首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 117 毫秒
1.
Extracellular enzymes catalyze rate‐limiting steps in soil organic matter decomposition, and their activities (EEAs) play a key role in determining soil respiration (SR). Both EEAs and SR are highly sensitive to temperature, but their responses to climate warming remain poorly understood. Here, we present a meta‐analysis on the response of soil cellulase and ligninase activities and SR to warming, synthesizing data from 56 studies. We found that warming significantly enhanced ligninase activity by 21.4% but had no effect on cellulase activity. Increases in ligninase activity were positively correlated with changes in SR, while no such relationship was found for cellulase. The warming response of ligninase activity was more closely related to the responses of SR than a wide range of environmental and experimental methodological factors. Furthermore, warming effects on ligninase activity increased with experiment duration. These results suggest that soil microorganisms sustain long‐term increases in SR with warming by gradually increasing the degradation of the recalcitrant carbon pool.  相似文献   

2.
Global soil carbon (C) stocks are expected to decline with warming, and changes in microbial processes are key to this projection. However, warming responses of critical microbial parameters such as carbon use efficiency (CUE) and biomass turnover (rB) are not well understood. Here, we determine these parameters using a probabilistic inversion approach that integrates a microbial‐enzyme model with 22 years of carbon cycling measurements at Harvard Forest. We find that increasing temperature reduces CUE but increases rB, and that two decades of soil warming increases the temperature sensitivities of CUE and rB. These temperature sensitivities, which are derived from decades‐long field observations, contrast with values obtained from short‐term laboratory experiments. We also show that long‐term soil C flux and pool changes in response to warming are more dependent on the temperature sensitivity of CUE than that of rB. Using the inversion‐derived parameters, we project that chronic soil warming at Harvard Forest over six decades will result in soil C gain of <1.0% on average (1st and 3rd quartiles: 3.0% loss and 10.5% gain) in the surface mineral horizon. Our results demonstrate that estimates of temperature sensitivity of microbial CUE and rB can be obtained and evaluated rigorously by integrating multidecadal datasets. This approach can potentially be applied in broader spatiotemporal scales to improve long‐term projections of soil C feedbacks to climate warming.  相似文献   

3.
4.
Biochar amendment is one of the most promising agricultural approaches to tackle climate change by enhancing soil carbon (C) sequestration. Microbial-mediated decomposition processes are fundamental for the fate and persistence of sequestered C in soil, but the underlying mechanisms are uncertain. Here, we synthesise 923 observations regarding the effects of biochar addition (over periods ranging from several weeks to several years) on soil C-degrading enzyme activities from 130 articles across five continents worldwide. Our results showed that biochar addition increased soil ligninase activity targeting complex phenolic macromolecules by 7.1%, but suppressed cellulase activity degrading simpler polysaccharides by 8.3%. These shifts in enzyme activities explained the most variation of changes in soil C sequestration across a wide range of climatic, edaphic and experimental conditions, with biochar-induced shift in ligninase:cellulase ratio correlating negatively with soil C sequestration. Specifically, short-term (<1 year) biochar addition significantly reduced cellulase activity by 4.6% and enhanced soil organic C sequestration by 87.5%, whereas no significant responses were observed for ligninase activity and ligninase:cellulase ratio. However, long-term (≥1 year) biochar addition significantly enhanced ligninase activity by 5.2% and ligninase:cellulase ratio by 36.1%, leading to a smaller increase in soil organic C sequestration (25.1%). These results suggest that shifts in enzyme activities increased ligninase:cellulase ratio with time after biochar addition, limiting long-term soil C sequestration with biochar addition. Our work provides novel evidence to explain the diminished soil C sequestration with long-term biochar addition and suggests that earlier studies may have overestimated soil C sequestration with biochar addition by failing to consider the physiological acclimation of soil microorganisms over time.  相似文献   

5.
Dryland ecosystems account for ca. 27% of global soil organic carbon (C) reserves, yet it is largely unknown how climate change will impact C cycling and storage in these areas. In drylands, soil C concentrates at the surface, making it particularly sensitive to the activity of organisms inhabiting the soil uppermost levels, such as communities dominated by lichens, mosses, bacteria and fungi (biocrusts). We conducted a full factorial warming and rainfall exclusion experiment at two semiarid sites in Spain to show how an average increase of air temperature of 2–3 °C promoted a drastic reduction in biocrust cover (ca. 44% in 4 years). Warming significantly increased soil CO2 efflux, and reduced soil net CO2 uptake, in biocrust‐dominated microsites. Losses of biocrust cover with warming through time were paralleled by increases in recalcitrant C sources, such as aromatic compounds, and in the abundance of fungi relative to bacteria. The dramatic reduction in biocrust cover with warming will lessen the capacity of drylands to sequester atmospheric CO2. This decrease may act synergistically with other warming‐induced effects, such as the increase in soil CO2 efflux and the changes in microbial communities to alter C cycling in drylands, and to reduce soil C stocks in the mid to long term.  相似文献   

