首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
黄河上游灌区稻田N2O排放特征   总被引:4,自引:0,他引:4  
黄河上游灌区稻田高产区过量施肥现象十分突出,氮肥过量施用引起土壤氮素盈余,导致N2O排放量增大,由此引起的温室效应引起广泛关注。采用静态箱-气相色谱法研究黄河上游灌区稻田不同施肥处理下N2O排放特征。试验设置5个施肥处理,包括常规氮肥300 kg/hm2下单施尿素和有机肥配施2个处理,分别用N300和N300-OM代表;优化氮肥240 kg/hm2下单施尿素和有机肥配施2个处理,分别用N240和N240-OM代表;对照不施氮肥用N0代表。试验结果得出,灌区水稻生长季稻田土壤N2O排放主要集中在水稻分蘖前及水稻生长的中后期,稻田氮肥施用、灌水及土壤温度的变化对N2O排放通量影响较大,不同处理水稻各生育阶段N2O累积排放量与稻田土壤耕层NO-3-N含量动态变化显著相关。稻田N2O排放不是黄河上游灌区稻田氮素损失的主要途径,但灌区稻田N2O排放的增温潜势较大;稻田氮肥过量施用会显著增加N2O排放量,在相同氮素水平下,有机肥配施会显著增加稻田土壤N2O的排放量(P<0.01)。优化施氮能有效减少灌区稻田水稻生长季N2O排放量。稻田不同处理的水稻整个生长季土壤N2O排放总量为2.69-3.87 kg/hm2,肥料氮通过N2O排放损失的百分率仅为0.43%-0.64%。在灌区习惯灌水和高氮肥300 kg/hm2时,N300-OM处理的稻田N2O排放量达3.87 kg/hm2,在100 a时间尺度上的全球增温潜势(GWPs)为20.76×107 kg CO2/hm2;优化施氮240 kg/hm2水平下,N240和N240-OM处理的N2O累计排放量较N300-OM处理,分别降低了1.18 kg/hm2和0.57 kg/hm2,在100 a尺度上每年由稻田N2O排放引起的GWPs分别降低了6.33×107 kg CO2/hm2和3.06×107 kg CO2/hm2。  相似文献   

2.
Animal manure application as organic fertilizer does not only sustain agricultural productivity and increase soil organic carbon (SOC) stocks, but also affects soil nitrogen cycling and nitrous oxide (N2O) emissions. However, given that the sign and magnitude of manure effects on soil N2O emissions is uncertain, the net climatic impact of manure application in arable land is unknown. Here, we performed a global meta‐analysis using field experimental data published in peer‐reviewed journals prior to December 2015. In this meta‐analysis, we quantified the responses of N2O emissions to manure application relative to synthetic N fertilizer application from individual studies and analyzed manure characteristics, experimental duration, climate, and soil properties as explanatory factors. Manure application significantly increased N2O emissions by an average 32.7% (95% confidence interval: 5.1–58.2%) compared to application of synthetic N fertilizer alone. The significant stimulation of N2O emissions occurred following cattle and poultry manure applications, subsurface manure application, and raw manure application. Furthermore, the significant stimulatory effects on N2O emissions were also observed for warm temperate climate, acid soils (pH < 6.5), and soil texture classes of sandy loam and clay loam. Average direct N2O emission factors (EFs) of 1.87% and 0.24% were estimated for upland soils and rice paddy soils receiving manure application, respectively. Although manure application increased SOC stocks, our study suggested that the benefit of increasing SOC stocks as GHG sinks could be largely offset by stimulation of soil N2O emissions and aggravated by CH4 emissions if, particularly for rice paddy soils, the stimulation of CH4 emissions by manure application was taken into account.  相似文献   

