首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Over the past 3 decades, North Sea Atlantic cod (Gadus morhua) have exhibited variable length‐at‐age along with declines in spawning stock biomass and timing of maturity. Multiple factors affecting growth and development in fish acted on this economically important stock over the same period including warming waters and an intensive fishery. Here, we employ North Sea cod as a model population, exploring how a physiologically relevant temperature metric (the growing degree‐day, GDD; °C day) can be used to compare year‐classes on a physiologically relevant time‐scale, disentangling influences of climate (thermal history) on observed length‐at‐age trends. We conclude that the trends in North Sea cod length‐at‐age observed during the last three decades can be explained by a combination of temperature‐dependent growth increases and a trend toward earlier maturation, the latter likely induced by the intensive fishing pressure, and possibly evidence of fisheries‐induced evolution.  相似文献   

2.
During spring migration, herbivorous waterfowl breeding in the Arctic depend on peaks in the supply of nitrogen‐rich forage plants, following a “green wave” of grass growth along their flyway to fuel migration and reproduction. The effects of climate warming on forage plant growth are expected to be larger at the Arctic breeding grounds than in temperate wintering grounds, potentially disrupting this green wave and causing waterfowl to mistime their arrival on the breeding grounds. We studied the potential effect of climate warming on timing of food peaks along the migratory flyway of the Russian population of barnacle geese using a warming experiment with open‐top chambers. We measured the effect of 1.0–1.7°C experimental warming on forage plant biomass and nitrogen concentration at three sites along the migratory flyway (temperate wintering site, temperate spring stopover site, and Arctic breeding site) during 2 months for two consecutive years. We found that experimental warming increased biomass accumulation and sped up the decline in nitrogen concentration of forage plants at the Arctic breeding site but not at temperate wintering and stop‐over sites. Increasing spring temperatures in the Arctic will thus shorten the food peak of nitrogen‐rich forage at the breeding grounds. Our results further suggest an advance of the local food peak in the Arctic under 1–2°C climate warming, which will likely cause migrating geese to mistime their arrival at the breeding grounds, particularly considering the Arctic warms faster than the temperate regions. The combination of a shorter food peak and mistimed arrival is likely to decrease goose reproductive success under climate warming by reducing growth and survival of goslings after hatching.  相似文献   

3.
Climate change impacts are not uniform across the Arctic region because interacting factors causes large variations in local ecosystem change. Extreme climatic events and population cycles of herbivores occur simultaneously against a background of gradual climate warming trends and can redirect ecosystem change along routes that are difficult to predict. Here, we present the results from sub‐Arctic heath vegetation and its belowground micro‐arthropod community in response to the two main drivers of vegetation damage in this region: extreme winter warming events and subsequent outbreaks of the defoliating autumnal moth caterpillar (Epirrita autumnata). Evergreen dwarf shrub biomass decreased (30%) following extreme winter warming events and again by moth caterpillar grazing. Deciduous shrubs that were previously exposed to an extreme winter warming event were not affected by the moth caterpillar grazing, while those that were not exposed to warming events (control plots) showed reduced (23%) biomass from grazing. Cryptogam cover increased irrespective of grazing or winter warming events. Micro‐arthropods declined (46%) following winter warming but did not respond to changes in plant community. Extreme winter warming and caterpillar grazing suppressed the CO2 fluxes of the ecosystem. Evergreen dwarf shrubs are disadvantaged in a future sub‐Arctic with more stochastic climatic and biotic events. Given that summer warming may further benefit deciduous over evergreen shrubs, event and trend climate change may both act against evergreen shrubs and the ecosystem functions they provide. This is of particular concern given that Arctic heath vegetation is typically dominated by evergreen shrubs. Other components of the vegetation showed variable responses to abiotic and biotic events, and their interaction indicates that sub‐Arctic vegetation response to multiple pressures is not easy to predict from single‐factor responses. Therefore, while biotic and climatic events may have clear impacts, more work is needed to understand their net effect on Arctic ecosystems.  相似文献   

4.
Multiterm dynamics of biomass, fishing mortality level, average weight of fish of various ages, and the rate of sexual maturation of cod Gadus morhua morhua of the northeastern Arctic population was considered. Hypotheses that explain a regular increase in the rate of cod growth and maturation were discussed. It was concluded that population density affects the rate of growth and the rate of sexual maturation of individuals.  相似文献   

