects on this species across its range unless rapid adaptation is possible.  相似文献   

17.
Climate change will have substantial impacts on biodiversity, particularly for aquatic species. Warming temperatures and changing weather patterns will also remobilize and modify chemical partitioning. Holding millions of cubic yards of sediments contaminated with persistent legacy chemicals such as polychlorinated biphenyls (PCBs) and dioxins, the Laurentian Great Lakes are a laboratory for observing interactions between biological and chemical responses to climate change. They provide a wide range of habitat to a variety of species, from littoral forage fish to deep‐water predators. In this paper, we couple bioenergetic and bioaccumulation models to investigate the biological and chemical effects of climate change in the Great Lakes. We consider three species: round goby, a warm‐water invasive forage fish; mottled sculpin, a cool‐water native forage fish; and lake trout, a cold‐water native predator. Using our coupled models, we calculate the accumulation of a representative persistent chemical, PCB‐77, under four climate scenarios for Lake Erie and Lake Superior. Predator–prey (lake trout–round goby) interactions and food availability (high–low) are incorporated into our simulations. For cool‐ to cold‐water species (sculpin, lake trout) we find that warm temperatures limit growth. For warm‐water species (round goby) cold temperatures limit growth. The impact of climate warming on growth depends on the winter lows as well as the summer highs of the scenario, in combination with the species' critical upper and lower thermal limits. We find conditions for high growth and consumption rates generally lead to high bioaccumulation. However, this can be confounded by predator–prey dynamics, as mismatches in the temperature preferences of predator and prey can lead to mismatches in relative growth and uptake rates. As predator–prey dynamics are expected to undergo substantial shifts with changing climate, these relative thermal sensitivities will be key in determining the implications of climate change for bioaccumulation, particularly in top predator species.  相似文献   

18.
Populations may potentially respond to climate change in various ways including moving to new areas or alternatively staying where they are and adapting as conditions shift. Traditional laboratory and mesocosm experiments last days to weeks and thus only give a limited picture of thermal adaptation, whereas ocean warming occurring over decades allows the potential for selection of new strains better adapted to warmer conditions. Evidence for adaptation in natural systems is equivocal. We used a 50‐year time series comprising of 117 056 samples in the NE Atlantic, to quantify the abundance and distribution of two particularly important and abundant members of the ocean plankton (copepods of the genus Calanus) that play a key trophic role for fisheries. Abundance of C. finmarchicus, a cold‐water species, and C. helgolandicus, a warm‐water species, were negatively and positively related to sea surface temperature (SST) respectively. However, the abundance vs. SST relationships for neither species changed over time in a manner consistent with thermal adaptation. Accompanying the lack of evidence for thermal adaptation there has been an unabated range contraction for C. finmarchicus and range expansion for C. helgolandicus. Our evidence suggests that thermal adaptation has not mitigated the impacts of ocean warming for dramatic range changes of these key species and points to continued dramatic climate induced changes in the biology of the oceans.  相似文献   

19.
The impacts of climate change have re‐energized interest in understanding the role of climate in setting species geographic range edges. Despite the strong focus on species' distributions in ecology and evolution, defining a species range edge is theoretically and empirically difficult. The challenge of determining a range edge and its relationship to climate is in part driven by the nested nature of geography and the multidimensionality of climate, which together generate complex patterns of both climate and biotic distributions across landscapes. Because range‐limiting processes occur in both geographic and climate space, the relationship between these two spaces plays a critical role in setting range limits. With both conceptual and empirical support, we argue that three factors—climate heterogeneity, collinearity among climate variables, and spatial scale—interact to shape the spatial structure of range edges along climate gradients, and we discuss several ways that these factors influence the stability of species range edges with a changing climate. We demonstrate that geographic and climate edges are often not concordant across species ranges. Furthermore, high climate heterogeneity and low climate collinearity across landscapes increase the spectrum of possible relationships between geographic and climatic space, suggesting that geographic range edges and climatic niche limits correspond less frequently than we may expect. More empirical explorations of how the complexity of real landscapes shapes the ecological and evolutionary processes that determine species range edges will advance the development of range limit theory and its applications to biodiversity conservation in the context of changing climate.  相似文献   

20.
Growth models can be used to assess forest vulnerability to climate warming. If global warming amplifies water deficit in drought‐prone areas, tree populations located at the driest and southernmost distribution limits (rear‐edges) should be particularly threatened. Here, we address these statements by analyzing and projecting growth responses to climate of three major tree species (silver fir, Abies alba; Scots pine, Pinus sylvestris; and mountain pine, Pinus uncinata) in mountainous areas of NE Spain. This region is subjected to Mediterranean continental conditions, it encompasses wide climatic, topographic and environmental gradients, and, more importantly, it includes rear‐edges of the continuous distributions of these tree species. We used tree‐ring width data from a network of 110 forests in combination with the process‐based Vaganov–Shashkin‐Lite growth model and climate–growth analyses to forecast changes in tree growth during the 21st century. Climatic projections were based on four ensembles CO2 emission scenarios. Warm and dry conditions during the growing season constrain silver fir and Scots pine growth, particularly at the species rear‐edge. By contrast, growth of high‐elevation mountain pine forests is enhanced by climate warming. The emission scenario (RCP 8.5) corresponding to the most pronounced warming (+1.4 to 4.8 °C) forecasted mean growth reductions of ?10.7% and ?16.4% in silver fir and Scots pine, respectively, after 2050. This indicates that rising temperatures could amplify drought stress and thus constrain the growth of silver fir and Scots pine rear‐edge populations growing at xeric sites. Contrastingly, mountain pine growth is expected to increase by +12.5% due to a longer and warmer growing season. The projections of growth reduction in silver fir and Scots pine portend dieback and a contraction of their species distribution areas through potential local extinctions of the most vulnerable driest rear‐edge stands. Our modeling approach provides accessible tools to evaluate forest vulnerability to warmer conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号