3.
Recycling of livestock manure to agricultural land may reduce the use of synthetic fertilizer and thereby enhance the sustainability of food production. However, the effects of substitution of fertilizer by manure on crop yield, nitrogen use efficiency (NUE), and emissions of ammonia (NH3), nitrous oxide (N2O) and methane (CH4) as function of soil and manure properties, experimental duration and application strategies have not been quantified systematically and convincingly yet. Here, we present a meta‐analysis of these effects using results of 143 published studies in China. Results indicate that the partial substitution of synthetic fertilizers by manure significantly increased the yield by 6.6% and 3.3% for upland crop and paddy rice, respectively, but full substitution significantly decreased yields (by 9.6% and 4.1%). The response of crop yields to manure substitution varied with soil pH and experimental durations, with relatively large positive responses in acidic soils and long‐term experiments. NUE increased significantly at a moderate ratio (<40%) of substitution. NH3 emissions were significantly lower with full substitution (62%–77%), but not with partial substitution. Emissions of CH4 from paddy rice significantly increased with substitution ratio (SR), and varied by application rates and manure types, but N2O emissions decreased. The SR did not significantly influence N2O emissions from upland soils, and a relative scarcity of data on certain manure characteristic was found to hamper identification of the mechanisms. We derived overall mean N2O emission factors (EF) of 0.56% and 0.17%, as well as NH3 EFs of 11.1% and 6.5% for the manure N applied to upland and paddy soils, respectively. Our study shows that partial substitution of fertilizer by manure can increase crop yields, and decrease emissions of NH3 and N2O, but depending on site‐specific conditions. Manure addition to paddy rice soils is recommended only if abatement strategies for CH4 emissions are also implemented.  相似文献   

4.
Field undisturbed tension-free monolith lysimeters and 15N-labeled urea were used to investigate the fate of fertilizer nitrogen in paddy soil in the Taihu Lake region under a summer rice-winter wheat rotation system. We determined nitrogen recovered by rice and wheat, N remained in soil, and the losses of reactive N (i.e., NH3, N2O, NO3 ?, organic N and NH4 +) to the environment. Quantitative allocation of nitrogen fate varied for the rice and wheat growing seasons. At the conventional application rate of 550 kg N ha?1 y?1 (250 kg N ha?1 for wheat and 300 kg N ha?1 for rice), nitrogen recovery of wheat and rice were 49% and 41%, respectively. The retention of fertilizer N in soil at harvest accounted for 29% in the wheat season and for 22% in the rice season. N losses through NH3 volatilization from flooded rice paddy was 12%, far greater than that in the wheat season (less than 1%), while N leaching and runoff comprised only 0.3% in the rice season and 5% in the wheat season. Direct N2O emission was 0.12% for the rice season and 0.14% for the wheat season. The results also showed that some dissolved organic N (DON) were leached in both crop seasons. For the wheat season, DON contributed 40–72% to the N- leaching, in the rice season leached DON was 64–77% of the total N leaching. With increasing fertilizer application rate, NH3 volatilization in the rice season increased proportionally more than the fertilizer increase, N leaching in the wheat season was proportional to the increase of fertilizer rate, while N2O emission increased less in proportion than fertilizer increase both in the rice season and wheat season.  相似文献   

5.
Agricultural activities have greatly altered the global nitrogen (N) cycle and produced nitrogenous gases of environmental significance. More than half of all chemical N fertilizer produced globally is used in crop production in East, Southeast and South Asia, where rice is central to nutrition. Emissions of nitrous oxide (N2O), nitric oxide (NO) and ammonia (NH3) from croplands in this region were estimated by considering background emission and emissions resulting from N added to croplands, including chemical N, animal manure, biologically fixed N and N in crop residues returned to fields. Background emission fluxes of N2O and NO from croplands were estimated to be 1.22 and 0.57 kg N ha?1 yr?1, respectively. Separate fertilizer‐induced emission factors were estimated for upland fields and rice fields. Total N2O emission from croplands in the study region was estimated to be 1.19 Tg N yr?1, with 43% contributed by background emissions. The average fertilizer‐induced N2O emission, however, accounts for only 0.93% of the applied N, which is less than the default IPCC value of 1.25%, because of the low emission factor from paddy fields. Total NO emission was 591 Gg N yr?1 in the study region, with 40% from background emissions. The average fertilizer‐induced NO emission factor was 0.48%. Total NH3 emission was estimated to be 11.8 Tg N yr?1. The use of urea and ammonium bicarbonate and the cultivation of rice led to a high average NH3 loss rate from chemical N fertilizer in the study region. Emissions were displayed at a 0.5° × 0.5° resolution with the use of a global landuse database.  相似文献   