5.
Changes in climate, in combination with intensive exploitation of marine resources, have caused large‐scale reorganizations in many of the world's marine ecosystems during the past decades. The Baltic Sea in Northern Europe is one of the systems most affected. In addition to being exposed to persistent eutrophication, intensive fishing, and one of the world's fastest rates of warming in the last two decades of the 20th century, accelerated climate change including atmospheric warming and changes in precipitation is projected for this region during the 21st century. Here, we used a new multimodel approach to project how the interaction of climate, nutrient loads, and cod fishing may affect the future of the open Central Baltic Sea food web. Regionally downscaled global climate scenarios were, in combination with three nutrient load scenarios, used to drive an ensemble of three regional biogeochemical models (BGMs). An Ecopath with Ecosim food web model was then forced with the BGM results from different nutrient‐climate scenarios in combination with two different cod fishing scenarios. The results showed that regional management is likely to play a major role in determining the future of the Baltic Sea ecosystem. By the end of the 21st century, for example, the combination of intensive cod fishing and high nutrient loads projected a strongly eutrophicated and sprat‐dominated ecosystem, whereas low cod fishing in combination with low nutrient loads resulted in a cod‐dominated ecosystem with eutrophication levels close to present. Also, nonlinearities were observed in the sensitivity of different trophic groups to nutrient loads or fishing depending on the combination of the two. Finally, many climate variables and species biomasses were projected to levels unseen in the past. Hence, the risk for ecological surprises needs to be addressed, particularly when the results are discussed in the ecosystem‐based management context.  相似文献   

6.
The Arctic is warming more rapidly than other region on the planet, and the northern Barents Sea, including the Svalbard Archipelago, is experiencing the fastest temperature increases within the circumpolar Arctic, along with the highest rate of sea ice loss. These physical changes are affecting a broad array of resident Arctic organisms as well as some migrants that occupy the region seasonally. Herein, evidence of climate change impacts on terrestrial and marine wildlife in Svalbard is reviewed, with a focus on bird and mammal species. In the terrestrial ecosystem, increased winter air temperatures and concomitant increases in the frequency of ‘rain‐on‐snow’ events are one of the most important facets of climate change with respect to impacts on flora and fauna. Winter rain creates ice that blocks access to food for herbivores and synchronizes the population dynamics of the herbivore–predator guild. In the marine ecosystem, increases in sea temperature and reductions in sea ice are influencing the entire food web. These changes are affecting the foraging and breeding ecology of most marine birds and mammals and are associated with an increase in abundance of several temperate fish, seabird and marine mammal species. Our review indicates that even though a few species are benefiting from a warming climate, most Arctic endemic species in Svalbard are experiencing negative consequences induced by the warming environment. Our review emphasizes the tight relationships between the marine and terrestrial ecosystems in this High Arctic archipelago. Detecting changes in trophic relationships within and between these ecosystems requires long‐term (multidecadal) demographic, population‐ and ecosystem‐based monitoring, the results of which are necessary to set appropriate conservation priorities in relation to climate warming.  相似文献   

7.
Ecological modeling shows that even small, gradual changes in body size in a fish population can have large effects on natural mortality, biomass, and catch. However, efforts to model the impact of climate change on fish growth have been hampered by a lack of long‐term (multidecadal) data needed to understand the effects of temperature on growth rates in natural environments. We used a combination of dendrochronology techniques and additive mixed‐effects modeling to examine the sensitivity of growth in a long‐lived (up to 70 years), endemic marine fish, the western blue groper (Achoerodus gouldii), to changes in water temperature. A multi‐decadal biochronology (1952–2003) of growth was constructed from the otoliths of 56 fish collected off the southwestern coast of Western Australia, and we tested for correlations between the mean index chronology and a range of potential environmental drivers. The chronology was significantly correlated with sea surface temperature in the region, but common variance among individuals was low. This suggests that this species has been relatively insensitive to past variations in climate. Growth increment and age data were also used in an additive mixed model to predict otolith growth and body size later this century. Although growth was relatively insensitive to changes in temperature, the model results suggested that a fish aged 20 in 2099 would have an otolith about 10% larger and a body size about 5% larger than a fish aged 20 in 1977. Our study shows that species or populations regarded as relatively insensitive to climate change could still undergo significant changes in growth rate and body size that are likely to have important effects on the productivity and yield of fisheries.  相似文献   

