首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Summary Export of the outer membrane protein, OmpA, across the cytoplasmic membrane of Escherichia coli was severely inhibited by the presence of two, three, four or six additional basic residues at the N-terminus of the mature polypeptide, but not by three similarily positioned acidic residues. Because a few bacterial proteins do possess basic residues close to the leader peptidase cleavage site and because the type of inhibition described here could pose problems in the construction of hybrid secretory proteins, we also studied means of alleviating this form of export incompatibility. Inhibition was abolished when basic residues were preceded by acidic ones. Also, the processing rates of the mutants with two or six basic residues could be partially restored by increasing the length of the hydrophobic core of the signal peptide. Taking this as a precedent, it is suggested that the structure of the signal peptide is an important feature for maintenance of a reasonable rate of translocation of those exported proteins which possess basic residue(s) at the N-terminus of the mature polypeptide.  相似文献   

2.
Knowing the comprehensive knowledge about the protein subcellular localization is an important step to understand the function of the proteins. Recent advances in system biology have allowed us to develop more accurate methods for characterizing the proteins at subcellular localization level. In this study, the analysis method was developed to characterize the topological properties and biological properties of the cytoplasmic proteins, inner membrane proteins, outer membrane proteins and periplasmic proteins in Escherichia coli (E. coli). Statistical significant differences were found in all topological properties and biological properties among proteins in different subcellular localizations. In addition, investigation was carried out to analyze the differences in 20 amino acid compositions for four protein categories. We also found that there were significant differences in all of the 20 amino acid compositions. These findings may be helpful for understanding the comprehensive relationship between protein subcellular localization and biological function  相似文献   

3.
FliP is a rare bacterial polytopic membrane protein synthesized with a cleavable highly hydrophobic signal peptide. It is essential for flagellum assembly and for bacterial motility. In this study, we assessed specificity of signal peptide for the FliP function. Like the wild type FliP, two altered FliPs with more hydrophilic Tat- or Sec-dependent signal peptides were both able to restore the motility of the DeltafliP mutant. Therefore, the Tat- and the Sec-dependent signal peptides seemed to be compatible with the FliP function. Moreover, deletion of the FliP signal peptide or replacing it with the transmembrane segment of MotA severely impaired the FliP function. Together these results showed that a cleavable signal peptide is required for the full function of FliP.  相似文献   

4.
In this study, a gene coding for thermophilic serine protease of the ClpP class from the thermoacidophilic archaeon Thermoplasma volcanium (Tpv) was cloned and expressed in Escherichia coli. The primary sequence and domain analysis of this enzyme showed similarities (50–60% similarity) to signal peptide peptidases (SppA) of bacteria and other archaea. An increase of about tenfold in the activity was achieved by overexpression of Tpv SppA in E. coli, as detected by enzyme assays conducted using Ala-Ala-Phe-pNa and N-Suc-Ala-Ala-Pro-Phe-pNA as substrates. The recombinant enzyme, purified using an anion exchange column chromatography, displayed an apparent molecular mass of 26 kDa on SDS-PAGE analysis. Purified Tpv SppA was active in a broad range of pH and temperature with maximal activity at 60°C and between pH 7.5 and pH 8.0. The activity of the enzyme was strongly inhibited by inhibitors typical for serine proteases, i.e., chymostatin and PMSF. The activity of the Tpv SppA and the stability at high temperature were significantly enhanced in the presence of 5 mM Ca2+ ions. Our multiple sequence alignment data revealed a conserved Ser/Lys catalytic dyad in Tpv SppA that comprised Ser76 (nucleophile) and Lys128 (general base) residues. A search for a transmembrane domain using automated programs did not predict any signal peptide associated with the Tpv SppA and, therefore, suggested a cytoplasmic location for this enzyme.  相似文献   