6.
A field study was conducted on a clay soil (Andaqueptic Haplaquoll) in the Philippines to directly measure the evolution of (N2+N2O)−15N from 98 atom %15N-labeled urea broadcast at 29 kg N ha−1 into 0.05-m-deep floodwater at 15 days after transplanting (DT) rice. The flux of (N2+N2O)−15N during the 19 days following urea application never exceeded 28 g N ha−1 day−1. The total recovery of (N2+N2O)−15N evolved from the field was only 0.51% of the applied N, whereas total gaseous15N loss estimated from unrecovered15N in the15N balance was 41% of the applied N. Floodwater (nitrate+nitrite)−N in the 5 days following urea application never exceeded 0.14 g N m−3 or 0.3% of the applied N. Prior cropping of cowpea [Vigna unguiculata (L.) Walp.] to flowering with subsequent incorporation of the green manure (dry matter=2.5 Mg ha−1, C/N=15) at 15 days before rice transplanting had no effect on fate of urea applied to rice at 15 DT. The recovery of (N2+N2O)−15N and total15N loss during the 19 days following urea application were 0.46 and 40%, respectively. Direct recovery of evolved (N2+N2O)−15N and total15N loss from 27 kg applied nitrate-N ha−1 were 20% and 53% during the same 19-day period. The failure of directly-recovered (N2+N2O)−15N to match total15N loss from added nitrate-15N might be due to entrapment of denitrification end products in soil or transport of gaseous end products to the atmosphere through rice plants. The rapid conversion of added nitrate-N to (N2+N2O)−N, the apparently sufficient water soluble soil organic C for denitrification (101 μg C g−1 in the top 0.15-m soil layer), and the low floodwater nitrate following urea application suggested that denitrification loss from urea was controlled by supply of nitrate rather than by availability of organic C.  相似文献   

7.
K. R. Reddy 《Plant and Soil》1982,67(1-3):209-220
15N studies of various aspects of the nitrogen cycle in a flooded rice ecosystem on Crowley silt loam soil in Louisiana were reviewed to construct a mass balance model of the nitrogen cycle for this system. Nitrogen transformations modeled included 1) net ammonification (0.22 mg NH4 +?N kg dry soil?1 day?1), 2) net nitrification (2.07 mg NO3 ??N kg?1 dry soil?1 day?1), 3) denitrification (0.37 mg N kg dry soil?1 day?1), and 4) biological N2 fixation (0.16 mg N kg dry soil?1 day?1). Nitrogen inputs included 1) application of fertilizers, 2) incorporation of crop residues, 3) biological N2 fixation, and 4) deposition. Nitrogen outputs included 1) crop removal, 2) gaseous losses from NH3 volatilization and simultaneous occurrence of nitrification-denitrification, and 3) leaching and runoff. Mass balance calculations indicated that 33% of the available inorganic nitrogen was recovered by rice, and the remaining nitrogen was lost from the system. Losses of N due to ammonia volatilization were minimal because fertilizer-N was incorporated into the soil. A significant portion of inorganic-N was lost by ammonium diffusion from the anaerobic layer to the aerobic layer in response to a concentration gradient and subsequent nitrification in the aerobic layer followed by nitrate diffusion into the anaerobic layer and denitrification into gaseous end products. Leaching and surface runoff losses were minimal.  相似文献   

8.
Summary The behavior of soil N, fertilizer N and plant N was studied in a greenhouse experiment with 2 plant densities of rice (IR 36) under flooded conditions. Increasing plant density from 25 hills m2 to 50 hills m2 increased tiller number and panicle number but had no influence on grain yield. The yield of grain was linearly related to N content of the above ground dry matter at harvest (r2=.96) and thus the effect of manipulating the N supply on yield was directly related to N uptake.Mixing of (NH4)2SO4 with the soil volume before transplanting resulted in increases in N in the aboveground dry matter equal to 87% of the applied N. When (NH4)2SO4 was broadcast into the flood water at 4 stages of growth beginning 25 DAT, the corresponding increase was 77% of the applied N. When (NH4)2SO4 was split between shallow mixing before transplanting and a broadcast application of 32 DAT, the corresponding increase was 42%. Thus several applications of fertilizer N increased grain production per unit of applied N.Inorganic N extractable by KCl was a useful but not an infailible guide to the behavior of the soil and fertilizer inorganic N.  相似文献   