8.
Recent decades have seen profound changes in species abundance and community composition. In the marine environment, the major anthropogenic drivers of change comprise exploitation, invasion by nonindigenous species, and climate change. However, the magnitude of these stressors has been widely debated and we lack empirical estimates of their relative importance. In this study, we focused on Eastern Mediterranean, a region exposed to an invasion of species of Red Sea origin, extreme climate change, and high fishing pressure. We estimated changes in fish abundance using two fish trawl surveys spanning a 20‐year period, and correlated these changes with estimated sensitivity of species to the different stressors. We estimated sensitivity to invasion using the trait similarity between indigenous and nonindigenous species; sensitivity to fishing using a published composite index based on the species’ life‐history; and sensitivity to climate change using species climatic affinity based on occurrence data. Using both a meta‐analytical method and random forest analysis, we found that for shallow‐water species the most important driver of population size changes is sensitivity to climate change. Species with an affinity to warm climates increased in relative abundance and species with an affinity to cold climates decreased suggesting a strong response to warming local sea temperatures over recent decades. This decrease in the abundance of cold‐water‐associated species at the trailing “warm” end of their distribution has been rarely documented. Despite the immense biomass of nonindigenous species and the presumed high fishing pressure, these two latter factors seem to have only a minor role in explaining abundance changes. The decline in abundance of indigenous species of cold‐water origin indicates a future major restructuring of fish communities in the Mediterranean in response to the ongoing warming, with unknown impacts on ecosystem function.  相似文献   

9.
The cumulative effects of climate warming on herbivore vital rates and population dynamics are hard to predict, given that the expected effects differ between seasons. In the Arctic, warmer summers enhance plant growth which should lead to heavier and more fertile individuals in the autumn. Conversely, warm spells in winter with rainfall (rain‐on‐snow) can cause ‘icing’, restricting access to forage, resulting in starvation, lower survival and fecundity. As body condition is a ‘barometer’ of energy demands relative to energy intake, we explored the causes and consequences of variation in body mass of wild female Svalbard reindeer (Rangifer tarandus platyrhynchus) from 1994 to 2015, a period of marked climate warming. Late winter (April) body mass explained 88% of the between‐year variation in population growth rate, because it strongly influenced reproductive loss, and hence subsequent fecundity (92%), as well as survival (94%) and recruitment (93%). Autumn (October) body mass affected ovulation rates but did not affect fecundity. April body mass showed no long‐term trend (coefficient of variation, CV = 8.8%) and was higher following warm autumn (October) weather, reflecting delays in winter onset, but most strongly, and negatively, related to ‘rain‐on‐snow’ events. October body mass (CV = 2.5%) increased over the study due to higher plant productivity in the increasingly warm summers. Density‐dependent mass change suggested competition for resources in both winter and summer but was less pronounced in recent years, despite an increasing population size. While continued climate warming is expected to increase the carrying capacity of the high Arctic tundra, it is also likely to cause more frequent icing events. Our analyses suggest that these contrasting effects may cause larger seasonal fluctuations in body mass and vital rates. Overall our findings provide an important ‘missing’ mechanistic link in the current understanding of the population biology of a keystone species in a rapidly warming Arctic.  相似文献   

