首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arctic amplification, the accelerated climate warming in the polar regions, is causing a more rapid advancement of the onset of spring in the Arctic than in temperate regions. Consequently, the arrival of many migratory birds in the Arctic is thought to become increasingly mismatched with the onset of local spring, consequently reducing individual fitness and potentially even population levels. We used a dynamic state variable model to study whether Arctic long‐distance migrants can advance their migratory schedules under climate warming scenarios which include Arctic amplification, and whether such an advancement is constrained by fuel accumulation or the ability to anticipate climatic changes. Our model predicts that barnacle geese Branta leucopsis suffer from considerably reduced reproductive success with increasing Arctic amplification through mistimed arrival, when they cannot anticipate a more rapid progress of Arctic spring from their wintering grounds. When geese are able to anticipate a more rapid progress of Arctic spring, they are predicted to advance their spring arrival under Arctic amplification up to 44 days without any reproductive costs in terms of optimal condition or timing of breeding. Negative effects of mistimed arrival on reproduction are predicted to be somewhat mitigated by increasing summer length under warming in the Arctic, as late arriving geese can still breed successfully. We conclude that adaptation to Arctic amplification may rather be constrained by the (un)predictability of changes in the Arctic spring than by the time available for fuel accumulation. Social migrants like geese tend to have a high behavioural plasticity regarding stopover site choice and migration schedule, giving them the potential to adapt to future climate changes on their flyway.  相似文献   

2.
Measuring the food left in experimental trays when study organisms cease feeding on them [so‐called giving‐up densities (GUDs)] is an accepted technique for assessing predation risk and disturbance. However, in natural settings, accessibility and energetic harvest costs may vary spatially, and GUDs may be confounded. In this study, we assessed whether at a heterogeneous site, non‐experimental GUDs could reveal the effect of disturbance. We measured initial and GUDs of tubers of Fennel Pondweed Potamogeton pectinatus, which form here the exclusive food source of Bewick's Swans Cygnus columbianus bewickii during their migratory stopover. We calculated giving‐up net energy intake rates (GUNs) by correcting for biomass accessibility and foraging costs. The study area was a shallow lake consisting of nine creeks, three of which were open to the public (i.e. disturbed). GUDs in creeks open or closed to the public were not significantly different. In contrast, GUNs were generally higher in creeks open to the public, after correcting for initial net energy intake rate. The results suggest that natural GUDs may not reflect the effects of disturbance in heterogeneous habitats. When environmental differences are large within a site, GUNs may be a useful alternative as a behavioural indicator.  相似文献   

3.
Shifts in the timing of life history events have become an important source of information about how organisms are responding to climate change. Phenological data have generally been treated as purely temporal, with scant attention to the inherent spatial aspects of such data. However, phenological data are tied to a specific location, and considerations of sampling design, both over space and through time, can critically affect the patterns that emerge. Focusing on flowering phenology, we describe how purely spatial shifts, such as adding new study plots, or the colonization of a study plot by a new species, can masquerade as temporal shifts. Such shifts can look like responses to climate change but are not. Furthermore, the same aggregate phenological curves can be composed of individuals with either very different or very similar phenologies. We conclude with a set of recommendations to avoid ambiguities arising from the spatiotemporal duality of phenological data.  相似文献   

4.
Global climate change (GCC) may be causing distribution range shifts in many organisms worldwide. Multiple efforts are currently focused on the development of models to better predict distribution range shifts due to GCC. We addressed this issue by including intraspecific genetic structure and spatial autocorrelation (SAC) of data in distribution range models. Both factors reflect the joint effect of ecoevolutionary processes on the geographical heterogeneity of populations. We used a collection of 301 georeferenced accessions of the annual plant Arabidopsis thaliana in its Iberian Peninsula range, where the species shows strong geographical genetic structure. We developed spatial and nonspatial hierarchical Bayesian models (HBMs) to depict current and future distribution ranges for the four genetic clusters detected. We also compared the performance of HBMs with Maxent (a presence‐only model). Maxent and nonspatial HBMs presented some shortcomings, such as the loss of accessions with high genetic admixture in the case of Maxent and the presence of residual SAC for both. As spatial HBMs removed residual SAC, these models showed higher accuracy than nonspatial HBMs and handled the spatial effect on model outcomes. The ease of modelling and the consistency among model outputs for each genetic cluster was conditioned by the sparseness of the populations across the distribution range. Our HBMs enrich the toolbox of software available to evaluate GCC‐induced distribution range shifts by considering both genetic heterogeneity and SAC, two inherent properties of any organism that should not be overlooked.  相似文献   

