首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite the abundance of literature on organismal responses to multiple environmental stressors, most studies have not matched the timing of experimental manipulations with the temporal pattern of stressors in nature. We test the interactive effects of diel‐cycling hypoxia with both warming and decreased salinities using ecologically realistic exposures. Surprisingly, we found no evidence of negative synergistic effects on Olympia oyster growth; rather, we found only additive and opposing effects of hypoxia (detrimental) and warming (beneficial). We suspect that diel‐cycling provided a temporal refuge that allowed physiological compensation. We also tested for latent effects of warming and hypoxia to low‐salinity tolerance using a seasonal delay between stressor events. However, we did not find a latent effect, rather a threshold survival response to low salinity that was independent of early life‐history exposure to warming or hypoxia. The absence of synergism is likely the result of stressor treatments that mirror the natural timing of environmental stressors. We provide environmental context for laboratory experimental data by examining field time series environmental data from four North American west coast estuaries and find heterogeneous environmental signals that characterize each estuary, suggesting that the potential stressor exposure to oysters will drastically differ over moderate spatial scales. This heterogeneity implies that efforts to conserve and restore oysters will require an adaptive approach that incorporates knowledge of local conditions. We conclude that studies of multiple environmental stressors can be greatly improved by integrating ecologically realistic exposure and timing of stressors found in nature with organismal life‐history traits.  相似文献   

2.
Rachael E. Blake  J. Emmett Duffy 《Oikos》2010,119(10):1625-1635
When multiple stressors act simultaneously, their effects on ecosystems become more difficult to predict. In the face of multiple stressors, diverse ecosystems may be more stable if species respond differently to stressors or if functionally similar species can compensate for stressor effects on focal species. Many habitats around the globe are threatened by multiple stressors, including highly productive seagrass habitats. For example, in Chesapeake Bay, USA, regional climate change predictions suggest that elevated temperature and freshwater inputs are likely to be increasingly important stressors. Using seagrass mesocosms as a model system, we tested whether species richness of crustacean grazers buffers ecosystem properties against the impacts of elevated temperature and freshwater pulse stressors in a fully factorial experiment. Grazer species responded to pulsed salinity changes differently; abundance of Elasmopus levis responded negatively to freshwater pulses, whereas abundance of Gammarus mucronatus and Erichsonella attenuata responded positively or neutrally. Consistent with the hypothesis that biodiversity provides resistance stability, biomass of epiphytic algae that form the base of the food web was less affected by stressors in species‐rich grazer treatments than in single‐species grazer treatments. Stochastic (among‐replicate) variation of sessile invertebrate biomass within treatments was also reduced in more diverse grazer treatments. Therefore, grazer species richness tended to increase the resistance stability of both major components of the seagrass fouling community, algae and invertebrates, in the face of environmental stressors. Finally, in our model system, multi‐stressor impacts suggested a pattern of antagonism contrary to previous assumptions of synergistic stressor effects. Overall, our results confirm that invertebrate grazer species are functionally diverse in their response to environmental stressors, but are largely functionally redundant in their grazing effects leading to greater resistance stability of certain ecosystem properties in diverse grazer assemblages even when influenced by multiple environmental stressors.  相似文献   

3.
Reproductive tactics and migratory strategies in Pacific and Atlantic salmonines are inextricably linked through the effects of migration (or lack thereof) on age and size at maturity. In this review, we focus on the ecological and evolutionary patterns of freshwater maturation in salmonines, a key process resulting in the diversification of their life histories. We demonstrate that the energetics of maturation and reproduction provides a unifying theme for understanding both the proximate and ultimate causes of variation in reproductive schedules among species, populations, and the sexes. We use probabilistic maturation reaction norms to illustrate how variation in individual condition, in terms of body size, growth rate, and lipid storage, influences the timing of maturation. This useful framework integrates both genetic and environmental contributions to conditional strategies for maturation and, in doing so, demonstrates how flexible life histories can be both heritable and subject to strong environmental influences. We review evidence that the propensity for freshwater maturation in partially anadromous species is predictable across environmental gradients at geographic and local spatial scales. We note that growth is commonly associated with the propensity for freshwater maturation, but that life-history responses to changes in growth caused by temperature may be strikingly different than changes caused by differences in food availability. We conclude by exploring how contemporary management actions can constrain or promote the diversity of maturation phenotypes in Pacific and Atlantic salmonines and caution against underestimating the role of freshwater maturing forms in maintaining the resiliency of these iconic species.  相似文献   