10.
Effects of climate change are predicted to be greatest at high latitudes, with more pronounced warming in winter than summer. Extreme mid‐winter warm spells and heavy rain‐on‐snow events are already increasing in frequency in the Arctic, with implications for snow‐pack and ground‐ice formation. These may in turn affect key components of Arctic ecosystems. However, the fitness consequences of extreme winter weather events for tundra plants are not well understood, especially in the high Arctic. We simulated an extreme mid‐winter rain‐on‐snow event at a field site in high Arctic Svalbard (78°N) by experimentally encasing tundra vegetation in ice. After the subsequent growing season, we measured the effects of icing on growth and fitness indices in the common tundra plant, Arctic bell‐heather (Cassiope tetragona). The suitability of this species for retrospective growth analysis enabled us to compare shoot growth in pre and postmanipulation years in icing treatment and control plants, as well as shoot survival and flowering. Plants from icing treatment plots had higher shoot mortality and lower flowering success than controls. At the individual sample level, heavily flowering plants invested less in shoot growth than nonflowering plants, while shoot growth was positively related to the degree of shoot mortality. Therefore, contrary to expectation, undamaged shoots showed enhanced growth in ice treatment plants. This suggests that following damage, aboveground resources were allocated to the few remaining undamaged meristems. The enhanced shoot growth measured in our icing treatment plants has implications for climate studies based on retrospective analyses of Cassiope. As shoot growth in this species responds positively to summer warming, it also highlights a potentially complex interaction between summer and winter conditions. By documenting strong effects of icing on growth and reproduction of a widespread tundra plant, our study contributes to an understanding of Arctic plant responses to projected changes in winter climatic conditions.  相似文献   

11.
Growing season conditions are widely recognized as the main driver for tundra shrub radial growth, but the effects of winter warming and snow remain an open question. Here, we present a more than 100 years long Betula nana ring‐width chronology from Disko Island in western Greenland that demonstrates a highly significant and positive growth response to both summer and winter air temperatures during the past century. The importance of winter temperatures for Betula nana growth is especially pronounced during the periods from 1910–1930 to 1990–2011 that were dominated by significant winter warming. To explain the strong winter importance on growth, we assessed the importance of different environmental factors using site‐specific measurements from 1991 to 2011 of soil temperatures, sea ice coverage, precipitation and snow depths. The results show a strong positive growth response to the amount of thawing and growing degree‐days as well as to winter and spring soil temperatures. In addition to these direct effects, a strong negative growth response to sea ice extent was identified, indicating a possible link between local sea ice conditions, local climate variations and Betula nana growth rates. Data also reveal a clear shift within the last 20 years from a period with thick snow depths (1991–1996) and a positive effect on Betula nana radial growth, to a period (1997–2011) with generally very shallow snow depths and no significant growth response towards snow. During this period, winter and spring soil temperatures have increased significantly suggesting that the most recent increase in Betula nana radial growth is primarily triggered by warmer winter and spring air temperatures causing earlier snowmelt that allows the soils to drain and warm quicker. The presented results may help to explain the recently observed ‘greening of the Arctic’ which may further accelerate in future years due to both direct and indirect effects of winter warming.  相似文献   

12.
Globally, spatial distributions of fish stocks are shifting but although the role of climate change in range shifts is increasingly appreciated, little remains known of the likely additional impact that high levels of fishing pressure might have on distribution. For North Sea cod, we show for the first time and in great spatial detail how the stock has shifted its distribution over the past 100 years. We digitized extensive historical fisheries data from paper charts in UK government archives and combined these with contemporary data to a time‐series spanning 1913–2012 (excluding both World Wars). New analysis of old data revealed that the current distribution pattern of cod – mostly in the deeper, northern‐ and north‐easternmost parts of the North Sea – is almost opposite to that during most of the Twentieth Century – mainly concentrated in the west, off England and Scotland. Statistical analysis revealed that the deepening, northward shift is likely attributable to warming; however, the eastward shift is best explained by fishing pressure, suggestive of significant depletion of the stock from its previous stronghold, off the coasts of England and Scotland. These spatial patterns were confirmed for the most recent 3½ decades by data from fisheries‐independent surveys, which go back to the 1970s. Our results demonstrate the fundamental importance of both climate change and fishing pressure for our understanding of changing distributions of commercially exploited fish.  相似文献   