5.
Global climate warming is predicted to hasten the onset of spring breeding by anuran amphibians in seasonal environments. Previous data had indicated that the breeding phenology of a population of Fowler's Toads (Anaxyrus fowleri) at their northern range limit had been progressively later in spring, contrary to generally observed trends in other species. Although these animals are known to respond to environmental temperature and the lunar cycle to commence breeding, the timing of breeding should also be influenced by the onset of overwintering animals’ prior upward movement through the soil column from beneath the frost line as winter becomes spring. I used recorded weather data to identify four factors of temperature, rainfall and snowfall in late winter and early spring that correlated with the toads’ eventual date of emergence aboveground. Estimated dates of spring emergence of the toads calculated using a predictive model based on these factors, as well as the illumination of the moon, were highly correlated with observed dates of emergence over 24 consecutive years. Using the model to estimate of past dates of spring breeding (i.e. retrodiction) indicated that even three decades of data were insufficient to discern any appreciable phenological trend in these toads. However, by employing weather data dating back to 1876, I detected a significant trend over 140 years towards earlier spring emergence by the toads by less than half a day/decade, while, over the same period of time, average annual air temperature and annual precipitation had both increased. Changes in the springtime breeding phenology for late‐breeding species, such as Fowler's Toads, therefore may conform to expectations of earlier breeding under global warming. Improved understanding of the environmental cues that bring organisms out of winter dormancy will enable better interpretation of long‐term phenological trends.  相似文献   

6.
Migratory behaviour is controlled by endogenous circannual rhythms that are synchronized by external cues, such as photoperiod. Investigations on the genetic basis of circannual rhythmicity in vertebrates have highlighted that variation at candidate ‘circadian clock’ genes may play a major role in regulating photoperiodic responses and timing of life cycle events, such as reproduction and migration. In this comparative study of 23 trans‐Saharan migratory bird species, we investigated the relationships between species‐level genetic variation at two candidate genes, Clock and Adcyap1, and species’ traits related to migration and geographic distribution, including timing of spring migration across the Mediterranean Sea, migration distance and breeding latitude. Consistently with previous evidence showing latitudinal clines in ‘circadian clock’ genotype frequencies, Clock allele size increased with breeding latitude across species. However, early‐ and late‐migrating species had similar Clock allele size. Species migrating over longer distances, showing delayed spring migration and smaller phenotypic variance in spring migration timing, had significantly reduced Clock (but not Adcyap1) gene diversity. Phylogenetic confirmatory path analysis suggested that migration date and distance were the most important variables directly affecting Clock gene diversity. Hence, our study supports the hypothesis that Clock allele size increases poleward as a consequence of adaptation to the photoperiodic regime of the breeding areas. Moreover, we show that long‐distance migration is associated with lower Clock diversity, coherently with strong stabilizing selection acting on timing of life cycle events in long‐distance migratory species, likely resulting from the time constraints imposed by late spring migration.  相似文献   

7.
Trans‐generational immune priming (TGIP) describes the transfer of immune stimulation to the next generation. As stress and immunity are closely connected, we here address the question whether trans‐generational effects on immunity and resistance can also be elicited by a nonpathogen stress treatment of parents. General stressors have been shown to induce immunity to pathogens within individuals. However, to our knowledge, it is as of yet unknown whether stress can also induce trans‐generational effects on immunity and resistance. We exposed a parental generation (mothers, fathers, or both parents) of the red flour beetle Tribolium castaneum, a species where TGIP has been previously been demonstrated, to either a brief heat or cold shock and examined offspring survival after bacterial infection with the entomopathogen Bacillus thuringiensis. We also studied phenoloxidase activity, a key enzyme of the insect innate immune system that has previously been demonstrated to be up‐regulated upon TGIP. We quantified parental fecundity and offspring developmental time to evaluate whether trans‐generational priming might have costs. Offspring resistance was found to be significantly increased when both parents received a cold shock. Offspring phenoloxidase activity was also higher when mothers or both parents were cold‐shocked. By contrast, parental heat shock reduced offspring phenoloxidase activity. Moreover, parental cold or heat shock delayed offspring development. In sum, we conclude that trans‐generational priming for resistance could not only be elicited by pathogens or pathogen‐derived components, but also by more general cues that are indicative of a stressful environment. The interaction between stress responses and the immune system might play an important role also for trans‐generational effects.  相似文献   