9.
We report a study in northern Thailand to examine the effects of fertilizer N, applied both to paddy rice and to a subsequent soybean crop on symbiotic and yield characteristics of soybean and on the differences between inputs of fixed N2 and the removal of N as harvested product. Treatments were a factorial arrangement of 0, 100 and 300 kg N ha-1 applied to the rice (designated R0, R100 and R300, respectively), and 0,25 and 50 kg N ha-1, applied as starter fertilizer to the soybean (S0, S25 and S50, respectively).Nitrogen applied to the rice increased rice yields by up to 74% but proportions recovered by the rice were low (45% [R100] and 14% [R300]). The rice N treatments had only marginal effects on soybean nodulation (up to 17% reduction in early growth) and above-ground dry matter (up to 9% increase). Effects on soybean seed yield and total N2 fixed were insignificant. Starter N, applied to the soybean at sowing, also marginally reduced nodulation and enhanced above-ground dry matter. Total N2 fixed was unaffected but seed yield was increased by up to 6%. For all treatments, total above-ground N ranged from 145 to 179 kg ha-1 with 72 to 85% (122 and 140 kg ha-1) derived from N2 fixation. When harvested product consisted of seed only, differences between inputs of fixed N2 and removals of seed N were close to zero (-10 to+9 kg N ha-1) with little effect of fertilizer N. The N balances were reduced by an average of 18 kg N ha-1 when straw was included as harvested product. We concluded that N applied to the rice and to the following soybean was inefficiently used by those crops and had only marginal effects of symbiotic activity of the soybean. Furthermore, the benefit of the N2 fixing soybean in this system was to slow the decline of, rather than enhance, the N fertility of the soil  相似文献   

10.
Rice is staple food of half of mankind and paddy soils account for the largest anthropogenic wetlands on earth. Ample of research is being done to find cultivation methods under which the integrative greenhouse effect caused by emitted CH4 and N2O would be mitigated. Whereas most of the research focuses on quantifying such emissions, there is a lack of studies on the biogeochemistry of paddy soils. In order to deepen our mechanistic understanding of N2O and CH4 fluxes in rice paddies, we also determined NO3 ? and N2O concentrations as well as N2O isotope abundances and presence of O2 along soil profiles of paddies which underwent three different water managements during the rice growing season(s) in (2010 and) 2011 in Korea. Largest amounts of N2O (2 mmol m?2) and CH4 (14.5 mol m?2) degassed from the continuously flooded paddy, while paddies with less flooding showed 30–60 % less CH4 emissions and very low to negative N2O balances. In accordance, the global warming potential (GWP) was lowest for the Intermittent Irrigation paddy and highest for the Traditional Irrigation paddy. The N2O emissions could the best be explained (*P < 0.05) with the δ15N values and N2O concentrations in 40–50 cm soil depth, implying that major N2O production/consumption occurs there. No significant effect of NO3 ? on N2O production has been found. Our study gives insight into the soil of a rice paddy and reveals areas along the soil profile where N2O is being produced. Thereby it contributes to our understanding of subsoil processes of paddy soils.  相似文献   

11.
Soils are among the important sources of atmospheric nitric oxide (NO) and nitrous oxide (N2O), acting as a critical role in atmospheric chemistry. Updated data derived from 114 peer‐reviewed publications with 520 field measurements were synthesized using meta‐analysis procedure to examine the N fertilizer‐induced soil NO and the combined NO+N2O emissions across global soils. Besides factors identified in earlier reviews, additional factors responsible for NO fluxes were fertilizer type, soil C/N ratio, crop residue incorporation, tillage, atmospheric carbon dioxide concentration, drought and biomass burning. When averaged across all measurements, soil NO‐N fluxes were estimated to be 4.06 kg ha?1 yr?1, with the greatest (9.75 kg ha?1 yr?1) in vegetable croplands and the lowest (0.11 kg ha?1 yr?1) in rice paddies. Soil NO emissions were more enhanced by synthetic N fertilizer (+38%), relative to organic (+20%) or mixed N (+18%) sources. Compared with synthetic N fertilizer alone, synthetic N fertilizer combined with nitrification inhibitors substantially reduced soil NO emissions by 81%. The global mean direct emission factors of N fertilizer for NO (EFNO) and combined NO+N2O (EFc) were estimated to be 1.16% and 2.58%, with 95% confidence intervals of 0.71–1.61% and 1.81–3.35%, respectively. Forests had the greatest EFNO (2.39%). Within the croplands, the EFNO (1.71%) and EFc (4.13%) were the greatest in vegetable cropping fields. Among different chemical N fertilizer varieties, ammonium nitrate had the greatest EFNO (2.93%) and EFc (5.97%). Some options such as organic instead of synthetic N fertilizer, decreasing N fertilizer input rate, nitrification inhibitor and low irrigation frequency could be adopted to mitigate soil NO emissions. More field measurements over multiyears are highly needed to minimize the estimate uncertainties and mitigate soil NO emissions, particularly in forests and vegetable croplands.  相似文献   

