首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Arabidopsis Cor15am is a late embryogenesis abundant (LEA) related protein that has been shown to exhibit cryoprotective activity in vitro. In this study, we further investigated the mechanisms by which Cor15am protects substrates from inactivation. Although Cor15am did not exhibit refolding activity, it showed protective activity against various stresses in vitro. This might be attributable to the activity of Cor15am in attenuating the aggregation of the substrates. Our data indicate that Cor15am functions as a protectant against various stresses by preventing protein aggregation.  相似文献   

2.
Late embryogenesis abundant (LEA) proteins are produced during seed embryogenesis and in vegetative tissue in response to various abiotic stressors. A correlation has been established between LEA expression and stress tolerance, yet their precise biochemical mechanism remains elusive. LEA proteins are very rich in hydrophilic amino acids, and they have been found to be intrinsically disordered proteins (IDPs) in vitro. Here, we perform biochemical and structural analyses of the four LEA3 proteins from Arabidopsis thaliana (AtLEA3). We show that the LEA3 proteins are disordered in solution but have regions with propensity for order. All LEA3 proteins were effective cryoprotectants of LDH in the freeze/thaw assays, while only one member, AtLEA3‐4, was shown to bind Cu2+ and Fe3+ ions with micromolar affinity. As well, only AtLEA3‐4 showed binding and a gain in α‐helicity in the presence of the membrane mimic dodecylphosphocholine (DPC). We explored this interaction in greater detail using 15N‐heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance, and demonstrate that two sets of conserved motifs present in AtLEA3‐4 are involved in the interaction with the DPC micelles, which themselves gain α‐helical structure.  相似文献   

3.
Protein folding problem remains a formidable challenge as main chain, side chain and solvent interactions remain entangled and have been difficult to resolve. Alanine‐based short peptides are promising models to dissect protein folding initiation and propagation structurally as well as energetically. The effect of N‐terminal diproline and charged side chains is assessed on the stabilization of helical conformation in alanine‐based short peptides using circular dichroism (CD) with water and methanol as solvent. A1 (Ac–Pro–Pro–Ala–Lys–Ala–Lys–Ala–Lys–Ala–NH2) is designed to assess the effect of N‐terminal homochiral diproline and lysine side chains to induce helical conformation. A2 (Ac–Pro–Pro–Glu–Glu–Ala–Ala–Lys–Lys–Ala–NH2) and A3 (Ac–d Pro–Pro–Glu–Glu–Ala–Ala–Lys–Lys–Ala–NH2) with N‐terminal homochiral and heterochiral diproline, respectively, are designed to assess the effect of Glu...Lys (i , i  + 4) salt bridge interactions on the stabilization of helical conformation. The CD spectra of A1 , A2 and A3 in water manifest different amplitudes of the observed polyproline II (PPII) signals, which indicate different conformational distributions of the polypeptide structure. The strong effect of solvent substitution from water to methanol is observed for the peptides, and CD spectra in methanol evidence A2 and A3 as helical folds. Temperature‐dependent CD spectra of A1 and A2 in water depict an isodichroic point reflecting coexistence of two conformations, PPII and β‐strand conformation, which is consistent with the previous studies. The results illuminate the effect of N‐terminal diproline and charged side chains in dictating the preferences for extended‐β, semi‐extended PPII and helical conformation in alanine‐based short peptides. The results of the present study will enhance our understanding on stabilization of helical conformation in short peptides and hence aid in the design of novel peptides with helical structures. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
5.
6.
The interactions were studied of DNA with the nonhistone chromatin protein HMGB1 and histone H1 in the presence of manganese(II) ions at different protein to DNA and manganese to DNA phosphate ratios by using absorption and optical activity spectroscopy in the electronic [ultraviolet (UV) and electronic circular dichroism ECD)] and vibrational [infrared (IR) and vibrational circular dichroism (VCD)] regions. In the presence of Mn2+, the protein-DNA interactions differ from those without the ions and cause prominent DNA compaction and formation of large intermolecular complexes. At the same time, the presence of HMGB1 and H1 also changed the mode of interaction of Mn2+ with DNA, which now takes place mostly in the major groove of DNA involving N7(G), whereas interactions between Mn2+ and DNA phosphate groups are weakened by histone molecules. Considerable interactions were also detected of Mn2+ ions with aspartic and glutamic amino acid residues of the proteins.  相似文献   

