首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biological invasions often transcend political boundaries, but the capacity of countries to prevent invasions varies. How this variation in biosecurity affects the invasion risks posed to the countries involved is unclear. We aimed to improve the understanding of how the biosecurity of a country influences that of its neighbours. We developed six scenarios that describe biological invasions in regions with contiguous countries. Using data from alien species databases, socio‐economic and biodiversity data and species distribution models, we determined where 86 of 100 of the world's worst invasive species are likely to invade and have a negative impact in the future. Information on the capacity of countries to prevent invasions was used to determine whether such invasions could be avoided. For the selected species, we predicted 2,523 discrete invasions, most of which would have significant negative impacts and are unlikely to be prevented. Of these invasions, approximately a third were predicted to spread from the country in which the species first establishes to neighbouring countries where they would cause significant negative impacts. Most of these invasions are unlikely to be prevented as the country of first establishment has a low capacity to prevent invasions or has little incentive to do so as there will be no impact in that country. Regional biosecurity is therefore essential to prevent future harmful biological invasions. In consequence, we propose that the need for increased regional co‐operation to combat biological invasions be incorporated in global biodiversity targets.  相似文献   

2.
Species introduced through human-related activities beyond their native range, termed alien species, have various impacts worldwide. The IUCN Environmental Impact Classification for Alien Taxa (EICAT) is a global standard to assess negative impacts of alien species on native biodiversity. Alien species can also positively affect biodiversity (for instance, through food and habitat provisioning or dispersal facilitation) but there is currently no standardized and evidence-based system to classify positive impacts. We fill this gap by proposing EICAT+, which uses 5 semiquantitative scenarios to categorize the magnitude of positive impacts, and describes underlying mechanisms. EICAT+ can be applied to all alien taxa at different spatial and organizational scales. The application of EICAT+ expands our understanding of the consequences of biological invasions and can inform conservation decisions.

Various schemes assess negative impacts of alien species on native biodiversity, but alien species can also positively affect biodiversity. This Consensus View proposes EICAT+, a scheme which uses five semi-quantitative scenarios to categorise positive impacts, describes underlying mechanisms, and can be applied to all alien taxa and across various invasion contexts.  相似文献   

3.
To protect native biodiversity and habitats from the negative impacts of biological invasions, comprehensive studies and measures to anticipate invasions are required, especially across countries in a transfrontier context. Species distribution models (SDMs) can be particularly useful to integrate different types of data and predict the distribution of invasive species across borders, both for current conditions and under scenarios of future environmental changes. We used SDMs to test whether predicting invasions and potential spatial conflicts with protected areas in a transfrontier context, under current and future climatic conditions, would provide additional insights on the patterns and drivers of invasion when compared to models obtained from predictions for individual regions/countries (different modelling strategies). The framework was tested with the invasive alien plant Acacia dealbata in North of Portugal/NW Spain Euro-region, where the species is predicted to increase its distribution under future climatic conditions. While SDMs fitted in a transfrontier context and using “the national strategy (with Portugal calibration data) presented similar patterns, the distribution of the invasive species was higher in the former. The transfrontier strategy expectedly allowed to capture a more complete and accurate representation of the species’ niche. Predictions obtained in a transfrontier context are therefore more suitable to support resource prioritisation for anticipation and monitoring impacts of biological invasions, while also providing additional support for international cooperation when tackling issues of global change. Our proposed framework provided useful information on the potential patterns of invasion by A. dealbata in a transfrontier context, with an emphasis on protected areas. This information is crucial for decision-makers focusing on the prevention of invasions by alien species inside protected areas in a transfrontier context, opening a new way for collaborative management of invasions.  相似文献   