4.
Agricultural land use results in multiple stressors affecting stream ecosystems. Flow reduction due to water abstraction, elevated levels of nutrients and chemical contaminants are common agricultural stressors worldwide. Concurrently, stream ecosystems are also increasingly affected by climate change. Interactions among multiple co‐occurring stressors result in biological responses that cannot be predicted from single‐stressor effects (i.e. synergisms and antagonisms). At the ecosystem level, multiple‐stressor effects can be further modified by biotic interactions (e.g. trophic interactions). We conducted a field experiment using 128 flow‐through stream mesocosms to examine the individual and combined effects of water abstraction, nutrient enrichment and elevated levels of the nitrification inhibitor dicyandiamide (DCD) on survival, condition and gut content of juvenile brown trout and on benthic abundance of their invertebrate prey. Flow velocity reduction decreased fish survival (?12% compared to controls) and condition (?8% compared to initial condition), whereas effects of nutrient and DCD additions and interactions among these stressors were not significant. Negative effects of flow velocity reduction on fish survival and condition were consistent with effects on fish gut content (?25% compared to controls) and abundance of dominant invertebrate prey (?30% compared to controls), suggesting a negative metabolic balance driving fish mortality and condition decline, which was confirmed by structural equation modelling. Fish mortality under reduced flow velocity increased as maximal daily water temperatures approached the upper limit of their tolerance range, reflecting synergistic interactions between these stressors. Our study highlights the importance of indirect stressor effects such as those transferred through trophic interactions, which need to be considered when assessing and managing fish populations and stream food webs in multiple‐stressor situations. However, in real streams, compensatory mechanisms and behavioural responses, as well as seasonal and spatial variation, may alter the intensity of stressor effects and the sensitivity of trout populations.  相似文献   

5.
Facing climate change (CC), species are prone to multiple modifications in their environment that can lead to extinction, migration or adaptation. Identifying the role and interplay of different potential stressors becomes a key question. Anadromous fishes will be exposed to both river and oceanic habitat changes. For Atlantic salmon, the river water temperature, river flow and oceanic growth conditions appear as three main stressing factors. They could act on population dynamics or as selective forces on life‐history pathways. Using an individual‐based demo‐genetic model, we assessed the effects of these factors (1) to compare risks of extinction resulting from CC in river and ocean, and (2) to assess CC effects on life‐history pathways including the evolution of underlying genetic control of phenotypic plasticity. We focused on Atlantic salmon populations from Southern Europe for a time horizon of three decades. We showed that CC in river alone should not lead to extinction of Southern European salmon populations. In contrast, the reduced oceanic growth appeared as a significant threat for population persistence. An increase in river flow amplitude increased the risk of local extinction in synergy with the oceanic effects, but river temperature rise reduced this risk. In terms of life‐history modifications, the reduced oceanic growth increased the age of return of individuals through plastic and genetic responses. The river temperature rise increased the proportion of sexually mature parr, but the genetic evolution of the maturation threshold lowered the maturation rate of male parr. This was identified as a case of environmentally driven plastic response that masked an underlying evolutionary response of plasticity going in the opposite direction. We concluded that to counteract oceanic effects, river flow management represented the sole potential force to reduce the extinction probability of Atlantic salmon populations in Southern Europe, although this might not impede changes in migration life history.  相似文献   