5.
A novel strategy to obtain high-level production of mature proteins exported to the periplasm of Escherichia coli is described. It is based on a modified signal sequence generated by insertion of a coding sequence of the polypeptide precursor of interest at the BamHI site of the commercial vector pQE-30 resulting in an addition of a dodeca-peptide (MRGSH6GS) at the N-terminus of the precursor. The modification does not affect correct processing of the modified signal nor proper folding of the target protein, resulting in an untagged native product. The method is simple for avoiding onerous optimization of translation initiation and screening of host stains. The usefulness of this method is illustrated by overexpression of DsbC and DsbA. Induced by 0.01 mM IPTG at 37 degrees C, proteins were overproduced to comprise 20-30% of the total cellular proteins, and more than 95% of the expressed proteins were correctly processed and exported into the periplasm with yields of more than 100 mg per liter culture.  相似文献   

6.
7.
Modifications at the N-terminus of the rabbit CYP4B1 gene resulted in expression levels in Escherichia coli of up to 660 nmol/L. Solubilization of the enzyme from bacterial membranes led to substantial conversion to cytochrome P420 unless alpha-naphthoflavone was added as a stabilizing ligand. Mass spectrometry analysis and Edman sequencing of purified enzyme preparations revealed differential N-terminal post-translational processing of the various constructs expressed. Notably, bacterial expression of CYP4B1 produced a holoenzyme with >98.5% of its heme prosthetic group covalently linked to the protein backbone. The near fully covalently linked hemoproteins exhibited similar rates and regioselectivities of lauric acid hydroxylation to that observed previously for the partially heme processed enzyme expressed in insect cells. These studies shed new light on the consequences of covalent heme processing in CYP4B1 and provide a facile system for future mechanistic and structural studies with the enzyme.  相似文献   

8.
应用PCR重组技术,对大肠杆菌分泌型表达载体pIN-ⅢompA进行改建,除去原载体的HindⅢ位点,将信号肽序列末端两个密码子CAGGCC改为CAAGCT,从而引入一个新的HindⅢ位点,并在其下游接上一段多克隆位点序列。改建后的载体可用于直接插入外源DNA编码序列,表达产物在分泌过程中被切除信号肽而成为天然有活性的蛋白质,操作十分简便。  相似文献   

9.
Ischemic post-conditioning (IPO) activates Akt signaling to confer cardioprotection. The responsiveness of diabetic hearts to IPO is impaired. We hypothesized that decreased cardiac SIRT1, a positive regulator of Akt, may be responsible for the impaired responsiveness of diabetic hearts to IPO-mediated cardioprotection. High-fat diet and streptozotocin-induced diabetic mice were subjected to myocardial ischemia/reperfusion (MI/R, 30 min ischemia and 180 min reperfusion) or IPO (three cycles of 10 s of reperfusion and ischemia at the onset of reperfusion). Adenoviral vectors encoding GFP or SIRT1 (Ad-SIRT1) were administered by direct injection into the left ventricular. Our results showed that IPO activated the Akt signaling pathway and reduced MI/R injury in non-diabetic hearts but not in diabetic hearts, in which reduced expression of SIRT1 and increased Akt acetylation were observed. Delivery of Ad-SIRT1 into the diabetic hearts reduced Akt acetylation and restored the cardioprotective effects of IPO by modulating Akt signaling pathway. In contrast, cardiac-specific SIRT1 knockout increased Akt acetylation and blunted the cardioprotective effects of IPO. In in vitro study, transfection with wild-type SIRT1 but not inactive mutant SIRT1 reduced the expression of Akt acetylation and restored the protective effects of hypoxic post-conditioning in high glucose-incubated cardiomyocytes. Moreover, the cardiomyocytes transfected with constitutive Akt acetylation showed repressed Akt phosphorylation and blunted protective effects against hypoxia/reoxygenation injury. These findings demonstrate that the reduction of SIRT1 blunts the protective effects of IPO by impairing Akt signaling pathway and that SIRT1 up-regulation restores IPO-mediated cardioprotection in diabetic mice via deacetylation-dependent activation of Akt signaling pathway.  相似文献   

