首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The importation of cytosolic tRNAs is required for protein synthesis in the mitochondria of the wide variety of eukaryotes that lack a complete set of mitochondrial tRNA genes. The evolutionary history of the process, however, is still enigmatic. The analysis presented here suggests that the loss of distinct mitochondrial tRNA genes was not random and that it might be explained by the differential capabilities of mitochondrial aminoacyl-tRNA synthetases to charge imported eukaryotic-type tRNAs with amino acid.  相似文献   

2.
Most molecular trees of trypanosomatids are based on point mutations within DNA sequences. In contrast, there are very few evolutionary studies considering DNA (re) arrangement as genetic characters. Waiting for the completion of the various parasite genome projects, first information may already be obtained from chromosome size-polymorphism, using the appropriate algorithms for data processing. Three illustrative models are presented here. First, the case of Leishmania (Viannia) braziliensis/L. (V.) peruviana is described. Thanks to a fast evolution rate (due essentially to amplification/deletion of tandemly repeated genes), molecular karyotyping seems particularly appropriate for studying recent evolutionary divergence, including eco-geographical diversification. Secondly, karyotype evolution is considered at the level of whole genus Leishmania. Despite the fast chromosome evolution rate, there is qualitative congruence with MLEE- and RAPD-based evolutionary hypotheses. Significant differences may be observed between major lineages, likely corresponding to major and less frequent rearrangements (fusion/fission, translocation). Thirdly, comparison is made with Trypanosoma cruzi. Again congruence is observed with other hypotheses and major lineages are delineated by significant chromosome rearrangements. The level of karyotype polymorphism within that "species" is similar to the one observed in "genus" Leishmania. The relativity of the species concept among these two groups of parasites is discussed.  相似文献   

3.
We critically review the use of the term “life history theory” in recent publications on evolutionary psychology, focusing on how the idea of a fast-slow continuum is deployed in that literature. We raise four issues:First, concerning plasticity, should we expect the effects of plasticity on the developmental response of a trait to mirror the effects of selection on the mean of that trait? We conclude that we should not. Do only plastic responses to harsh or unpredictable environments accelerate maturation, or are there plausible alternatives, such as nutrition? In many situations better nutrition is a plausible alternative.Second, how should we conceive of the harshness of an environment? It has several important dimensions. It could mean an increase in the mean mortality rate, a decrease in the mean growth rate or fertility rate, or increases in the variances of any of those rates. Our judgement of harshness will also be affected by the distribution of such effects across patches in space and through generations in time. The combination and distribution of effects make important differences to predictions.Third, where did the fast-slow idea come from, and how much does it explain? It was initially detected in comparisons across higher taxonomic levels, whose relevance to variation among individuals is unclear and where it fails to explain much of the variation.Fourth, what sorts of processes could generate the fast-slow pattern? Here we expand on insights mentioned earlier in passing to make clear how spatial population structure and class effects generate alternative predictions.We conclude with some thoughts on the nature of theories and research strategies and on how one might respond to empirical puzzles.  相似文献   

4.
The effects of the direct interaction between hybridization and speciation—two major contrasting evolutionary processes—are poorly understood. We present here the evolutionary history of the Galápagos marine iguana (Amblyrhynchus cristatus) and reveal a case of incipient within-island speciation, which is paralleled by between-island hybridization. In-depth genome-wide analyses suggest that Amblyrhynchus diverged from its sister group, the Galápagos land iguanas, around 4.5 million years ago (Ma), but divergence among extant populations is exceedingly young (less than 50 000 years). Despite Amblyrhynchus appearing as a single long-branch species phylogenetically, we find strong population structure between islands, and one case of incipient speciation of sister lineages within the same island—ostensibly initiated by volcanic events. Hybridization between both lineages is exceedingly rare, yet frequent hybridization with migrants from nearby islands is evident. The contemporary snapshot provided by highly variable markers indicates that speciation events may have occurred throughout the evolutionary history of marine iguanas, though these events are not visible in the deeper phylogenetic trees. We hypothesize that the observed interplay of speciation and hybridization might be a mechanism by which local adaptations, generated by incipient speciation, can be absorbed into a common gene pool, thereby enhancing the evolutionary potential of the species as a whole.  相似文献   