6.
High population density and nutrition restriction can lead to phase variation in morphology and development, and subsequently induce changes in the reaction norms of adult flight in migrant insects. However, response of migratory propensity to such stress in Endopterygote insects, especially in several species of Lepidoptera, remains unclear. In this study, larval and adult developmental responses to crowding and food stress were investigated in the migratory moth, Cnaphalocrocis medinalis (Guenée). A high larval rearing density significantly reduced pupal mass, survival rate and female fecundity. Larvae developed rapidly under crowding conditions, and time to pupation was 2 days earlier than individuals reared alone. By contrast, short‐term starvation and associated compensatory growth prolonged larval duration by 3–4 days and pupal duration by 1–2 days. It also reduced the pupal mass, but showed no detectable effects on female reproductive performance. Both sexes had similar development strategies; however, females seemed to be more sensitive to crowding and food shortage than males. A positive effect was expected if such stress factors acted as cues that triggering a behavioural or physiological shift to a distinct migratory phase. To the contrary, we found no proof that crowding and starvation caused maturation delay in female reproductive development. All treatments did not significantly increase female pre‐oviposition period. Therefore, we concluded that life developmental responses to crowding and food shortage in this species were different. Adult migration propensity was not enhanced under such stress conditions during the larval phase.  相似文献   

7.
Dissecting phenotypic variance in life history traits into its genetic and environmental components is at the focus of evolutionary studies and of pivotal importance to identify the mechanisms and predict the consequences of human‐driven environmental change. The timing of recurrent life history events (phenology) is under strong selection, but the study of the genes that control potential environmental canalization in phenological traits is at its infancy. Candidate genes for circadian behaviour entrained by photoperiod have been screened as potential controllers of phenological variation of breeding and moult in birds, with inconsistent results. Despite photoperiodic control of migration is well established, no study has reported on migration phenology in relation to polymorphism at candidate genes in birds. We analysed variation in spring migration dates within four trans‐Saharan migratory species (Luscinia megarhynchos; Ficedula hypoleuca; Anthus trivialis; Saxicola rubetra) at a Mediterranean island in relation to Clock and Adcyap1 polymorphism. Individuals with larger number of glutamine residues in the poly‐Q region of Clock gene migrated significantly later in one or, respectively, two species depending on sex and whether the within‐individual mean length or the length of the longer Clock allele was considered. The results hinted at dominance of the longer Clock allele. No significant evidence for migration date to covary with Adcyap1 polymorphism emerged. This is the first evidence that migration phenology is associated with Clock in birds. This finding is important for evolutionary studies of migration and sheds light on the mechanisms that drive bird phenological changes and population trends in response to climate change.  相似文献   

8.
Migratory behaviour patterns in animals are controlled by a complex genetic architecture. Rainbow trout (Oncorhynchus mykiss) is a salmonid fish that spawns in streams but exhibits three primary life history pathways: stream‐resident (fluvial), lake‐migrant (adfluvial) and ocean‐migrant (anadromous). Previous studies examining fluvial and anadromous Omykiss have identified several genes associated with life history divergence including the presence of an inversion complex within chromosome 5 (Omy05) that appears to maintain a suite of linked genes controlling migratory behaviour. However, adfluvial trout are migratory without being anadromous, and the genetic basis for this life history has not been investigated from evolutionary perspectives. We sampled wild, native nonanadromous rainbow trout occupying connected stream and lake habitats in a southwest Alaskan watershed to determine whether these fish exhibit genetic divergence between fluvial and adfluvial ecotypes, and whether that divergence parallels that documented in fluvial and anadromous O. mykiss. Data from restriction site‐associated DNA (RAD) sequencing revealed an association between frequencies of both the Omy05 inversion complex and other single nucleotide polymorphisms (SNPs) with habitat type (stream or lake), supporting the genetic divergence of fluvial and adfluvial individuals in sympatry. The presence of a genetic basis for migration into lakes, analogous to that documented for anadromy, indicates that the adfluvial ecotype must be recognized separately from the fluvial form of Omykiss even though neither is anadromous. These results highlight the genetic architecture underlying migration and the importance of chromosomal inversions in promoting and sustaining intraspecific diversity.  相似文献   