10.
Abstract Introduction of positively charged amino acids immediately downstream of the signal sequence in prokaryotic precursor proteins is known to affect the export process. However, it is not clear whether different positively charged amino acids affect the export process similarly. To investigate this, the glutamate at position +2 of outer membrane protein PhoE was substituted by arginine, lysine of histidine. Pulse-chase experiments revealed that the Lys and Arg residues at position +2 caused a reduced processing rate, and that the effect was markedly more severe in the case of the Arg residue. Trypsin accessibility experiments revealed that the accumulated precursors were present in the cytoplasm. Since the degree of the inhibitory effect corresponded to the p K r a of the different positively charged amino acids, this suggests that the positively charged residues must be deprotonated during the secretory process.  相似文献   

11.
Abstract By genetic exchange and in vitro mutagenesis a hybrid β-lactamase was constructed that contained the pCloDF13-encoded bacteriocin release protein signal peptide plus a cysteine residue coupled to the mature portion of β-lactamase. Immunoblotting, labelling with [3H]palmitate in the presence and absence of globomycin, and pulse-chase experiments revealed that this hybrid construct is modified with lipid and processed into a lipid-modified β-lactamase. Subcellular localization studies revealed that this hybrid is localized both in the cytoplasmic and outer membranes of Escherichia coli cells. A mutant derivative with an incomplete lipobox (LVG instead of LVAC+1) was not processed and was found in the cytoplasmic membranes  相似文献   

12.
The cytochrome b(5) of the body wall of adult Ascaris suum, a porcine parasitic nematode, is a novel type of cytochrome b(5). It is a soluble protein that lacks the COOH-terminal membrane-anchoring domain found in erythrocyte cytochrome b(5), but possesses an NH(2)-terminal extension (presequence) of 30 amino acids that are missing from the 82-residue protein purified from the nematode tissues [Yu, Y., Yamasaki, H., Kita, K., and Takamiya, S., 1996, Arch. Biochem. Biophys. 328, 165-172]. The nematode cytochrome b(5) is, therefore, probably synthesized as a precursor protein whose presequence is cleaved to form a mature protein, but the localization of the mature protein is still unknown. To investigate the processing of the putative precursor protein, the wild-type precursor of nematode cytochrome b(5) with a complete presequence (b5wt) and its NH(2) terminus-truncated derivatives, b5Delta18 and b5Delta28, with 18 and 28 residues deleted, respectively, were expressed using pET-28a(+) vector in Escherichia coli. As expected, all transformants, tb5wt, tb5Delta18, and tb5Delta28, produced recombinant proteins with a histidine-tagged NH(2)-terminal extension. However, only the recombinant protein with the full-length presequence, produced in tb5wt, was correctly processed and transported to the periplasm, from which the majority of the induced product was purified as a mature protein chemically and functionally identical to the native protein purified from the nematode body wall. These results clearly show that the nematode histidine-tagged presequence functions as a signal peptide in E. coli.  相似文献   

13.
We describe importance of the characteristic segment in ATPase domain of DnaK chaperone which is present in all gram-negative bacteria but is absent in all gram-positive bacteria. In vitro studies, ATPase activity, luciferase-refolding activity, and surface plasmon resonance analyses, demonstrated that a segment-deletion mutant DnaKDelta74-96 became defective in the cooperation with the co-chaperones DnaJ and GrpE. In addition, in vivo complementation assay showed that expression of DnaKDelta74-96 could not rescue the viability of Escherichia coli DeltadnaK mutant at 43 degrees C. Consequently, we suggest evolutionary significance for this DnaK ATPase domain segment in gram-negative bacteria towards the DnaK chaperone system.  相似文献   