12.
With increasing nitrogen (N) application to croplands required to support growing food demand, mitigating N2O emissions from agricultural soils is a global challenge. National greenhouse gas emissions accounting typically estimates N2O emissions at the country scale by aggregating all crops, under the assumption that N2O emissions are linearly related to N application. However, field studies and meta‐analyses indicate a nonlinear relationship, in which N2O emissions are relatively greater at higher N application rates. Here, we apply a super‐linear emissions response model to crop‐specific, spatially explicit synthetic N fertilizer and manure N inputs to provide subnational accounting of global N2O emissions from croplands. We estimate 0.66 Tg of N2O‐N direct global emissions circa 2000, with 50% of emissions concentrated in 13% of harvested area. Compared to estimates from the IPCC Tier 1 linear model, our updated N2O emissions range from 20% to 40% lower throughout sub‐Saharan Africa and Eastern Europe, to >120% greater in some Western European countries. At low N application rates, the weak nonlinear response of N2O emissions suggests that relatively large increases in N fertilizer application would generate relatively small increases in N2O emissions. As aggregated fertilizer data generate underestimation bias in nonlinear models, high‐resolution N application data are critical to support accurate N2O emissions estimates.  相似文献   

13.
The novel cultivation of paddy rice in aerobic soil reveals the great potential not only for water-saving agriculture, but also for rice intercropping with legumes and both are important for the development of sustainable agriculture. A two-year field experiment was carried out to investigate the yield advantage of intercropping peanut (Arachis hypogaea L., Zhenyuanza 9102) and rice (Oryza sativa L., Wuyujing 99-15) in aerobic soil, and its effect on soil nitrogen (N) fertility. A pot experiment was also conducted to examine the N2-fixation by peanut and N transfer from peanut to rice at three N fertilizer application rates, i.e., 15, 75 and 150 kg N ha–1 using a 15N isotope dilution method. The results showed that the relative advantage of intercropping, expressed as land equivalent ratio (LER), was 1.41 in 2001 and 1.36 in 2002. Both area-adjusted yield and N content of rice were significantly increased in the intercropping system while those of peanut were not significantly different between intercropping and monocropping systems. The yields of rice grain and peanut, for example, were increased by 29–37% and 4–7% in the intercropping system when compared to the crop grown in the monocropping system. The intercropping advantage was mainly due to the sparing effect of soil inorganic N contributed by the peanut. This result was proved by the higher soil mineral N concentration under peanut monocropping and intercropping than under the rice monocropping system.%Ndfa (nitrogen derived from atmosphere) by peanut was 72.8, 56.5 and 35.4% under monocropping and 76.1, 53.3 and 50.7% under the intercropping system at N fertilizer application rates of 15, 75 and 150 kg ha–1, respectively. The 15N-based estimates of N transfer from peanut (%NTFL) was 12.2, 9.2 and 6.2% at the three N fertilizer application rates. N transferred from peanut accounted for 11.9, 6.4 and 5.5% of the total N accumulated in the rice plants in intercropping at the same three N fertilizer application rates, suggesting that the transferred N from peanut in the intercropping system made a contribution to the N nutrition of rice, especially in low-N soil.  相似文献   