7.
LEA (late embryogenesis abundant) proteins are intrinsically disordered proteins that contribute to stress tolerance in plants and invertebrates. Here we show that, when both plant and animal LEA proteins are co-expressed in mammalian cells with self-aggregating polyglutamine (polyQ) proteins, they reduce aggregation in a time-dependent fashion, showing more protection at early time points. A similar effect was also observed in vitro, where recombinant LEA proteins were able to slow the rate of polyQ aggregation, but not abolish it altogether. Thus, LEA proteins act as kinetic stabilisers of aggregating proteins, a novel function in protein homeostasis consistent with a proposed role as molecular shields.  相似文献   

8.
The molecular details of the association between the human Fyn‐SH3 domain, and the fragment of 18.5‐kDa myelin basic protein (MBP) spanning residues S38–S107 (denoted as xα2‐peptide, murine sequence numbering), were studied in silico via docking and molecular dynamics over 50‐ns trajectories. The results show that interaction between the two proteins is energetically favorable and heavily dependent on the MBP proline‐rich region (P93‐P98) in both aqueous and membrane environments. In aqueous conditions, the xα2‐peptide/Fyn‐SH3 complex adopts a “sandwich”"‐like structure. In the membrane context, the xα2‐peptide interacts with the Fyn‐SH3 domain via the proline‐rich region and the β‐sheets of Fyn‐SH3, with the latter wrapping around the proline‐rich region in a form of a clip. Moreover, the simulations corroborate prior experimental evidence of the importance of upstream segments beyond the canonical SH3‐ligand. This study thus provides a more‐detailed glimpse into the context‐dependent interaction dynamics and importance of the β‐sheets in Fyn‐SH3 and proline‐rich region of MBP. Proteins 2017; 85:1336–1350. © 2017 Wiley Periodicals, Inc.  相似文献   

9.
COR15A and COR15B form a tandem repeat of highly homologous genes in Arabidopsis thaliana. Both genes are highly cold induced and the encoded proteins belong to the Pfam LEA_4 group (group 3) of the late embryogenesis abundant (LEA) proteins. Both proteins were predicted to be intrinsically disordered in solution. Only COR15A has previously been characterized and it was shown to be localized in the soluble stroma fraction of chloroplasts. Ectopic expression of COR15A in Arabidopsis resulted in increased freezing tolerance of both chloroplasts after freezing and thawing of intact leaves and of isolated protoplasts frozen and thawed in vitro. In the present study we have generated recombinant mature COR15A and COR15B for a comparative study of their structure and possible function as membrane protectants. CD spectroscopy showed that both proteins are predominantly unstructured in solution and mainly α-helical after drying. Both proteins showed similar effects on the thermotropic phase behavior of dry liposomes. A decrease in the gel to liquid-crystalline phase transition temperature depended on both the unsaturation of the fatty acyl chains and lipid headgroup structure. FTIR spectroscopy indicated no strong interactions between the proteins and the lipid phosphate and carbonyl groups, but significant interactions with the galactose headgroup of the chloroplast lipid monogalactosyldiacylglycerol. These findings were rationalized by modeling the secondary structure of COR15A and COR15B. Helical wheel projection indicated the presence of amphipathic α-helices in both proteins. The helices lacked a clear separation of positive and negative charges on the hydrophilic face, but contained several hydroxylated amino acids.  相似文献   