14.
Abstract We demonstrate that the 1C10 monoclonal antibody (mAb) directed against the N-terminal domain of the colicin A recognizes a 13 residue-region (13Thr-Gly-Trp-Ser-Ser-Glu-Arg-Gly-Ser-Gly-Pro-Asp-Pro25). When this peptide is inserted into a protein in the amino-terminal or an internal position, the tagged protein is efficiently detected by the 1C11 mAb either by immunoblotting or immunoprecipitation. In vitro, the minimal structure required for detection using the pepscan system is 19Arg-Gly-Ser-Gly-Pro-Glu-Pro25, indicating that in vivo the proper exposure of the epitope requires additional residues. The construction of a versatile vector allowing overproduction of tagged proteins is described. Various applications of the 1C11 epitope are mentioned. This epitope did not alter the function of any of the proteins so far tested.  相似文献   

15.
AIMS: To determine the expression time courses and high expression level of Vip2A(c) and Vip1A(c) in Bacillus thuringiensis, and survey their insecticidal toxicity and insecticidal spectrum. METHODS AND RESULTS: A kind of new vegetative insecticidal toxin genes encoded by a single operon from B. thuringiensis had been cloned and sequenced. The individual genes, 5-terminus truncated genes and the operon were respectively expressed in Escherichia coli. Only N-terminus deleted Vip2A(c) and Vip1A(c) proteins could be purified by Ni-NTA agarose, while others were processed and their N-terminal signal peptides were cleaved. The individual genes and the operon were also expressed in B. thuringiensis. Both proteins were mostly secreted into the cell supernatants. The expression level of Vip1A(c) was influenced because of the interruption of vip2A(c) gene on the operon. Bioassays showed that neither separate protein nor both performed any toxicity against tested lepidopteran and coleopteran insects. CONCLUSIONS: Vip2A(c) and Vip1A(c) have similar secretion mechanism in E. coli and B. thuringiensis. Vip1A(c) remained its high expression level only when being expressed with vip2A(c) gene as an operon in B. thuringiensis. SIGNIFICANCE AND IMPACT OF THE STUDY: Expression of vip2A(c) and vip1A(c) genes in E. coli and B. thuringiensis were investigated. This would help to make clear the secretion mechanism of VIP proteins and study the function of ADP-ribosyltransferase Vip2.  相似文献   

16.
Caveolae are membrane-budding structures that exist in many vertebrate cells. One of the important functions of caveolae is to form membrane curvature and endocytic vesicles. Recently, it was shown that caveolae-like structures were formed in Escherichia coli through the expression of caveolin-1. This interesting structure seems to be versatile for a variety of biotechnological applications. Targeting of heterologous proteins in the caveolae-like structure should be the first question to be addressed for this purpose. Here we show that membrane proteins co-expressed with caveolin-1 are embedded into the heterologous caveolae (h-caveolae), the cavaolae-like structures formed inside the cell. Two transmembrane SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, Syntaxin 1a and vesicle-associated membrane protein 2 (VAMP2), were displayed on the h-caveolae surface. The size of the h-caveolae harboring the transmembrane proteins was ∼100 nm in diameter. The proteins were functional and faced outward on the h-caveolae. Multi-spanning transmembrane proteins FtsH and FeoB could be included in the h-caveolae, too. Furthermore, the recombinant E. coli cells were shown to endocytose substrate supplemented in the medium. These results provide a basis for exploiting the h-caveolae formed inside E. coli cells for future biotechnological applications.  相似文献   

17.
A chimeric mammalian globular cytochrome b5 fused to Escherichia coli alkaline phosphatase signal sequence (SS) was used as a model probe to investigate the influence of substituting each one of the standard 20 amino acids at its N‐terminus on the Sec‐dependent export of the precursor to the periplasmic space of E. coli. Substituting the native Met+1 of the passenger protein flanking the SS with any one of the remaining 19 amino acids introduced significant changes in the export of cytochrome b5 without jamming the Sec‐dependent translocon. Acidic and hydrophilic residues proved to be the most efficient promoters of export. Small, nonbulky and basic residues yielded intermediate levels of the hemoprotein export. Replacement with a Cys+1 residue generated significant quantities of both monomeric and disulfide‐linked dimeric forms. However, bulky, aromatic and hydrophobic residues caused a significant decline in the rates of secretion. In expectation with their absences in the natural periplasmically secreted proteins, Pro and Ile‐tagged cytochrome b5 precursors failed to generate any detectable secreted recombinant products. Although Ala, amongst the native E. coli periplasmic proteins, is the preferred X+1 residue with an occurrence of 50% frequency, it proved half as effective in promoting export when inserted proximally to the SS of cytochrome b5. The mechanisms involved for these export variations are discussed. The findings will prove beneficial for high‐level generation of recombinant proteins by secretory means for pharmaceutical and related biotechnological applications.  相似文献   