4.
Climate change and land‐use change are two major drivers of biome shifts causing habitat and biodiversity loss. What is missing is a continental‐scale future projection of the estimated relative impacts of both drivers on biome shifts over the course of this century. Here, we provide such a projection for the biodiverse region of Latin America under four socio‐economic development scenarios. We find that across all scenarios 5–6% of the total area will undergo biome shifts that can be attributed to climate change until 2099. The relative impact of climate change on biome shifts may overtake land‐use change even under an optimistic climate scenario, if land‐use expansion is halted by the mid‐century. We suggest that constraining land‐use change and preserving the remaining natural vegetation early during this century creates opportunities to mitigate climate‐change impacts during the second half of this century. Our results may guide the evaluation of socio‐economic scenarios in terms of their potential for biome conservation under global change.  相似文献   

5.
Climate and land‐use change jointly affect the future of biodiversity. Yet, biodiversity scenarios have so far concentrated on climatic effects because forecasts of land use are rarely available at appropriate spatial and thematic scales. Agent‐based models (ABMs) represent a potentially powerful but little explored tool for establishing thematically and spatially fine‐grained land‐use scenarios. Here, we use an ABM parameterized for 1,329 agents, mostly farmers, in a Central European model region, and simulate the changes to land‐use patterns resulting from their response to three scenarios of changing socio‐economic conditions and three scenarios of climate change until the mid of the century. Subsequently, we use species distribution models to, first, analyse relationships between the realized niches of 832 plant species and climatic gradients or land‐use types, respectively, and, second, to project consequent changes in potential regional ranges of these species as triggered by changes in both the altered land‐use patterns and the changing climate. We find that both drivers determine the realized niches of the studied plants, with land use having a stronger effect than any single climatic variable in the model. Nevertheless, the plants' future distributions appear much more responsive to climate than to land‐use changes because alternative future socio‐economic backgrounds have only modest impact on land‐use decisions in the model region. However, relative effects of climate and land‐use changes on biodiversity may differ drastically in other regions, especially where landscapes are still dominated by natural or semi‐natural habitat. We conclude that agent‐based modelling of land use is able to provide scenarios at scales relevant to individual species distribution and suggest that coupling ABMs with models of species' range change should be intensified to provide more realistic biodiversity forecasts.  相似文献   

6.
A changing climate may directly or indirectly influence biological invasions by altering the likelihood of introduction or establishment, as well as modifying the geographic range, environmental impacts, economic costs or management of alien species. A comprehensive assessment of empirical and theoretical evidence identified how each of these processes is likely to be shaped by climate change for alien plants, animals and pathogens in terrestrial, freshwater and marine environments of Great Britain. The strongest contemporary evidence for the potential role of climate change in the establishment of new alien species is for terrestrial arthropods, as a result of their ectothermic physiology, often high dispersal rate and their strong association with trade as well as commensal relationships with human environments. By contrast, there is little empirical support for higher temperatures increasing the rate of alien plant establishment due to the stronger effects of residence time and propagule pressure. The magnitude of any direct climate effect on the number of new alien species will be small relative to human‐assisted introductions driven by socioeconomic factors. Casual alien species (sleepers) whose population persistence is limited by climate are expected to exhibit greater rates of establishment under climate change assuming that propagule pressure remains at least at current levels. Surveillance and management targeting sleeper pests and diseases may be the most cost‐effective option to reduce future impacts under climate change. Most established alien species will increase their distribution range in Great Britain over the next century. However, such range increases are very likely be the result of natural expansion of populations that have yet to reach equilibrium with their environment, rather than a direct consequence of climate change. To assess the potential realised range of alien species will require a spatially explicit approach that not only integrates bioclimatic suitability and population‐level demographic rates but also simulation of landscape‐level processes (e.g. dispersal, land‐use change, host/habitat distribution, non‐climatic edaphic constraints). In terms of invasive alien species that have known economic or biodiversity impacts, the taxa that are likely to be the most responsive are plant pathogens and insect pests of agricultural crops. However, the extent to which climate adaptation strategies lead to new crops, altered rotations, and different farming practices (e.g. irrigation, fertilization) will all shape the potential agricultural impacts of alien species. The greatest uncertainty in the effects of climate change on biological invasions exists with identifying the future character of new species introductions and predicting ecosystem impacts. Two complementary strategies may work under these conditions of high uncertainty: (i) prioritise ecosystems in terms of their perceived vulnerability to climate change and prevent ingress or expansion of alien species therein that may exacerbate problems; (ii) target those ecosystem already threatened by alien species and implement management to prevent the situation deteriorating under climate change.  相似文献   