9.
Atlantic salmon populations are reported to be declining throughout its range, raising major management concerns. Variation in adult fish abundance may be due to variation in survival, growth, and timing of life history decisions. Given the complex life history, utilizing highly divergent habitats, the reasons for declines may be multiple and difficult to disentangle. Using recreational angling data of two sea age groups, one‐sea‐winter (1SW) and two‐sea‐winter (2SW) fish originated from the same smolt year class, we show that sea age at maturity of the returns has increased in 59 Norwegian rivers over the cohorts 1991–2005. By means of linear mixed‐effects models we found that the proportion of 1SW fish spawning in Norway has decreased concomitant with the increasing sea surface temperature experienced by the fish in autumn during their first year at sea. Furthermore, the decrease in the proportion of 1SW fish was influenced by freshwater conditions as measured by water discharge during summer months 1 year ahead of seaward migration. These results suggest that part of the variability in age at maturity can be explained by the large‐scale changes occurring in the north‐eastern Atlantic pelagic food web affecting postsmolt growth, and by differences in river conditions influencing presmolt growth rate and later upstream migration.  相似文献   

10.
Population limitation models of migratory birds have sought to include impacts from events across the full annual cycle. Previous work has shown that events occurring in winter result in some individuals transitioning to the breeding grounds earlier or in better physical condition than others, thereby affecting reproductive success (carry‐over effects). However, evidence for carry‐over effects from breeding to wintering grounds has been shown less often. We used feather corticosterone (CORTf) levels of the migratory Louisiana Waterthrush Parkesia motacilla as a measure of the physiological state of birds at the time of moult on the breeding territory to investigate whether carry‐over effects provide linkages across the annual cycle of this stream‐obligate bird. We show that birds arriving on wintering grounds with lower CORTf scores, indicating reduced energetic challenges or stressors at the time of moult, occupied higher quality territories, and that these birds then achieved a better body condition during the overwinter period. Body condition, in turn, was important in determining whether adult birds returned the following winter, with birds in better condition returning at higher rates. Together these data suggest a carry‐over effect from the breeding grounds to the wintering grounds that is further extended with respect to annual return rates. Very few other studies have linked conditions during the previous breeding season with latent effects during the subsequent overwintering period or with annual survival. This study shows that the effects of variation in energetic challenges or stressors can potentially carry over from the natal stream and accumulate over more than one life‐history period before being manifested in reduced survival. This is of particular relevance to models of population limitation in migratory birds.  相似文献   

11.
12.
13.
Landscape permeability is often explored spatially, but may also vary temporally. Landscape permeability, including partial barriers, influences migratory animals that move across the landscape. Partial barriers are common in rivers where barrier passage varies with streamflow. We explore the influence of partial barriers on the spatial and temporal distribution of migration‐linked genotypes of Oncorhynchus mykiss, a salmonid fish with co‐occurring resident and migratory forms, in tributaries to the South Fork Eel River, California, USA, Elder and Fox Creeks. We genotyped >4,000 individuals using RAD‐capture and classified individuals as resident, heterozygous or migratory genotypes using life history‐associated loci. Across four years of study (2014–2017), the permeability of partial barriers varied across dry and wet years. In Elder Creek, the largest waterfall was passable for adults migrating up‐river 4–39 days each year. In this stream, the overall spatial pattern, with fewer migratory genotypes above the waterfall, remained true across dry and wet years (67%–76% of migratory alleles were downstream of the waterfall). We also observed a strong relationship between distance upstream and proportion of migratory alleles. In Fox Creek, the primary barrier is at the mouth, and we found that the migratory allele frequency varied with the annual timing of high flow events. In years when rain events occurred during the peak breeding season, migratory allele frequency was high (60%–68%), but otherwise it was low (30% in two years). We highlight that partial barriers and landscape permeability can be temporally dynamic, and this effect can be observed through changing genotype frequencies in migratory animals.  相似文献   