18.
J Pagan  A E Senior 《FEBS letters》1990,273(1-2):147-149
It is shown that ATP dissociates very slowly (koff less than 6.4 x 10(5) s-1, t1/2 greater than 3 h) from the three noncatalytic sites of E. coli F1-ATPase and that ADP dissociates from these three sites in a homogeneous fashion with koff = 1.5 x 10(-4) s-1 (t1/2 = 1.35 h). Mutagenesis of alpha-subunit residues R171 and Q172 in the 'glycine-rich loop' (Homology A) consensus region of the noncatalytic sites was carried out to test the hypothesis that unusually bulky residues at these positions are responsible wholly or partly for the observed tight binding of adenine nucleotides. The mutations alpha Q172G or alpha R171S,Q172G had no effects on ATP or ADP binding to or rates of dissociation from F1 noncatalytic sites. KdATP and KdADP of isolated alpha-subunit were weakened by approximately 1 order of magnitude in both mutants. The results suggest that neither residue alpha R171 nor alpha Q172 interacts directly with bound nucleotide, and show that the presence of bulky residues per se in the glycine-rich loop region of F1-alpha-subunit is not responsible for tight binding in the noncatalytic sites.  相似文献   

19.
Although the signal transduction mechanisms of the receptor tyrosine kinase MET are well defined, less is known about its close relative RON. MET initiates intracellular signaling by autophosphorylation on specific cytoplasmic tyrosines that form docking sites for the adaptor proteins Grb2 and Gab1. Grb2 binds directly and is essential for all of the biological activities of MET. Gab1 docks either directly or indirectly via Grb2 and controls only a subset of MET functions. Because MET and RON possess similar adaptor binding sites, it was anticipated that their adaptor interactions would be conserved. Here we show that in contrast to MET, RON relies primarily on Gab1 for signal transmission. Surprisingly, disruption of the Grb2 docking site of RON or Grb2 depletion augments activity, whereas enhancement of Grb2 binding attenuates Gab1 recruitment and signaling. Hence, RON and MET differ in their adaptor interactions; furthermore, Grb2 performs a novel antagonistic role in the context of RON signaling.  相似文献   

20.
Numerous high‐value therapeutic proteins are produced in Escherichia coli and exported to the periplasm, as this approach simplifies downstream processing and enables disulfide bond formation. Most recombinant proteins are exported by the Sec pathway, which transports substrates across the plasma membrane in an unfolded state. The Tat system also exports proteins to the periplasm, but transports them in a folded state. This system has attracted interest because of its tendency to transport correctly folded proteins, but this trait renders it unable to export proteins containing disulfide bonds since these are normally acquired only in the periplasm; reduced substrates tend to be recognized as incorrectly folded and rejected. In this study we have used a series of novel strains (termed CyDisCo) which oxidise disulfide bonds in the cytoplasm, and we show that these cells efficiently export a range of disulfide‐containing proteins when a Tat signal peptide is attached. These test proteins include alkaline phosphatase (PhoA), a phytase containing four disulfide bonds (AppA), an antiinterleukin 1β scFv and human growth hormone. No export of PhoA or AppA is observed in wild‐type cells lacking the CyDisCo factors. The PhoA, AppA and scFv proteins were exported in an active form by Tat in the CyDisCo strain, and mass spectrometry showed that the vast majority of the scFv protein was disulfide‐bonded and correctly processed. The evidence indicates that this combination of Tat + CyDisCo offers a novel means of exporting active, correctly folded disulfide bonded proteins to the periplasm. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:281–290, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号