10.
11.
Since yeast may be an important microorganism for industrial use when its genes are modified by recombinant DNA techniques to overproduce certain proteins, (particularly those which are glycosylated), it is desirable to study how environmental variables affect its protein secretion ability. It is also of interest to understand how proteins such as proteases, lipases and amylases are excreted in solid matrices to develop a basis for learning more about solid fermentations. With these two applications in mind, the total protein excreted by both aerated and non-aerated Saccharomyces cerevisiae growing in a liquid batch culture (with varying levels of CO2 and NaCl) was tracked. Using a modified Bradford method (Coomassie Blue dye-binding assay) for the concentration of total proteins in the extracellular fermentation broth, it has been determined that by 24 h of the run, excreted proteins rose to levels of about 10% of the total cell protein (500 μg ml?1 protein from about 10 g of yeast, containing about 5 g total protein). No cell lysis was observed during the 24 h run. The highest protein levels at the top of the fermentor seemed to be those achieved in response to CO2 alone. Additions of NaCl did not seem to enhance the secreted protein level. Large inconsistencies in replicating anaerobic runs for protein concentration appeared to be explained by noting that rising CO2 bubbles may cause ‘foam fractionation’ of the proteins in the broth.  相似文献   

12.
The collagen triple helix has a larger accessible surface area per molecular mass than globular proteins, and therefore potentially more water interaction sites. The effect of deuterium oxide on the stability of collagen model peptides and Type I collagen molecules was analyzed by circular dichroism and differential scanning calorimetry. The transition temperatures (Tm) of the protonated peptide (Pro‐Pro‐Gly)10 were 25.4 and 28.7°C in H2O and D2O, respectively. The increase of the Tm of (Pro‐Pro‐Gly)10 measured calorimetrically at 1.0°C min?1 in a low pH solution from the protonated to the deuterated solvent was 5.1°C. The increases of the Tm for (Gly‐Pro‐4(R)Hyp)9 and pepsin‐extracted Type I collagen were measured as 4.2 and 2.2°C, respectively. These results indicated that the increase in the Tm in the presence of D2O is comparable to that of globular proteins, and much less than reported previously for collagen model peptides [Gough and Bhatnagar, J Biomol Struct Dyn 1999, 17, 481–491]. These experimental results suggest that the interaction of water molecules with collagen is similar to the interaction of water with globular proteins, when the ratio of collagen to water is very small and collagen is monomerically dispersed in the solvent. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 93–101, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

13.
Ocean currents are an important driver of evolution for sea‐dispersed plants, enabling them to maintain reciprocal gene flow via sea‐dispersed diaspores and obtain wide distribution ranges. Although geographic barriers are known to be the primary factors shaping present genetic structure of sea‐dispersed plants, cryptic barriers which form clear genetic structure within oceanic regions are poorly understood. To test the presence of a cryptic barrier, we conducted a phylogeographic study together with past demographic inference for a widespread sea‐dispersed plant, Vigna marina, using 308 individuals collected from the entire Indo‐West Pacific (IWP) region. Chloroplast DNA variation showed strong genetic structure that separated populations into three groups: North Pacific (NP), South Pacific (SP) and Indian Ocean (IN) (FCT among groups = 0.954–1.000). According to the Approximate Bayesian computation inference, splitting time between NP and SP was approximately 20,200 years (95%HPD, 4,530–95,400) before present. Moreover, a signal of recent population expansion was detected in the NP group. This study clearly showed the presence of a cryptic barrier in the West Pacific region of the distributional range of V. marina. The locations of the cryptic barrier observed in V. marina corresponded to the genetic breaks found in other plants, suggesting the presence of a common cryptic barrier for sea‐dispersed plants. Demographic inference suggested that genetic structure related to this cryptic barrier has been present since the last glacial maximum and may reflect patterns of past population expansion from refugia.  相似文献   