14.
Concern is growing about the potential effects of interacting multiple stressors, especially as the global climate changes. We provide a comprehensive review of multiple stressor interactions in coral reef ecosystems, which are widely considered to be one of the most sensitive ecosystems to global change. First, we synthesized coral reef studies that examined interactions of two or more stressors, highlighting stressor interactions (where one stressor directly influences another) and potentially synergistic effects on response variables (where two stressors interact to produce an effect that is greater than purely additive). For stressor‐stressor interactions, we found 176 studies that examined at least 2 of the 13 stressors of interest. Applying network analysis to analyze relationships between stressors, we found that pathogens were exacerbated by more costressors than any other stressor, with ca. 78% of studies reporting an enhancing effect by another stressor. Sedimentation, storms, and water temperature directly affected the largest number of other stressors. Pathogens, nutrients, and crown‐of‐thorns starfish were the most‐influenced stressors. We found 187 studies that examined the effects of two or more stressors on a third dependent variable. The interaction of irradiance and temperature on corals has been the subject of more research (62 studies, 33% of the total) than any other combination of stressors, with many studies reporting a synergistic effect on coral symbiont photosynthetic performance (n = 19). Second, we performed a quantitative meta‐analysis of existing literature on this most‐studied interaction (irradiance and temperature). We found that the mean effect size of combined treatments was statistically indistinguishable from a purely additive interaction, although it should be noted that the sample size was relatively small (n = 26). Overall, although in aggregate a large body of literature examines stressor effects on coral reefs and coral organisms, considerable gaps remain for numerous stressor interactions and effects, and insufficient quantitative evidence exists to suggest that the prevailing type of stressor interaction is synergistic.  相似文献   

15.
16.
D. Weetman  D. Atkinson 《Oikos》2002,98(2):299-307
Synergistic effects between temperature and food level on the vulnerability of Daphnia life histories to predation have previously received little attention, despite their potential significance for summer population dynamics. In this investigation, most traits in the early life history of Daphnia pulex altered in response to increasing concentrations of fish kairomone. Although there was some variation attributable to experimental temperature and food treatments, traits exhibited reaction norms which suggested at least some degree of kairomone dose-dependence. Temperature, food level and their interaction affected the mean values of every trait examined and in some cases also influenced the antipredator response via a three-way interaction with fish kairomone. The insertion of an extra juvenile instar resulted in later maturation at a larger size for most females raised under conditions of low temperature and low food, but this response was largely suppressed in the presence of fish kairomone. Earlier maturation due to deletion of an instar was observed most frequently under high food and temperature conditions with fish kairomone present, suggesting an effect of kairomone on the size threshold for reproductive development. Principal components analysis was used to produce an index reflecting the net potential vulnerability to fish predation of the suite of life history traits. Vulnerability generally declined with increasing kairomone level as a result of the apparently adaptive alterations in most life history traits. Raised temperature and food level also generally reduced potential vulnerability, but a highly significant interaction between these factors was also found. Potentially important implications of these results for optimal vertical migration and summer population dynamics are discussed.  相似文献   

17.
Timing of maturation is an important life‐history trait that is likely to be subjected to strong natural selection. Although population differences in timing of maturation have been frequently reported in studies of wild animal populations, little is known about the genetic basis of this differentiation. Here, we investigated population and sex differences in timing of maturation within and between two nine‐spined stickleback (Pungitius pungitius) populations in a laboratory breeding experiment. We found that fish from the high‐predation marine population matured earlier than fish from the low‐predation pond population and males matured earlier than females. Timing of maturation in both reciprocal hybrid crosses between the two populations was similar to that in the marine population, suggesting that early timing of maturation is a dominant trait, whereas delayed timing of maturation in the pond is a recessive trait. Thus, the observed population divergence is suggestive of strong natural selection against early maturation in the piscine‐predator‐free pond population.  相似文献   