5.
Many recent gene knockout experiments cause anatomical changes to the jaw region of mice that several investigators claim are evolutionary reversals. Here we evaluate these mutant phenotypes and the assertions of atavism. We argue that following the knockout of Hoxa-2, Dlx-2, MHox, Otx2, and RAR genes, ectopic cartilages arise as secondary consequences of disruptions in normal processes of cell specification, migration, or differentiation. These disruptions cause an excess of mesenchyme to accumulate in a region through which skeletal progenitor cells usually migrate, and at a site of condensation that is normally present in mammals but that is too small to chondrify. We find little evidence that these genes, when disrupted, cause a reversion to any primitive condition and although changes in their expression may have played a role in the evolution of the mammalian jaw, their function during morphogenesis is not sufficiently understood to confirm such hypotheses. BioEssays 20 :245–255, 1998.© 1998 John Wiley & Sons, Inc.  相似文献   

6.
Molecular systematics: Perfect SINEs of evolutionary history?   总被引:3,自引:0,他引:3  
Short interspersed repetitive elements - SINEs - are being championed as near-perfect phylogenetic characters; they have recently been used with notable success to resolve some phylogenetic conundrums, but they do have certain limitations that restrict their use as 'perfect' characters for molecular systematics.  相似文献   

7.
Lateral gene transfer (LGT) is the transmission of genes, sometimes across species barriers, outwith the classic vertical inheritance from parent to offspring. LGT is recognized as an important phenomenon that has shaped the genomes and biology of prokaryotes. Whether LGT in eukaryotes is important and widespread remains controversial. A study in BMC Biology concludes that LGT in eukaryotes is neither continuous nor prevalent and suggests a rule of thumb for judging when apparent LGT may reflect contamination.See research article: http://bmcbiol.biomedcentral.com/articles/10.1186/s12915-016-0315-9.  相似文献   

8.
Phylogenetic diversity (PD) is an emerging tool for prioritising species in biodiversity conservation problems. PD uses the evolutionary history of a group of species to provide a formal measure of their biodiversity. This provides an objective target for biodiversity conservation, in which decisions are frequently made for political reasons or according to the charisma of a species. Incorporating PD in biodiversity decisions ensures that the best outcome given current knowledge is achieved. Unfortunately, the phylogenetic information required to calculate PD is frequently unknown or costly to obtain. Using PD in a decision making framework also complicates the process substantially, thereby decreasing its transparency and potentially disillusioning stakeholders. Here we provide a broad assessment of the value of PD in biodiversity conservation approaches. We find that using PD in a prioritisation process can typically increase biodiversity outcomes by a broad range of 10–220 %. Higher gains are obtained where (i) few species are selected, (ii) the phylogeny includes speciation events on a broad range of time scales and/or (iii) closely related species are prioritised in the absence of PD (e.g. several closely related charismatic animals). Our results indicate situations where PD is likely to contribute substantially to biodiversity conservation decisions and provides guidance to organisations when deciding whether to incorporating phylogenetic information in their decision making. This assessment is crucial as inclusion of PD may be costly and reduces transparency of the decision process, however the potential gains may far outweigh this cost.  相似文献   

9.
We studied the occurrence of O-type P elements in at least one species of each subgroup of the saltans group, in order to better understand the phylogenetic relationships among the elements within the saltans group and with those of species belonging to the willistoni group. We found that the O-type subfamily has a patchy distribution within the saltans group (it does not occur in D. neocordata and D. emarginata), low sequence divergence among species of the saltans group as well as in relation to species of the willistoni group, a lower rate of synonymous substitution for coding sequences compared to Adh, and phylogenetic incongruities. These findings suggest that the evolutionary history of the O-type subfamily within the saltans and willistoni groups follows the same model proposed for the canonical subfamily of P elements, i.e., events of horizontal transfer between species of the saltans and willistoni groups.  相似文献   