14.
Erratic rainfall in rainfed lowlands and inadequate water supply in irrigated lowlands can results in alternate soil drying and flooding during a rice (Oryza sativa L.) cropping period. Effects of alternate soil drying and flooding on N loss by nitrification-denitrification have been inconsistent in previous field research. To determine the effects of water deficit and urea timing on soil NO3 and NH4, floodwater NO3, and N loss from added 15N-labeled urea, a field experiment was conducted for 2 yr on an Andaqueptic Haplaquoll in the Philippines. Water regimes were continuously flooded, not irrigated from 15 to 35 d after transplanting (DT), or not irrigated from 41 to 63 DT. The nitrogen treatments in factorial combination with water regimes were no applied N and 80 kg urea-N ha–1, either applied half basally and half at 37 DT or half at 11 DT and half at 65 DT. Water deficit at 15 to 35 DT and 41 to 63 DT, compared with continuous soil flooding, significantly reduced extractable NH4 in the top 30-cm soil layer and resulted in significant but small (<1.0 kg N ha–1) soil NO3 accumulations. Soil NO3, which accumulated during the water deficit, rapidly disappeared after reflooding. Water deficit at 15 to 35 DT, unlike that at 41 to 63 DT, increased the gaseous loss of added urea N as determined from unrecovered 15N in 15N balances. The results indicate that application of urea to young rice in saturated or flooded soil results in large, rapid losses of N (mean = 35% of applied N), presumably by NH3 volatilization. Subsequent soil drying and flooding during the vegetative growth phase can result in additional N loss (mean = 14% of applied N), presumably by nitrification-denitrification. This additional N loss due to soil drying and flooding decreases with increasing crop age, apparently because of increased competition by rice with soil microorganisms for NH4 and NO3.  相似文献   

15.
Nitrous oxide (N2O) fluxes from soil under mown grassland were monitored using static chambers over three growing seasons in intensively and extensively managed systems in Central Switzerland. Emissions were largest following the application of mineral (NH4NO3) fertilizer, but there were also substantial emissions following cattle slurry application, after grass cuts and during the thawing of frozen soil. Continuous flux sampling, using automatic chambers, showed marked diurnal patterns in N2O fluxes during emission peaks, with highest values in the afternoon. Net uptake fluxes of N2O and subambient N2O concentrations in soil open pore space were frequently measured on both fields. Flux integration over 2.5 years yields a cumulated emission of +4.7 kgN2O‐N ha?1 for the intensively managed field, equivalent to an average emission factor of 1.1%, and a small net sink activity of ?0.4 kg N2O‐N ha?1 for the unfertilized system. The data suggest the existence of a consumption mechanism for N2O in dry, areated soil conditions, which cannot be explained by conventional anaerobic denitrification. The effect of fertilization on greenhouse gas budgets of grassland at the ecosystem level is discussed.  相似文献   

16.
Our understanding and quantification of global soil nitrous oxide (N2O) emissions and the underlying processes remain largely uncertain. Here, we assessed the effects of multiple anthropogenic and natural factors, including nitrogen fertilizer (N) application, atmospheric N deposition, manure N application, land cover change, climate change, and rising atmospheric CO2 concentration, on global soil N2O emissions for the period 1861–2016 using a standard simulation protocol with seven process‐based terrestrial biosphere models. Results suggest global soil N2O emissions have increased from 6.3 ± 1.1 Tg N2O‐N/year in the preindustrial period (the 1860s) to 10.0 ± 2.0 Tg N2O‐N/year in the recent decade (2007–2016). Cropland soil emissions increased from 0.3 Tg N2O‐N/year to 3.3 Tg N2O‐N/year over the same period, accounting for 82% of the total increase. Regionally, China, South Asia, and Southeast Asia underwent rapid increases in cropland N2O emissions since the 1970s. However, US cropland N2O emissions had been relatively flat in magnitude since the 1980s, and EU cropland N2O emissions appear to have decreased by 14%. Soil N2O emissions from predominantly natural ecosystems accounted for 67% of the global soil emissions in the recent decade but showed only a relatively small increase of 0.7 ± 0.5 Tg N2O‐N/year (11%) since the 1860s. In the recent decade, N fertilizer application, N deposition, manure N application, and climate change contributed 54%, 26%, 15%, and 24%, respectively, to the total increase. Rising atmospheric CO2 concentration reduced soil N2O emissions by 10% through the enhanced plant N uptake, while land cover change played a minor role. Our estimation here does not account for indirect emissions from soils and the directed emissions from excreta of grazing livestock. To address uncertainties in estimating regional and global soil N2O emissions, this study recommends several critical strategies for improving the process‐based simulations.  相似文献   