13.
Productivity of marine fish stocks is known to be affected by environmental and ecological drivers, and global climate change is anticipated to alter recruitment success of many stocks. While the direct effects of environmental drivers on fish early life stage survival can be quantified experimentally, indirect effects in marine ecosystems and the role of adaptation are still highly uncertain. We developed an integrative model for the effects of ocean warming and acidification on the early life stages of Atlantic cod in the Barents Sea, termed SCREI (Simulator of Cod Recruitment under Environmental Influences). Experimental results on temperature and CO2 effects on egg fertilization, egg and larval survival and development times are incorporated. Calibration using empirical time series of egg production, temperature, food and predator abundance reproduces age‐0 recruitment over three decades. We project trajectories of recruitment success under different scenarios and quantify confidence limits based on variation in experiments. A publicly accessible web version of the SCREI model can be run under www.oceanchange.uni-bremen.de/ ;SCREI. Severe reductions in average age‐0 recruitment success of Barents Sea cod are projected under uncompensated warming and acidification toward the middle to end of this century. Although high population stochasticity was found, considerable rates of evolutionary adaptation to acidification and shifts in organismal thermal windows would be needed to buffer impacts on recruitment. While increases in food availability may mitigate short‐term impacts, an increase in egg production achieved by stock management could provide more long‐term safety for cod recruitment success. The SCREI model provides a novel integration of multiple driver effects in different life stages and enables an estimation of uncertainty associated with interindividual and ecological variation. The model thus helps to advance toward an improved empirical foundation for quantifying climate change impacts on marine fish recruitment, relevant for ecosystem‐based assessments of marine systems under climate change.  相似文献   

14.
Harvesting may be a potent driver of demographic change and contemporary evolution, which both may have great impacts on animal populations. Research has focused on changes in phenotypic traits that are easily quantifiable and for which time series exist, such as size, age, sex, or gonad size, whereas potential changes in behavioural traits have been under‐studied. Here, we analyse potential drivers of long‐term changes in a behavioural trait for the Northeast Arctic stock of Atlantic cod Gadus morhua, namely choice of spawning location. For 104 years (1866–1969), commercial catches were recorded annually and reported by county along the Norwegian coast. During this time period, spawning ground distribution has fluctuated with a trend towards more northerly spawning. Spawning location is analysed against a suite of explanatory factors including climate, fishing pressure, density dependence, and demography. We find that demography (age or age at maturation) had the highest explanatory power for variation in spawning location, while climate had a limited effect below statistical significance. As to potential mechanisms, some effects of climate may act through demography, and explanatory variables for demography may also have absorbed direct evolutionary change in migration distance for which proxies were unavailable. Despite these caveats, we argue that fishing mortality, either through demographic or evolutionary change, has served as an effective driver for changing spawning locations in cod, and that additional explanatory factors related to climate add no significant information.  相似文献   

15.
Understanding how combinations of fishing effort and selectivity affect productivity is central to fisheries research. We investigate the roles of fishing regulation in comparison with ecosystem status for Baltic Sea cod stock productivity, growth performance, and population stability. This case study is interesting because three cod populations with different exploitation patterns and stock status are located in three adjacent but partially, ecologically different areas. In assessing stock status, growth, and productivity, we use survey information and rather basic stock parameters without relying on age readings. Because there is an urgent interest of better understanding of the current development of the Eastern Baltic cod stock, we argue that our approach represents partly a novel way of interpreting monitoring information together with catch data in a simplified yet more informative way. Our study reports how the Eastern and Western Baltic cod have gone toward more truncated size structures between 1991 and 2016, in particular for the Eastern Baltic cod, whereas the Öresund cod show no trend. We suggest that selective fishing may disrupt fish population dynamic stability and that lower natural productivity might amplify the effects of selective fishing. In support of earlier findings on a density‐dependent growth of Eastern Baltic cod, management is advised to acknowledge that sustainable exploitation levels for Eastern Baltic cod are much more limited than perceived in regular assessments. Of more general importance, our results emphasize the need to embrace a more realistic view on what ecosystems can produce regarding tractable fish biomass to facilitate a more ecosystem‐based fisheries management.  相似文献   