10.
Using evolutionary theory to predict the dynamics of populations is one of the aims of evolutionary conservation. In endangered species, with geographic range extending over continuous areas, the predictive capacity of evolutionary‐based conservation measures greatly depends on the accurate identification of reproductive units. The endangered European eel (Anguilla anguilla) is a highly migratory fish species with declining population due to a steep recruitment collapse in the beginning of the 1980s. Despite punctual observations of genetic structure, the population is viewed as a single panmictic reproductive unit. To understand the possible origin of the detected structure in this species, we used a combination of mitochondrial and nuclear loci to indirectly evaluate the possible existence of cryptic demes. For that, 403 glass eels from three successive cohorts arriving at a single location were screened for phenotypic and genetic diversity, while controlling for possible geographic variation. Over the 3 years of sampling, we consistently identified three major matrilines which we hypothesized to represent demes. Interestingly, not only we found that population genetic models support the existence of those matriline‐driven demes over a completely panmictic mode of reproduction, but also we found evidence for asymmetric gene flow amongst those demes. We uphold the suggestion that the detection of demes related to those matrilines reflect a fragmented spawning ground, a conceptually plausible consequence of the low abundance that the European eel has been experiencing for three decades. Furthermore, we suggest that this cryptic organization may contribute to the maintenance of the adaptive potential of the species.  相似文献   

11.
The Earth's evolutionary history is threatened by species loss in the current sixth mass extinction event in Earth's history. Such extinction events not only eliminate species but also their unique evolutionary histories. Here we review the expected loss of Earth's evolutionary history quantified by phylogenetic diversity (PD) and evolutionary distinctiveness (ED) at risk. Due to the general paucity of data, global evolutionary history losses have been predicted for only a few groups, such as mammals, birds, amphibians, plants, corals and fishes. Among these groups, there is now empirical support that extinction threats are clustered on the phylogeny; however this is not always a sufficient condition to cause higher loss of phylogenetic diversity in comparison to a scenario of random extinctions. Extinctions of the most evolutionarily distinct species and the shape of phylogenetic trees are additional factors that can elevate losses of evolutionary history. Consequently, impacts of species extinctions differ among groups and regions, and even if global losses are low within large groups, losses can be high among subgroups or within some regions. Further, we show that PD and ED are poorly protected by current conservation practices. While evolutionary history can be indirectly protected by current conservation schemes, optimizing its preservation requires integrating phylogenetic indices with those that capture rarity and extinction risk. Measures based on PD and ED could bring solutions to conservation issues, however they are still rarely used in practice, probably because the reasons to protect evolutionary history are not clear for practitioners or due to a lack of data. However, important advances have been made in the availability of phylogenetic trees and methods for their construction, as well as assessments of extinction risk. Some challenges remain, and looking forward, research should prioritize the assessment of expected PD and ED loss for more taxonomic groups and test the assumption that preserving ED and PD also protects rare species and ecosystem services. Such research will be useful to inform and guide the conservation of Earth's biodiversity and the services it provides.  相似文献   

12.
13.
Interviews are an excellent source of information for historians of science. They should be done by historians who understand science in detail and, if possible, better than the scientists they interview. In the case of applied industrial or governmental sciences, historians must have detailed knowledge of economic or historic sources. Again they should know more in these areas than those they interview. If, on the contrary, the interviewers are not scientists at heart who know science, the history they write will become at best literature but at worst pseudoscientific abracadabra.  相似文献   

14.
Homoplasy and homology: dichotomy or continuum?   总被引:4,自引:0,他引:4  
Homology is the presence of the same feature in two organisms whose most recent common ancestor also possessed the feature. I discuss the bases on which we can tell that two features being compared share sufficient elements of sameness to allow them to be treated as homologous and therefore to be legitimately compared with one another in a way that informs comparative, evolutionary, and phylogenetic analysis. To do so, I discuss the relationship(s) between homology and homoplasy to conclude that we are dealing neither with a dichotomy between homoplasy as parallelism/convergence and homology as common descent nor with a dichotomy of homoplasy as the interrupted presence of the character in a lineage and homology as the continuous presence of the character. Rather, we are dealing with common descent with varying degrees of modification. Homoplasy and homology are not dichotomies but the extremes of a continuum, reflecting deep or more recent shared ancestry based on shared cellular mechanisms and processes and shared genes and gene pathways and networks. The same genes can be used to initiate the development of homoplastic and homologous structures. Consequently, structures may be lost but their developmental bases retained, providing the potential for homoplasy. It should not be surprising that similar features persist when a feature is present in the nearest common ancestor (homology). Neither should it be surprising to find that different environments or selective pressures can trigger the reappearance of similar features in organisms that do not share a recent common ancestor (homoplasy).  相似文献   