8.
Climate change likely will lead to increasingly favourable environmental conditions for many parasites. However, predictions regarding parasitism's impacts often fail to account for the likely variability in host distribution and how this may alter parasite occurrence. Here, we investigate potential distributional shifts in the meningeal worm, Parelaphostrongylosis tenuis, a protostrongylid nematode commonly found in white‐tailed deer in North America, whose life cycle also involves a free‐living stage and a gastropod intermediate host. We modelled the distribution of the hosts and free‐living larva as a complete assemblage to assess whether a complex trophic system will lead to an overall increase in parasite distribution with climate change, or whether divergent environmental niches may promote an ecological mismatch. Using an ensemble approach to climate modelling under two different carbon emission scenarios, we show that whereas the overall trend is for an increase in niche breadth for each species, mismatches arise in habitat suitability of the free‐living larva vs. the definitive and intermediate hosts. By incorporating these projected mismatches into a combined model, we project a shift in parasite distribution accounting for all steps in the transmission cycle, and identify that overall habitat suitability of the parasite will decline in the Great Plains and southeastern USA, but will increase in the Boreal Forest ecoregion, particularly in Alberta. These results have important implications for wildlife conservation and management due to the known pathogenicity of parelaphostrongylosis to alternate hosts including moose, caribou and elk. Our results suggest that disease risk forecasts which fail to consider biotic interactions may be overly simplistic, and that accounting for each of the parasite's life stages is key to refining predicted responses to climate change.  相似文献   

9.
Climate change may impact the distribution of species by shifting their ranges to higher elevations or higher latitudes. The impacts on alpine plant species may be particularly profound due to a potential lack of availability of future suitable habitat. To identify how alpine species have responded to climate change during the past century as well as to predict how they may react to possible global climate change scenarios in the future, we investigate the climatic responses of seven species of Meconopsis, a representative genus endemic in the alpine meadow and subnival region of the Himalaya–Hengduan Mountains. We analyzed past elevational shifts, as well as projected shifts in longitude, latitude, elevation, and range size using historical specimen records and species distribution modeling under optimistic (RCP 4.5) and pessimistic (RCP 8.5) scenarios across three general circulation models for 2070. Our results indicate that across all seven species, there has been an upward shift in mean elevation of 302.3 m between the pre‐1970s (1922–1969) and the post‐1970s (1970–2016). The model predictions suggest that the future suitable climate space will continue to shift upwards in elevation (as well as northwards and westwards) by 2070. While for most of the analyzed species, the area of suitable climate space is predicted to expand under the optimistic emission scenario, the area contracts, or, at best, shows little change under the pessimistic scenario. Species such as M. punicea, which already occupy high latitudes, are consistently predicted to experience a contraction of suitable climate space across all the models by 2070 and may consequently deserve particular attention by conservation strategies. Collectively, our results suggest that the alpine high‐latitude species analyzed here have already been significantly impacted by climate change and that these trends may continue over the coming decades.  相似文献   

10.
11.
Diets reflect important ecological interactions, but are challenging to quantify for foliage‐gleaning birds. We used regurgitated stomach samples from five primarily insectivorous species of long‐distance migrant warblers (Parulidae) wintering in two moderate‐elevation shade coffee farms in Jamaica to assess both foraging opportunism and prey resource partitioning. Our results, based primarily on 6120 prey items in 80 stomach samples collected during a one‐week period in March 2000, confirm opportunism. The diets of all five warblers, including American Redstarts (Setophaga ruticilla), Black‐and‐White Warblers (Mniotilta varia), Black‐throated Blue Warblers (S. caerulescens), Northern Parulas (S. americana), and Prairie Warblers (S. discolor), overlapped strongly based on consumption of the same prey types, even many of the same prey species (4 of 10 interspecific overlaps >0.9, range = 0.74–0.97). Moreover, all five species fed on similarly small, often patchily distributed prey, including coffee berry borers (Hypothenemus hampei; Coleoptera, Curculionidae). Nonetheless, permutational multivariate analysis of variance also revealed that the diets of these species differed significantly, primarily with respect to prey mobility (winged vs. sessile); American Redstarts fed on the most mobile prey, and Northern Parulas on the least mobile prey and a relatively restricted set of prey taxa compared to the other four species of warblers. Overall, our results suggest both dietary opportunism consistent with a migratory life‐history, and interspecific resource partitioning consistent with differences in morphology and foraging behavior during a food‐limited season. Having provided evidence of the three necessary conditions, namely intraspecific competition, resource limitation, and interspecific overlap in resource use, the results of our study, in combination with those of other studies, also provide evidence of interspecific competition among wintering migrant insectivores. We thus argue that diffuse interspecific exploitative food competition may be more important than previously recognized.  相似文献   