16.
17.
Climate change studies have long focused on effects of increasing temperatures, often without considering other simultaneously occurring environmental changes, such as browning of waters. Resolving how the combination of warming and browning of aquatic ecosystems affects fish biomass production is essential for future ecosystem functioning, fisheries, and food security. In this study, we analyzed individual‐ and population‐level fish data from 52 temperate and boreal lakes in Northern Europe, covering large gradients in water temperature and color (absorbance, 420 nm). We show that fish (Eurasian perch, Perca fluviatilis) biomass production decreased with both high water temperatures and brown water color, being lowest in warm and brown lakes. However, while both high temperature and brown water decreased fish biomass production, the mechanisms behind the decrease differed: temperature affected the fish biomass production mainly through a decrease in population standing stock biomass, and through shifts in size‐ and age‐distributions toward a higher proportion of young and small individuals in warm lakes; brown water color, on the other hand, mainly influenced fish biomass production through negative effects on individual body growth and length‐at‐age. In addition to these findings, we observed that the effects of temperature and brown water color on individual‐level processes varied over ontogeny. Body growth only responded positively to higher temperatures among young perch, and brown water color had a stronger negative effect on body growth of old than on young individuals. Thus, to better understand and predict future fish biomass production, it is necessary to integrate both individual‐ and population‐level responses and to acknowledge within‐species variation. Our results suggest that global climate change, leading to browner and warmer waters, may negatively affect fish biomass production, and this effect may be stronger than caused by increased temperature or water color alone.  相似文献   

18.
Accumulating evidence shows that environmental fluctuations and exploitation jointly affect marine fish populations, and understanding their interaction is a key issue for fisheries ecology. In particular, it has been proposed that age truncation induced by fisheries exploitation may increase the population's sensitivity to climate. In this study, we use unique long‐term abundance data for the Northeast Arctic stock of cod (Gadus morhua) and the Norwegian Spring‐Spawning stock of herring (Clupea harengus), which we analyze using techniques based on age‐structured population matrices. After identifying time periods with different age distributions in the spawning stock, we use linear models to quantify the relative effect of exploitation and temperature on the population growth rates. For the two populations, age truncation was found to be associated with an increasing importance of temperature and a relatively decreasing importance of exploitation, while the population growth rate became increasingly sensitive to recruitment variations. The results suggested that the removal of older age classes reduced the buffering capacity of the population, thereby making the population growth rate more dependent on recruitment than adult survival and increasing the effect of environmental fluctuations. Age structure appeared as a key characteristic that can affect the response of fish stocks to climate variations and its consequences may be of key importance for conservation and management.  相似文献   

19.
The consequences of climate change are becoming increasingly evident in the Tibetan Plateau, represented by glaciers retreating and lakes expanding, but the biological response to climate change by plateau–lake ecosystems is poorly known. In this study, we applied dendrochronology methods to develop a growth index chronology with otolith increment widths of Selincuo naked carp (Gymnocypris selincuoensis), which is an endemic species in Lake Selincuo (4530 m), and investigated the relationships between fish growth and climate variables (regional and global) in the last three decades. A correlation analysis and principle component regression analysis between regional climate factors and the growth index chronology indicated that the growth of G. selincuoensis was significantly and positively correlated with length of the growing season and temperature‐related variables, particularly during the growing season. Most of global climate variables, which are relevant to the Asian monsoon and the midlatitude westerlies, such as El Nino Southern Oscillation Index, the Arctic Oscillation, North Atlantic Oscillation, and North America Pattern, showed negative but not significant correlations with the annual growth of Selincuo naked carp. This may have resulted from the high elevation of the Tibetan Plateau and the high mountains surrounding this area. In comparison, the Pacific Decade Oscillation (PDO) negatively affected the growth of G. selincuoensis. The reason maybe that enhancement of the PDO can lead to cold conditions in this area. Taken together, the results indicate that the Tibetan Plateau fish has been affected by global climate change, particularly during the growing season, and global climate change likely has important effects on productivity of aquatic ecosystems in this area.  相似文献   

20.
The Arctic climate is changing at an unprecedented rate. What consequences this may have on the Arctic marine ecosystem depends to a large degree on how its species will respond both directly to elevated temperatures and more indirectly through ecological interactions. But despite an alarming recent warming of the Arctic with accompanying sea ice loss, reports evaluating ecological impacts of climate change in the Arctic remain sparse. Here, based upon a large-scale field study, we present basic new knowledge regarding the life history traits for one of the most important species in the entire Arctic, the polar cod (Boreogadus saida). Furthermore, by comparing regions of contrasting climatic influence (domains), we present evidence as to how its growth and reproductive success is impaired in the warmer of the two domains. As the future Arctic is predicted to resemble today''s Atlantic domains, we forecast changes in growth and life history characteristics of polar cod that will lead to alteration of its role as an Arctic keystone species. This will in turn affect community dynamics and energy transfer in the entire Arctic food chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号