6.
The stability of soil organic matter (SOM) pools exposed to elevated CO2 and warming has not been evaluated adequately in long‐term experiments and represents a substantial source of uncertainty in predicting ecosystem feedbacks to climate change. We conducted a 6‐year experiment combining free‐air CO2 enrichment (FACE, 550 ppm) and warming (+2 °C) to evaluate changes in SOM accumulation in native Australian grassland. In this system, competitive interactions appear to favor C4 over C3 species under FACE and warming. We therefore investigated the role of plant functional type (FT) on biomass and SOM responses to the long‐term treatments by carefully sampling soil under patches of C3‐ and C4‐dominated vegetation. We used physical fractionation to quantify particulate organic matter (POM) and long‐term incubation to assess potential decomposition rates. Aboveground production of C4 grasses increased in response to FACE, but total root biomass declined. Across treatments, C : N ratios were higher in leaves, roots and POM of C4 vegetation. CO2 and temperature treatments interacted with FT to influence SOM, and especially POM, such that soil carbon was increased by warming under C4 vegetation, but not in combination with elevated CO2. Potential decomposition rates increased in response to FACE and decreased with warming, possibly owing to treatment effects on soil moisture and microbial community composition. Decomposition was also inversely correlated with root N concentration, suggesting increased microbial demand for older, N‐rich SOM in treatments with low root N inputs. This research suggests that C3–C4 vegetation responses to future climate conditions will strongly influence SOM storage in temperate grasslands.  相似文献   

7.
Elevated atmospheric CO2 concentration and climate change may substantially alter soil carbon (C) dynamics, which in turn may impact future climate through feedback cycles. However, only very few field experiments worldwide have combined elevated CO2 (eCO2) with both warming and changes in precipitation in order to study the potential combined effects of changes in these fundamental drivers of C cycling in ecosystems. We exposed a temperate heath/grassland to eCO2, warming, and drought, in all combinations for 8 years. At the end of the study, soil C stocks were on average 0.927 kg C/m2 higher across all treatment combinations with eCO2 compared to ambient CO2 treatments (equal to an increase of 0.120 ± 0.043 kg C m?2 year?1), and showed no sign of slowed accumulation over time. However, if observed pretreatment differences in soil C are taken into account, the annual rate of increase caused by eCO2 may be as high as 0.177 ± 0.070 kg C m?2 year?1. Furthermore, the response to eCO2 was not affected by simultaneous exposure to warming and drought. The robust increase in soil C under eCO2 observed here, even when combined with other climate change factors, suggests that there is continued and strong potential for enhanced soil carbon sequestration in some ecosystems to mitigate increasing atmospheric CO2 concentrations under future climate conditions. The feedback between land C and climate remains one of the largest sources of uncertainty in future climate projections, yet experimental data under simulated future climate, and especially including combined changes, are still scarce. Globally coordinated and distributed experiments with long‐term measurements of changes in soil C in response to the three major climate change‐related global changes, eCO2, warming, and changes in precipitation patterns, are, therefore, urgently needed.  相似文献   

8.
Ecosystem responses to climate change can exert positive or negative feedbacks on climate, mediated in part by slow‐moving factors such as shifts in vegetation community composition. Long‐term experimental manipulations can be used to examine such ecosystem responses, but they also present another opportunity: inferring the extent to which contemporary climate change is responsible for slow changes in ecosystems under ambient conditions. Here, using 23 years of data, we document a shift from nonwoody to woody vegetation and a loss of soil carbon in ambient plots and show that these changes track previously shown similar but faster changes under experimental warming. This allows us to infer that climate change is the cause of the observed shifts in ambient vegetation and soil carbon and that the vegetation responses mediate the observed changes in soil carbon. Our findings demonstrate the realism of an experimental manipulation, allow attribution of a climate cause to observed ambient ecosystem changes, and demonstrate how a combination of long‐term study of ambient and experimental responses to warming can identify mechanistic drivers needed for realistic predictions of the conditions under which ecosystems are likely to become carbon sources or sinks over varying timescales.  相似文献   