17.
Legumes have the potential to alter nitrous oxide (N2O) emissions in grass-legume mixtures via changes in soil N availability, but the influence of legume abundance on N2O fluxes in grazed multi-species grasslands has faced little attention to date. In this paper, a combination of 15N-labelled fertilizer application and automatic chamber measurements was used to investigate N2O fluxes and soil-plant N transfers for high- and low-density clover patches in an intensively-managed, upland pasture (Auvergne, France) over the course of one growing season. During the six-month study period, N2O fluxes were highly variable. Maximum daily N2O emission was 52 g N2O-N ha?1, and was associated with fertilizer application early in the growing season. Smaller peaks of N2O emission occured in response to cutting events and fertilizer application later in the growing season. Nitrous oxide fluxes derived from 15N-labelled fertilizer peaked at 40% shortly after fertilizer application, but the dominant source of N2O fluxes was the soil N pool. Contrary to expectations, clover density had no significant effects on N content or patterns of 15N recovery in plant or soil mineral N pools. Nevertheless, we found a tendency for increased N2O-N losses from the low clover treatment. Furthermore, 15N recovery in N2O was higher in the low- compared to the high-density clover treatment during favorable growing conditions, suggesting transient shifts in plant/soil competition for N depending on legume abundance. Multiple regression analysis revealed that water-filled pore space (WFPS) and clover dry mass were the main factors driving cumulative N2O emissions in the high clover treatment, whereas variation in cumulated N2O emissions in the low clover treatment was best explained by WFPS and grass mass. We hypothesize that clover density had indirect effects on the sensitivity of N2O emissions to abiotic and biotic factors possibly via changes in soil pH. Overall, our results suggest that spatial heterogeneity in clover abundance may have relatively little impact on field-scale N2O emissions in fertilized grasslands.  相似文献   

18.
Indirect emission of nitrous oxide (N2O), associated with nitrogen (N) leaching and runoff from agricultural lands is a major source of atmospheric N2O. Recent studies have shown that carbon dioxide (CO2) and methane (CH4) are also emitted via these pathways. We measured the concentrations of three dissolved greenhouse gases (GHGs) in the subsurface drainage from field lysimeter that had a shallow groundwater table. Aboveground fluxes of CH4 and N2O were monitored using an automated closed‐chamber system. The annual total emissions of dissolved and aboveground GHGs were compared among three cropping systems; paddy rice, soybean and wheat, and upland rice. The annual drainage in the paddy rice, the soybean and wheat, and the upland rice plots was 1435, 782, and 1010 mm yr?1, respectively. Dissolved CO2 emissions were highest in the paddy rice plots, and were equivalent to 1.05–1.16% of the carbon storage in the topsoil. Dissolved CH4 emissions were also higher in the paddy rice plots, but were only 0.03–0.05% of the aboveground emissions. Dissolved N2O emissions were highest in the upland rice plots, where leached N was greatest due to small crop biomass. In the soybean and wheat plots, large crop biomass, due to double cropping, decreased the drainage volume, and thus decreased dissolved GHG emissions. Dissolved N2O emissions from both the soybean and wheat plots and the upland rice plots were equivalent to 50.3–67.3% of the aboveground emissions. The results indicate that crop type and rotation are important factors in determining dissolved GHG emissions in the drainage from a crop field.  相似文献   

19.
In a field experiment using microplots, a flooded Crowley silt loam (Typic Albaqualfs) rice soil was fertilized with 15N labelled (60–74 atom %) urea and KNO3. Emission of N2, N2O and CH4 and accumulation in soil were measured for 21 d after fertilizer application.Emission of 15N2-N measured from the urea and KNO3 treated plots ranged from <15 to 570 and from 330 to 3,420 g ha–1 d–1, respectively. Entrapped 15N2-N in the urea treated microplots was significantly lower (<15 g to 2.1 kg ha–1) on all sampling dates compared to the 15N2-N gas accumulation in the KNO3 treated plots (6.4 to 31.5 kg ha–1). Emissions of N2O-N were low and did not exceed 4 g ha–1 d–1. Fluxes of CH4 from the fertilizer and control plots were low and never exceeded 33 g ha–1 d–1. Maximum accumulation of CH4 in the flooded soil measured 460 and 195 g ha–1 for the urea and KNO3 treatments, respectively.  相似文献   

20.
Summary When nitrogen fertilizers are applied to rice, growing under submerged conditions, substantial gaseous losses of fertilizer nitrogen have been observed.Placement of the fertilizer at shallow depth greatly reduces these losses. A balance experiment using six different rice soils was carried out in a greenhouse. N15-labelled (NH4)2SO4 (atom excess of 10% N-15) was applied on the surface and at 7 cm depth. Analysis of soil, roots and shoots showed that the difference in utilization of fertiliser nitrogen for surface and depth placement in pots could be accounted for by the difference in gaseous loss of fertilizer-N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号