12.
13.
Nongenetic inheritance mechanisms such as transgenerational plasticity (TGP) can buffer populations against rapid environmental change such as ocean warming. Yet, little is known about how long these effects persist and whether they are cumulative over generations. Here, we tested for adaptive TGP in response to simulated ocean warming across parental and grandparental generations of marine sticklebacks. Grandparents were acclimated for two months during reproductive conditioning, whereas parents experienced developmental acclimation, allowing us to compare the fitness consequences of short‐term vs. prolonged exposure to elevated temperature across multiple generations. We found that reproductive output of F1 adults was primarily determined by maternal developmental temperature, but carry‐over effects from grandparental acclimation environments resulted in cumulative negative effects of elevated temperature on hatching success. In very early stages of growth, F2 offspring reached larger sizes in their respective paternal and grandparental environment down the paternal line, suggesting that other factors than just the paternal genome may be transferred between generations. In later growth stages, maternal and maternal granddam environments strongly influenced offspring body size, but in opposing directions, indicating that the mechanism(s) underlying the transfer of environmental information may have differed between acute and developmental acclimation experienced by the two generations. Taken together, our results suggest that the fitness consequences of parental and grandparental TGP are highly context dependent, but will play an important role in mediating some of the impacts of rapid climate change in this system.  相似文献   

14.
Calling behaviour is strongly temperature‐dependent and critical for sexual selection and reproduction in a variety of ectothermic taxa, including anuran amphibians, which are the most globally threatened vertebrates. However, few studies have explored how species respond to distinct thermal environments at time of displaying calling behaviour, and thus it is still unknown whether ongoing climate change might compromise the performance of calling activity in ectotherms. Here, we used new audio‐trapping techniques (automated sound recording and detection systems) between 2006 and 2009 to examine annual calling temperatures of five temperate anurans and their patterns of geographical and seasonal variation at the thermal extremes of species ranges, providing insights into the thermal breadths of calling activity of species, and the mechanisms that enable ectotherms to adjust to changing thermal environments. All species showed wide thermal breadths during calling behaviour (above 15 °C) and increases in calling temperatures in extremely warm populations and seasons. Thereby, calling temperatures differed both geographically and seasonally, both in terrestrial and aquatic species, and were 8–22 °C below the specific upper critical thermal limits (CTmax) and strongly associated with the potential temperatures of each thermal environment (operative temperatures during the potential period of breeding). This suggests that calling behaviour in ectotherms may take place at population‐specific thermal ranges, diverging when species are subjected to distinct thermal environments, and might imply plasticity of thermal adjustment mechanisms (seasonal and developmental acclimation) that supply species with means of coping with climate change. Furthermore, the thermal thresholds of calling at the onset of the breeding season were dissimilar between conspecific populations, suggesting that other factors besides temperature are needed to trigger the onset of reproduction. Our findings imply that global warming would not directly inhibit calling behaviour in the study species, although might affect other temperature‐dependent features of their acoustic communication system.  相似文献   

15.
Nongenetic parental effects may affect offspring phenotype, and in species with multiple generations per year, these effects may cause life‐history traits to vary over the season. We investigated the effects of parental, offspring developmental and offspring adult temperatures on a suite of life‐history traits in the globally invasive agricultural pest Grapholita molesta. A low parental temperature resulted in female offspring that developed faster at low developmental temperature compared with females whose parents were reared at high temperature. Furthermore, females whose parents were reared at low temperature were heavier and more fecund and had better flight abilities than females whose parents were reared at high temperature. In addition to these cross‐generational effects, females developed at low temperature had similar flight abilities at low and high ambient temperatures, whereas females developed at high temperature had poorer flight abilities at low than at high ambient temperature. Our findings demonstrate a pronounced benefit of low parental temperature on offspring performance, as well as between‐ and within‐generation effects of acclimation to low temperature. In cooler environments, the offspring generation is expected to develop more rapidly than the parental generation and to comprise more fecund and more dispersive females. By producing phenotypes that are adaptive to the conditions inducing them as well as heritable, cross‐generational plasticity can influence the evolutionary trajectory of populations. The potential for short‐term acclimation to low temperature may allow expanding insect populations to better cope with novel environments and may help to explain the spread and establishment of invasive species.  相似文献   