9.
Quantifying soil organic carbon (SOC) decomposition under warming is critical to predict carbon–climate feedbacks. According to the substrate regulating principle, SOC decomposition would decrease as labile SOC declines under field warming, but observations of SOC decomposition under warming do not always support this prediction. This discrepancy could result from varying changes in SOC components and soil microbial communities under warming. This study aimed to determine the decomposition of SOC components with different turnover times after subjected to long‐term field warming and/or root exclusion to limit C input, and to test whether SOC decomposition is driven by substrate lability under warming. Taking advantage of a 12‐year field warming experiment in a prairie, we assessed the decomposition of SOC components by incubating soils from control and warmed plots, with and without root exclusion for 3 years. We assayed SOC decomposition from these incubations by combining inverse modeling and microbial functional genes during decomposition with a metagenomic technique (GeoChip). The decomposition of SOC components with turnover times of years and decades, which contributed to 95% of total cumulative CO2 respiration, was greater in soils from warmed plots. But the decomposition of labile SOC was similar in warmed plots compared to the control. The diversity of C‐degradation microbial genes generally declined with time during the incubation in all treatments, suggesting shifts of microbial functional groups as substrate composition was changing. Compared to the control, soils from warmed plots showed significant increase in the signal intensities of microbial genes involved in degrading complex organic compounds, implying enhanced potential abilities of microbial catabolism. These are likely responsible for accelerated decomposition of SOC components with slow turnover rates. Overall, the shifted microbial community induced by long‐term warming accelerates the decomposition of SOC components with slow turnover rates and thus amplify the positive feedback to climate change.  相似文献   

10.
Temperature sensitivity of anaerobic carbon mineralization in wetlands remains poorly represented in most climate models and is especially unconstrained for warmer subtropical and tropical systems which account for a large proportion of global methane emissions. Several studies of experimental warming have documented thermal acclimation of soil respiration involving adjustments in microbial physiology or carbon use efficiency (CUE), with an initial decline in CUE with warming followed by a partial recovery in CUE at a later stage. The variable CUE implies that the rate of warming may impact microbial acclimation and the rate of carbon‐dioxide (CO2) and methane (CH4) production. Here, we assessed the effects of warming rate on the decomposition of subtropical peats, by applying either a large single‐step (10°C within a day) or a slow ramping (0.1°C/day for 100 days) temperature increase. The extent of thermal acclimation was tested by monitoring CO2 and CH4 production, CUE, and microbial biomass. Total gaseous C loss, CUE, and MBC were greater in the slow (ramp) warming treatment. However, greater values of CH4–C:CO2–C ratios lead to a greater global warming potential in the fast (step) warming treatment. The effect of gradual warming on decomposition was more pronounced in recalcitrant and nutrient‐limited soils. Stable carbon isotopes of CH4 and CO2 further indicated the possibility of different carbon processing pathways under the contrasting warming rates. Different responses in fast vs. slow warming treatment combined with different endpoints may indicate alternate pathways with long‐term consequences. Incorporations of experimental results into organic matter decomposition models suggest that parameter uncertainties in CUE and CH4–C:CO2–C ratios have a larger impact on long‐term soil organic carbon and global warming potential than uncertainty in model structure, and shows that particular rates of warming are central to understand the response of wetland soils to global climate change.  相似文献   

11.
Terrestrial biogeochemical feedbacks to the climate are strongly modulated by the temperature response of soil microorganisms. Tropical forests, in particular, exert a major influence on global climate because they are the most productive terrestrial ecosystem. We used an elevation gradient across tropical forest in the Andes (a gradient of 20°C mean annual temperature, MAT), to test whether soil bacterial and fungal community growth responses are adapted to long‐term temperature differences. We evaluated the temperature dependency of soil bacterial and fungal growth using the leucine‐ and acetate‐incorporation methods, respectively, and determined indices for the temperature response of growth: Q10 (temperature sensitivity over a given 10oC range) and Tmin (the minimum temperature for growth). For both bacterial and fungal communities, increased MAT (decreased elevation) resulted in increases in Q10 and Tmin of growth. Across a MAT range from 6°C to 26°C, the Q10 and Tmin varied for bacterial growth (Q10–20 = 2.4 to 3.5; Tmin = ?8°C to ?1.5°C) and fungal growth (Q10–20 = 2.6 to 3.6; Tmin = ?6°C to ?1°C). Thus, bacteria and fungi did not differ significantly in their growth temperature responses with changes in MAT. Our findings indicate that across natural temperature gradients, each increase in MAT by 1°C results in increases in Tmin of microbial growth by approximately 0.3°C and Q10–20 by 0.05, consistent with long‐term temperature adaptation of soil microbial communities. A 2°C warming would increase microbial activity across a MAT gradient of 6°C to 26°C by 28% to 15%, respectively, and temperature adaptation of microbial communities would further increase activity by 1.2% to 0.3%. The impact of warming on microbial activity, and the related impact on soil carbon cycling, is thus greater in regions with lower MAT. These results can be used to predict future changes in the temperature response of microbial activity over different levels of warming and over large temperature ranges, extending to tropical regions.  相似文献   