18.
Genki Sahashi  Kentaro Morita 《Oikos》2018,127(2):239-251
Partial migration, in which a portion of the population migrates while the rest of the population remains as residents, is a common form of migration. Alternative migratory tactics (AMTs) of partial migration are often determined by polygenic threshold traits. However, the ultimate mechanisms that drive inter‐population variations in threshold traits are not well understood. We present a simple schematic model to explain how the threshold trait changes with fitness consequences under opposing natural and artificial selection forces. We conducted a field test to evaluate the effects of migration difficulty (as a natural selective force) and selective captive breeding (as an artificial selective force) on threshold traits of a partially migratory fish. Male masu salmon Oncorhynchus masou in the Shari River system have AMTs divided into three population categories of hatchery, wild/above the waterfall, and wild/below the waterfall (control). The wild/above the waterfall salmon live in a high‐migration‐cost situation, and the threshold trait changed in a direction that promoted residency. In hatchery salmon, which are produced by migrant‐selective captive breeding, the threshold trait changed in a direction that promoted migration. In contrast, Dolly Varden charr Salvelinus malma displayed only resident tactics, and the threshold trait did not differ between the populations above and below the waterfall, indicating that environment did not explain the variation in the threshold trait. Our results support the model and suggest that opposing natural and artificial selection forces drive variations in the threshold traits and migratory patterns in the studied species. Our conceptual framework for the ultimate mechanism may help to better understand adoption of AMTs and production of diverse intraspecific traits in migratory animals.  相似文献   

19.
Partial migration is a common phenomenon, yet the causes of individual differences in migratory propensity are not well understood. We examined factors that potentially influence timing of migration and migratory propensity in a wild population of juvenile brown trout (Salmo trutta) by combining experimental manipulations with passive integrated transponder telemetry. Individuals were subjected to one of six manipulations: three designed to mimic natural stressors (temperature increase, food deprivation, and chase by a simulated predator), an injection of exogenous cortisol designed to mimic an extreme physiological challenge, a sham injection, and a control group. By measuring length and mass of 923 individuals prior to manipulation and by monitoring tagged individuals as they left the stream months later, we assessed whether pre-existing differences influenced migratory tendency and timing of migration, and whether our manipulations affected growth, condition, and timing of migration. We found that pre-existing differences predicted migration, with smaller individuals and individuals in poor condition having a higher propensity to migrate. Exogenous cortisol manipulation had the largest negative effect on growth and condition, and resulted in an earlier migration date. Additionally, low-growth individuals within the temperature and food deprivation treatments migrated earlier. By demonstrating that both pre-existing differences in organism state and additional stressors can affect whether and when individuals migrate, we highlight the importance of understanding individual differences in partial migration. These effects may carry over to influence migration success and affect the evolutionary dynamics of sub-populations experiencing different levels of stress, which is particularly relevant in a changing world.  相似文献   

20.
Extensive individual variation in spatial behaviour is a common feature among species that exhibit migratory life cycles. Nowhere is this more evident than in salmonid fishes; individual fish may complete their entire life cycle in freshwater streams, others may migrate variable distances at sea and yet others limit their migrations to larger rivers or lakes before returning to freshwater streams to spawn. This review presents evidence that individual variation in migratory behaviour and physiology in salmonid fishes is controlled by developmental thresholds and that part of the variation in proximal traits activating the development of alternative migratory tactics is genetically based. We summarize evidence that alternative migratory tactics co‐exist within populations and that all individuals may potentially adopt any of the alternative phenotypes. Even though intra‐specific genetic divergence of migratory tactics is uncommon, it may occur if female competition for oviposition sites results in spawning segregation of alternative phenotypes. Because of their polygenic nature, alternative migratory tactics are considered as threshold traits. Threshold traits have two characteristics: an underlying 'liability' trait that varies in a continuous fashion, and a threshold value which is responsible for the discreetness observed in phenotypic distribution. We review evidence demonstrating that body size is an adequate proxy for the liability trait controlling the decision to migrate, but that the same phenotypic outcome (anadromy or residency) may be reached by different developmental pathways. The evidence suggesting a significant heritable component in the development of alternative migratory tactics is subsequently reviewed, leading us to conclude that alternative migratory tactics have considerable potential to respond to selection and evolve. We review what is known about the proximal physiological mechanisms mediating the translation of the continuous value of the liability trait into a discontinuous migratory tactic. We conclude by identifying several avenues for future research, including testing the frequency‐dependent selection hypothesis, establishing the relative importance of adaptive phenotypic plasticity in explaining some geographic gradients in migratory behaviour and identifying the physiological and genetic basis of the switching mechanisms responsible for alternative migratory tactics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号