15.
16.
The nectarivory of sunbirds in the Old World and hummingbirds in the New World evolved independently. While both groups are specialised in their feeding apparatuses, hummingbirds are moreover famous for their adaptations to sustained hovering flight. Recently, an example of a pollination system of the invasive plant Nicotiana glauca has been used to show that less adapted sunbirds also are frequently able to hover. Nevertheless, the question has remained why plants adapted to bird hovering pollination do not occur outside the New World. In this paper we show that the long‐peduncle Cameroonian Impatiens sakeriana is not capable of autonomous selfing and can be pollinated only by two often hovering sunbirds, the Cameroon sunbird Cyanomitra oritis and the northern double‐collared sunbird Cinnyris reichenowi. Our study revealed that this plant is highly specialised for pollination by C. oritis. Cinnyris reichenowi hovers less frequently and often thieves nectar by piercing the flower spur when perching. This study shows that pollination systems occurring in the Old World follow similar evolutionary trends as systems including hovering hummingbirds in the New World.  相似文献   

17.
The glycosyltransferases may be the evolutionary precursors of the immunoglobulins, although critical evidence for this hypothesis is not yet available. The transferases add sugars to non-glycosylated proteins, lipids, and organic molecules, as well as to oligosaccharides, glycoproteins, and glycolipids. The enzymes are specific, extremely polymorphic, occasionally inducible, and may be structurally related to one another. Circumstantial evidence links the transferases to both the MHC and T/t loci in the mouse. Finally, antibodies against purified transferases are difficult to produce and sometimes they react with immunoglobulins. The present hypothesis predicts that transferases should show some sequence homology with immunoglobulins, and that some MHC proteins will be glycosyltransferases.  相似文献   

18.
Recent evidence suggests that yeast genes encoding proteins that are present in the same protein complex tend to be linked and to be co-expressed. More generally, we found that genes that are close to each other in the protein interaction network tend to be linked more often than expected and are often co-expressed. Unexpectedly, we found that linked genes in network proximity have unusually high recombination rates. Because high recombination rates are associated with high rates of genome re-organization, our findings might explain why the clustering of genes in proximity in the network is such a weak effect: there could be a co-evolutionary cycle of physical linkage for co-expression, upwards modification of the recombination rate and concomitant break-up of a cluster. Under such a model an "optimal" gene order is never stable.  相似文献   

19.
Because patchiness of food sources or nesting opportunities frequently limits gene flow, specialists often exhibit distinct population structures in fragmented habitats. We studied the influence of habitat fragmentation on population structure in the solitary bee Andrena vaga, an early spring species that nests exclusively in sandy soil and feeds strictly on willows (Salix spp.). Because the homogenous habitat of the German floodplains, where the species was studied previously, resulted in the species’ weak population structure, we expected more structured populations in central Europe, where the sandy soils essential for nesting are highly fragmented. We analysed 387 females from 21 localities in the Czech Republic and Slovakia using nine microsatellite loci, and we inferred population structure using landscape genetics and Bayesian clustering methods. Contrary to our expectations, habitat fragmentation did not result in increased genetic isolation at the localities; however, two differentiated groups of localities, separated by a wide clinal zone of admixture, were detected within the study area. The observed pattern suggests that dispersive ability of A. vaga compensates the species dependence on unstable fragmented habitats. We propose that the population structure may mirror a secondary contact formed by the expansion of two populations that had been separated in the past. We emphasise the necessity of knowing the studied species’ population history before making conclusions concerning correlations between habitat and population structure, especially in areas of known suture zones created by the secondary contact of populations expanding from separate refugia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号