12.
Tropical soils contain huge carbon stocks, which climate warming is projected to reduce by stimulating organic matter decomposition, creating a positive feedback that will promote further warming. Models predict that the loss of carbon from warming soils will be mediated by microbial physiology, but no empirical data are available on the response of soil carbon and microbial physiology to warming in tropical forests, which dominate the terrestrial carbon cycle. Here we show that warming caused a considerable loss of soil carbon that was enhanced by associated changes in microbial physiology. By translocating soils across a 3000 m elevation gradient in tropical forest, equivalent to a temperature change of ± 15 °C, we found that soil carbon declined over 5 years by 4% in response to each 1 °C increase in temperature. The total loss of carbon was related to its original quantity and lability, and was enhanced by changes in microbial physiology including increased microbial carbon‐use‐efficiency, shifts in community composition towards microbial taxa associated with warmer temperatures, and increased activity of hydrolytic enzymes. These findings suggest that microbial feedbacks will cause considerable loss of carbon from tropical forest soils in response to predicted climatic warming this century.  相似文献   

13.
The phenology of vegetation, particularly the length of the growing season (LOS; i.e., the period from greenup to senescence), is highly sensitive to climate change, which could imply potent feedbacks to the climate system, for example, by altering the ecosystem carbon (C) balance. In recent decades, the largest extensions of LOS have been reported at high northern latitudes, but further warming‐induced LOS extensions may be constrained by too short photoperiod or unfulfilled chilling requirements. Here, we studied subarctic grasslands, which cover a vast area and contain large C stocks, but for which LOS changes under further warming are highly uncertain. We measured LOS extensions of Icelandic subarctic grasslands along natural geothermal soil warming gradients of different age (short term, where the measurements started after 5 years of warming and long term, i.e., warmed since ≥50 years) using ground‐level measurements of normalized difference vegetation index. We found that LOS linearly extended with on average 2.1 days per °C soil warming up to the highest soil warming levels (ca. +10°C) and that LOS had the potential to extend at least 1 month. This indicates that the warming impact on LOS in these subarctic grasslands will likely not saturate in the near future. A similar response to short‐ and long‐term warming indicated a strong physiological control of the phenological response of the subarctic grasslands to warming and suggested that genetic adaptations and community changes were likely of minor importance. We conclude that the warming‐driven extension of the LOSs of these subarctic grasslands did not saturate up to +10°C warming, and hence that growing seasons of high‐latitude grasslands are likely to continue lengthening with future warming (unless genetic adaptations or species shifts do occur). This persistence of the warming‐induced extension of LOS has important implications for the C‐sink potential of subarctic grasslands under climate change.  相似文献   

14.
Soil microbial communities may be able to rapidly respond to changing environments in ways that change community structure and functioning, which could affect climate–carbon feedbacks. However, detecting microbial feedbacks to elevated CO2 (eCO2) or warming is hampered by concurrent changes in substrate availability and plant responses. Whether microbial communities can persistently feed back to climate change is still unknown. We overcame this problem by collecting microbial inocula at subfreezing conditions under eCO2 and warming treatments in a semi‐arid grassland field experiment. The inoculant was incubated in a sterilised soil medium at constant conditions for 30 days. Microbes from eCO2 exhibited an increased ability to decompose soil organic matter (SOM) compared with those from ambient CO2 plots, and microbes from warmed plots exhibited increased thermal sensitivity for respiration. Microbes from the combined eCO2 and warming plots had consistently enhanced microbial decomposition activity and thermal sensitivity. These persistent positive feedbacks of soil microbial communities to eCO2 and warming may therefore stimulate soil C loss.  相似文献   