14.
Several biophysical techniques have been used to determine differences in the aggregation profile (i.e., the secondary structure, aggregation propensity, dynamics, and morphology of amyloid structures) and the effects on cell viability of three variants of the amyloid β peptide involved in Alzheimer's disease. We focused our study on the Glu22 residue, comparing the effects of freshly prepared samples and samples aged for at least 20 days. In the aged samples, a high propensity for aggregation and β-sheet secondary structure appears when residue 22 is capable of establishing polar (Glu22 in wild-type) or hydrophobic (Val22 in E22V) interactions. The Arctic variant (E22G) presents a mixture of mostly disordered and α-helix structures (with low β-sheet contribution). Analysis of transmission electron micrographs and atomic force microscopy images of the peptide variants after aging showed significant quantitative and qualitative differences in the morphology of the formed aggregates. The effect on human neuroblastoma cells of these Aβ12-28 variants does not correlate with the amount of β-sheet of the aggregates. In samples allowed to age, the native sequence was found to have an insignificant effect on cell viability, whereas the Arctic variant (E22G), the E22V variant, and the slightly-aggregating control (F19G-F20G) had more prominent effects.  相似文献   

15.
The effect of binding a high mobility group protein (HMG 17) on the stability and conformation of acetylated and control HeLa high molecular weight core chromatin (stripped of H1 and non-histone chromosomal proteins) was studied by circular dichroism and thermal-denaturation measurements. Previously it had been shown that conformational differences exist between native whole chromatin derived from butyrate-treated (acetylated) and control HeLa cells and that these conformational differences disappear by removing H1 and non-histone chromosomal proteins (Reczek, P.R., Weissman, D., Huvos, P.E. and Fasman, G.D. (1982) Biochemistry 21, 993–1002). The circular dichroism spectra and the thermal denaturation profiles of control and acetylated core chromatin were found to be similar. The circular dichroism properties of HMG 17 reconstituted highly acetylated and control core chromatin indicated the same alteration of chromatin structure at low ionic strength (1 mM sodium phosphate/0.25 mM EDTA, pH 7.0). The magnitudes of the decrease in ellipticity were proportional to the amount of HMG 17 bound and were found to be the same for both the acetylated and control core chromatin. Thermal denaturation profiles confirmed this change in structure induced by HMG 17 on control and highly acetylated core chromatin. The thermal denaturation profiles, which were resolved into three component transitions, exhibited a shifting of hyperchromicity from the lower melting transitions to the higher melting transitions, with a concomitant rise in Tm, on HMG 17 binding to both control and acetylated chromatin. The natures of the interactions of HMG 17 at higher ionic strength (50 mM NaCl/0.25 mM EDTA/1 mM sodium phosphate, pH 7.0) with acetylated and control core chromatin were slightly different, as measured by circular dichroism; however, a decrease in ellipticity was observed for both samples upon binding of HMG 17. These observations suggest that acetylation coupled with HMG 17 binding to core chromatin does not loosen chromatin structure. HMG 17 binding to control and acetylated core chromatin produces an overall stabilization and compaction of chromatin structure.  相似文献   

16.
Abstract 1. Pit‐building antlions are small sit‐and‐wait arthropod predators, which dig conical pits in sandy soils. We studied how biotic (conspecific density and feeding regime) and abiotic (sand depth) factors affect pit diameter and depth, while taking into account the larval body mass. 2. Pit diameter increased with larval body mass at a decelerating rate. In addition, larger larvae tended to relocate less frequently than smaller ones. 3. Sand depth positively affected overall pit size, while increasing conspecific density had a weaker but negative effect on pit size. 4. Feeding the antlions resulted in an increase in pit diameter compared with an unfed control group. However, as prey size increased this positive effect diminished. This result suggests that the existence of prey provides information about the quality of the microhabitat, triggering pit extension. However, similarly to the reduction in the foraging effort of saturated predators, antlions provided with large prey invested only little effort in pit enlargement. 5. Antlions were previously shown to be sensitive to prey and conspecific vibrations in the sand. We thus expected the feeding regime of the neighbour to affect antlion behaviour – surrogate of discriminating between local and global shortage of prey. Nevertheless, antlions with fed neighbours (a local prey shortage) did not show different behaviour compared with a control group in which both antlions were unfed (a global prey shortage).  相似文献   