16.
Both traits and the plasticity of these traits are subject to evolutionary change and therefore affect the long‐term persistence of populations and their role in local communities. We subjected clones from 12 different populations of Alnus glutinosa, located along a latitudinal gradient, to two different temperature treatments, to disentangle the distribution of genetic variation in timing of bud burst and bud burst plasticity within and among genotypes, populations, and regions. We calculated heritability and evolvability estimates for bud burst and bud burst plasticity and assessed the influence of divergent selection relative to neutral drift. We observed higher levels of heritability and evolvability for bud burst than for its plasticity, whereas the total phenological heritability and evolvability (i.e. combining timing of bud burst and bud burst plasticity) suggest substantial evolutionary potential with respect to phenology. Earlier bud burst was observed for the low‐latitudinal populations than for the populations from higher latitudes, whereas the high‐latitudinal populations did not show the expected delayed bud burst. This countergradient variation can be due to evolution towards increased phenological plasticity at higher latitudes. However, because we found little evidence for adaptive differences in phenological plasticity across the latitudinal gradient, we suggest differential frost tolerance as the most likely explanation for the observed phenological patterns in A. glutinosa.  相似文献   

17.
18.
Temperature effects on predator–prey interactions are fundamental to better understand the effects of global warming. Previous studies never considered local adaptation of both predators and prey at different latitudes, and ignored the novel population combinations of the same predator–prey species system that may arise because of northward dispersal. We set up a common garden warming experiment to study predator–prey interactions between Ischnura elegans damselfly predators and Daphnia magna zooplankton prey from three source latitudes spanning >1500 km. Damselfly foraging rates showed thermal plasticity and strong latitudinal differences consistent with adaptation to local time constraints. Relative survival was higher at 24 °C than at 20 °C in southern Daphnia and higher at 20 °C than at 24 °C, in northern Daphnia indicating local thermal adaptation of the Daphnia prey. Yet, this thermal advantage disappeared when they were confronted with the damselfly predators of the same latitude, reflecting also a signal of local thermal adaptation in the damselfly predators. Our results further suggest the invasion success of northward moving predators as well as prey to be latitude‐specific. We advocate the novel common garden experimental approach using predators and prey obtained from natural temperature gradients spanning the predicted temperature increase in the northern populations as a powerful approach to gain mechanistic insights into how community modules will be affected by global warming. It can be used as a space‐for‐time substitution to inform how predator–prey interaction may gradually evolve to long‐term warming.  相似文献   

19.
Changes in body size and breeding phenology have been identified as two major ecological consequences of climate change, yet it remains unclear whether climate acts directly or indirectly on these variables. To better understand the relationship between climate and ecological changes, it is necessary to determine environmental predictors of both size and phenology using data from prior to the onset of rapid climate warming, and then to examine spatially explicit changes in climate, size, and phenology, not just general spatial and temporal trends. We used 100 years of natural history collection data for the wood frog, Lithobates sylvaticus with a range >9 million km2, and spatially explicit environmental data to determine the best predictors of size and phenology prior to rapid climate warming (1901–1960). We then tested how closely size and phenology changes predicted by those environmental variables reflected actual changes from 1961 to 2000. Size, phenology, and climate all changed as expected (smaller, earlier, and warmer, respectively) at broad spatial scales across the entire study range. However, while spatially explicit changes in climate variables accurately predicted changes in phenology, they did not accurately predict size changes during recent climate change (1961–2000), contrary to expectations from numerous recent studies. Our results suggest that changes in climate are directly linked to observed phenological shifts. However, the mechanisms driving observed body size changes are yet to be determined, given the less straightforward relationship between size and climate factors examined in this study. We recommend that caution be used in “space‐for‐time” studies where measures of a species’ traits at lower latitudes or elevations are considered representative of those under future projected climate conditions. Future studies should aim to determine mechanisms driving trends in phenology and body size, as well as the impact of climate on population density, which may influence body size.  相似文献   

20.
The North-Atlantic has warmed faster than all other ocean basins and climate change scenarios predict sea surface temperature isotherms to shift up to 600 km northwards by the end of the 21st century. The pole-ward shift has already begun for many temperate seaweed species that are important intertidal foundation species. We asked the question: Where will climate change have the greatest impact on three foundational, macroalgal species that occur along North-Atlantic shores: Fucus serratus, Fucus vesiculosus, and Ascophyllum nodosum? To predict distributional changes of these key species under three IPCC (Intergovernmental Panel on Climate Change) climate change scenarios (A2, A1B, and B1) over the coming two centuries, we generated Ecological Niche Models with the program MAXENT. Model predictions suggest that these three species will shift northwards as an assemblage or “unit” and that phytogeographic changes will be most pronounced in the southern Arctic and the southern temperate provinces. Our models predict that Arctic shores in Canada, Greenland, and Spitsbergen will become suitable for all three species by 2100. Shores south of 45° North will become unsuitable for at least two of the three focal species on both the Northwest- and Northeast-Atlantic coasts by 2200. If these foundational species are unable to adapt to the rising temperatures, they will lose their centers of genetic diversity and their loss will trigger an unpredictable shift in the North-Atlantic intertidal ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号