15.
A large remaining source of uncertainty in global model predictions of future climate is how ecosystem carbon (C) cycle feedbacks to climate change. We conducted a field manipulative experiment of warming and nitrogen (N) addition in a temperate steppe in northern China during two contrasting hydrological growing seasons in 2006 [wet with total precipitation 11.2% above the long‐term mean (348 mm)] and 2007 (dry with total precipitation 46.7% below the long‐term mean). Irrespective of strong intra‐ and interannual variations in ecosystem C fluxes, responses of ecosystem C fluxes to warming and N addition did not change between the two growing seasons, suggesting independence of warming and N responses of net ecosystem C exchange (NEE) upon hydrological variations in the temperate steppe. Warming had no effect on NEE or its two components, gross ecosystem productivity (GEP) and ecosystem respiration (ER), whereas N addition stimulated GEP but did not affect ER, leading to positive responses of NEE. Similar responses of NEE between the two growing seasons were due to changes in both biotic and abiotic factors and their impacts on ER and GEP. In the wet growing season, NEE was positively correlated with soil moisture and forb biomass. Negative effects of warming‐induced water depletion could be ameliorated by higher forb biomass in the warmed plots. N addition increased forb biomass but did not affect soil moisture, leading to positive effect on NEE. In the dry growing season, NEE showed positive dependence on grass biomass but negative dependence on forb biomass. No changes in NEE in response to warming could result from water limitation on both GEP and ER as well as little responses of either grass or forb biomass. N addition stimulated grass biomass but reduced forb biomass, leading to the increase in NEE. Our findings highlight the importance of changes in abiotic (soil moisture, N availability) and biotic (growth of different plant functional types) in mediating the responses of NEE to climatic warming and N enrichment in the semiarid temperate steppe in northern China.  相似文献   

16.
Global warming will likely enhance greenhouse gas (GHG) emissions from soils. Due to its slow decomposability, biochar is widely recognized as effective in long‐term soil carbon (C) sequestration and in mitigation of soil GHG emissions. In a long‐term soil warming experiment (+2.5 °C, since July 2008) we studied the effect of applying high‐temperature Miscanthus biochar (0, 30 t/ha, since August 2013) on GHG emissions and their global warming potential (GWP) during 2 years in a temperate agroecosystem. Crop growth, physical and chemical soil properties, temperature sensitivity of soil respiration (Rs), and metabolic quotient (qCO2) were investigated to yield further information about single effects of soil warming and biochar as well as on their interactions. Soil warming increased total CO2 emissions by 28% over 2 years. The effect of warming on soil respiration did not level off as has often been observed in less intensively managed ecosystems. However, the temperature sensitivity of soil respiration was not affected by warming. Overall, biochar had no effect on most of the measured parameters, suggesting its high degradation stability and its low influence on microbial C cycling even under elevated soil temperatures. In contrast, biochar × warming interactions led to higher total N2O emissions, possibly due to accelerated N‐cycling at elevated soil temperature and to biochar‐induced changes in soil properties and environmental conditions. Methane uptake was not affected by soil warming or biochar. The incorporation of biochar‐C into soil was estimated to offset warming‐induced elevated GHG emissions for 25 years. Our results highlight the suitability of biochar for C sequestration in cultivated temperate agricultural soil under a future elevated temperature. However, the increased N2O emissions under warming limit the GHG mitigation potential of biochar.  相似文献   

17.
Currently, forests in the northeastern United States are net sinks of atmospheric carbon. Under future climate change scenarios, the combined effects of climate change and nitrogen deposition on soil decomposition, aboveground processes, and the forest carbon balance remain unclear. We applied carbon stock, flux, and isotope data from field studies at the Harvard forest, Massachusetts, to the ForCent model, which integrates above‐ and belowground processes. The model was able to represent decadal‐scale measurements in soil C stocks, mean residence times, fluxes, and responses to a warming and N addition experiment. The calibrated model then simulated the longer term impacts of warming and N deposition on the distribution of forest carbon stocks. For simulation to 2030, soil warming resulted in a loss of soil organic matter (SOM), decreased allocation to belowground biomass, and gain of aboveground carbon, primarily in large wood, with an overall small gain in total system carbon. Simulated nitrogen addition resulted in a small increase in belowground carbon pools, but a large increase in aboveground large wood pools, resulting in a substantial increase in total system carbon. Combined warming and nitrogen addition simulations showed a net gain in total system carbon, predominately in the aboveground carbon pools, but offset somewhat by losses in SOM. Hence, the impact of continuation of anthropogenic N deposition on the hardwood forests of the northeastern United States may exceed the impact of warming in terms of total ecosystem carbon stocks. However, it should be cautioned that these simulations do not include some climate‐related processes, different responses from changing tree species composition. Despite uncertainties, this effort is among the first to use decadal‐scale observations of soil carbon dynamics and results of multifactor manipulations to calibrate a model that can project integrated aboveground and belowground responses to nitrogen and climate changes for subsequent decades.  相似文献   