17.
as1, for antenna size mutant 1, was obtained by insertion mutagenesis of the unicellular green alga Chlamydomonas reinhardtii. This strain has a low chlorophyll content, 8% with respect to the wild type, and displays a general reduction in thylakoid polypeptides. The mutant was found to carry an insertion into a homologous gene, prokaryotic arsenite transporter (ARSA), whose yeast and mammal counterparts were found to be involved in the targeting of tail‐anchored (TA) proteins to cytosol‐exposed membranes, essential for several cellular functions. Here we present the characterization in a photosynthetic organism of an insertion mutant in an ARSA‐homolog gene. The ARSA1 protein was found to be localized in the cytosol, and yet its absence in as1 leads to a small chloroplast and a strongly decreased chlorophyll content per cell. ARSA1 appears to be required for optimal biogenesis of photosynthetic complexes because of its involvement in the accumulation of TOC34, an essential component of the outer chloroplast membrane translocon (TOC) complex, which, in turn, catalyzes the import of nucleus‐encoded precursor polypeptides into the chloroplast. Remarkably, the effect of the mutation appears to be restricted to biogenesis of chlorophyll‐binding polypeptides and is not compensated by the other ARSA homolog encoded by the C. reinhardtii genome, implying a non‐redundant function.  相似文献   

18.
Shenmai injection (SMI), one of the most popular herbal preparations, is widely used for the treatment of coronary atherosclerotic cardiopathy and viral myocarditis. The purpose of this study was to investigate the effect of Shenmai injection (SMI) on the CYP3A-mediated metabolism of midazolam (MDZ). The present study demonstrated that SMI could significantly inhibit MDZ 4-hydroxylation but activate its 1′-hydroxylation in human liver microsomes (HLMs), rat liver microsomes (RLM) and recombinant human CYP3A4 and CYP3A5. The opposing effect of SMI was characterized by the kinetic change of increasing Vmax/Km for MDZ 1′-hydroxylation and decreasing Vmax/Km for MDZ 4-hydroxylation in HLM and RLM. The presence ofSMI enhanced the inhibition of ketoconazole on MDZ 4-hydroxylation but weakened or reversed its inhibition on MDZ 1′-hydroxylation in HLM. After single or multiple pretreatment with SMI, the ratios of AUC4-OH MDZ/AUCMDZ in rats were significantly decreased, while the ratios of AUC1′-OH MDZ/AUCMDZ were increased. Among the major components in SMI, total ginsenoside (TG), ophiopogon total saponins (OTS), ophiopogon total flavone (OTF), ginsenoside Rd, ophiopogonin D and ophiopogonone A exhibited significant inhibition on both 4-hydroxylation and 1′-hydroxylation of MDZ in HLM and RLM, while no activation on MDZ metabolism was observed in the presence of these major constituents alone or together. To further explore the responsible components, 3 mL of SMI was loaded on a solid phase extraction (SPE) C18 cartridge and then separated by different concentrations of methanol. The fractions eluted with 60% and 90% methanol both showed significant activation on MDZ 1′-hydroxylation in HLM, but the fraction eluted with 30% methanol had no such effect. The results indicated that the activation of SMI on MDZ 1′-hydroxylation might be mainly resulted from the lipid-soluble components in SMI.  相似文献   

19.
Endothelial cells (ECs) and smooth muscle cells (SMCs), which are the major component cells of blood vessels, produce various bioactive substances and communicate with each other through them. Although several studies of the interaction between ECs and SMCs have been reported, the effect of coculture with SMCs on ECs is still obscure. To clarify the interaction of ECs and SMCs, we examined the effect of coculture with SMCs on the proliferation, the IL‐1β secretion, the PDGF production and tube formation of ECs, using the coculture model: transferable wells and collagen gel. IL‐1 and PDGF are considered to be related to progression of atherosclerosis. Proliferation and tube formation of ECs are associated with repair of vessels. In the transferable well system coculture with SMCs stimulated the proliferation of ECs, and enhanced the IL‐1β secretion of ECs and in the collagen gel system coculture with SMCs induced the tube formation of ECs, and appeared to enhance the PDGF production of ECs. In conclusion, the effect of coculture with SMCs on ECs has two conflicting aspects: progression of atherosclerosis and angiogenesis. These results suggest that an imbalance of their effects may lead to pathological events. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号