18.
Soil respiration is recognized to be influenced by temperature, moisture, and ecosystem production. However, little is known about how plant community structure regulates responses of soil respiration to climate change. Here, we used a 13‐year field warming experiment to explore the mechanisms underlying plant community regulation on feedbacks of soil respiration to climate change in a tallgrass prairie in Oklahoma, USA. Infrared heaters were used to elevate temperature about 2 °C since November 1999. Annual clipping was used to mimic hay harvest. Our results showed that experimental warming significantly increased soil respiration approximately from 10% in the first 7 years (2000–2006) to 30% in the next 6 years (2007–2012). The two‐stage warming stimulation of soil respiration was closely related to warming‐induced increases in ecosystem production over the years. Moreover, we found that across the 13 years, warming‐induced increases in soil respiration were positively affected by the proportion of aboveground net primary production (ANPP) contributed by C3 forbs. Functional composition of the plant community regulated warming‐induced increases in soil respiration through the quantity and quality of organic matter inputs to soil and the amount of photosynthetic carbon (C) allocated belowground. Clipping, the interaction of clipping with warming, and warming‐induced changes in soil temperature and moisture all had little effect on soil respiration over the years (all > 0.05). Our results suggest that climate warming may drive an increase in soil respiration through altering composition of plant communities in grassland ecosystems.  相似文献   

19.
Despite decades of research, how climate warming alters the global flux of soil respiration is still poorly characterized. Here, we use meta‐analysis to synthesize 202 soil respiration datasets from 50 ecosystem warming experiments across multiple terrestrial ecosystems. We found that, on average, warming by 2 °C increased soil respiration by 12% during the early warming years, but warming‐induced drought partially offset this effect. More significantly, the two components of soil respiration, heterotrophic respiration and autotrophic respiration showed distinct responses. The warming effect on autotrophic respiration was not statistically detectable during the early warming years, but nonetheless decreased with treatment duration. In contrast, warming by 2 °C increased heterotrophic respiration by an average of 21%, and this stimulation remained stable over the warming duration. This result challenged the assumption that microbial activity would acclimate to the rising temperature. Together, our findings demonstrate that distinguishing heterotrophic respiration and autotrophic respiration would allow us better understand and predict the long‐term response of soil respiration to warming. The dependence of soil respiration on soil moisture condition also underscores the importance of incorporating warming‐induced soil hydrological changes when modeling soil respiration under climate change.  相似文献   

20.
Warming can accelerate the decomposition of soil organic matter and stimulate the release of soil greenhouse gases (GHGs), but to what extent soil release of methane (CH4) and nitrous oxide (N2O) may contribute to soil C loss for driving climate change under warming remains unresolved. By synthesizing 1,845 measurements from 164 peer‐reviewed publications, we show that around 1.5°C (1.16–2.01°C) of experimental warming significantly stimulates soil respiration by 12.9%, N2O emissions by 35.2%, CH4 emissions by 23.4% from rice paddies, and by 37.5% from natural wetlands. Rising temperature increases CH4 uptake of upland soils by 13.8%. Warming‐enhanced emission of soil CH4 and N2O corresponds to an overall source strength of 1.19, 1.84, and 3.12 Pg CO2‐equivalent/year under 1°C, 1.5°C, and 2°C warming scenarios, respectively, interacting with soil C loss of 1.60 Pg CO2/year in terms of contribution to climate change. The warming‐induced rise in soil CH4 and N2O emissions (1.84 Pg CO2‐equivalent/year) could reduce mitigation potential of terrestrial net ecosystem production by 8.3% (NEP, 22.25 Pg CO2/year) under warming. Soil respiration and CH4 release are intensified following the mean warming threshold of 1.5°C scenario, as compared to soil CH4 uptake and N2O release with a reduced and less positive response, respectively. Soil C loss increases to a larger extent under soil warming than under canopy air warming. Warming‐raised emission of soil GHG increases with the intensity of temperature rise but decreases with the extension of experimental duration. This synthesis takes the lead to quantify the ecosystem C and N cycling in response to warming and advances our capacity to predict terrestrial feedback to climate change under projected warming scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号