7.
Failure to quantify differences in the shape of inter‐specific trait distributions (e.g., skew, kurtosis) when comparing co‐occurring alien and native plants hinders the integration of biological invasions and plant community ecology. Within a plant community, understanding the circumstances that lead to the shape of the inter‐specific distribution of one or more functional plant traits being unimodal, bimodal, multimodal or skewed has the potential to shed new light on community vulnerability to invasion, subsequent ecosystem impacts and the selection pressures (e.g., stabilizing, directional or disruptive) acting upon native and alien species. Ignoring differences in the shape of inter‐specific trait distributions of alien and native species could miss important insights into plant invasions, including: the existence of unsaturated native plant communities, empty niches, shifting trait optima of species as a result of environmental change and incomplete colonization–extinction processes following invasion. Future comparisons of functional trait differences between native and alien species should include assessment of the shapes of inter‐specific trait distributions since these may differ even when the mean values of traits are similar for native and alien species. The infrequent application of such approaches may explain the limited generalizations regarding the drivers and consequences of plant invasions in plant communities.  相似文献   

8.
Scenario‐based biodiversity modelling is a powerful approach to evaluate how possible future socio‐economic developments may affect biodiversity. Here, we evaluated the changes in terrestrial biodiversity intactness, expressed by the mean species abundance (MSA) metric, resulting from three of the shared socio‐economic pathways (SSPs) combined with different levels of climate change (according to representative concentration pathways [RCPs]): a future oriented towards sustainability (SSP1xRCP2.6), a future determined by a politically divided world (SSP3xRCP6.0) and a future with continued global dependency on fossil fuels (SSP5xRCP8.5). To this end, we first updated the GLOBIO model, which now runs at a spatial resolution of 10 arc‐seconds (~300 m), contains new modules for downscaling land use and for quantifying impacts of hunting in the tropics, and updated modules to quantify impacts of climate change, land use, habitat fragmentation and nitrogen pollution. We then used the updated model to project terrestrial biodiversity intactness from 2015 to 2050 as a function of land use and climate changes corresponding with the selected scenarios. We estimated a global area‐weighted mean MSA of 0.56 for 2015. Biodiversity intactness declined in all three scenarios, yet the decline was smaller in the sustainability scenario (?0.02) than the regional rivalry and fossil‐fuelled development scenarios (?0.06 and ?0.05 respectively). We further found considerable variation in projected biodiversity change among different world regions, with large future losses particularly for sub‐Saharan Africa. In some scenario‐region combinations, we projected future biodiversity recovery due to reduced demands for agricultural land, yet this recovery was counteracted by increased impacts of other pressures (notably climate change and road disturbance). Effective measures to halt or reverse the decline of terrestrial biodiversity should not only reduce land demand (e.g. by increasing agricultural productivity and dietary changes) but also focus on reducing or mitigating the impacts of other pressures.  相似文献   

9.
Aim To test whether the distribution of alien bird impacts varies across bird families and regions of origin, and to investigate whether species traits associated with successful introductions can predict which species will have negative impacts in the new area of introduction. Location Europe and the Mediterranean Basin. Methods Combining historical information and published literature about negative economic, biological and human health impacts, we compared the distribution of impacts among bird families and native origins of bird species for three major types of impact (economic, biodiversity and human health). We examined the relationships between ecological, biological and reproductive characteristics of species and the severity of the impacts. Results The majority of alien species with reported impacts originated from the Afrotropical, Indo‐Malayan and Palaearctic biogeographical regions. The distribution of alien bird species in Europe with reported impacts shows a taxonomic bias and largely mirrors patterns of establishment. While most species had primarily either economic or biodiversity impacts, several species in the Anatidae, Corvidae, Passeridae, Phasianidae and Sturnidae families were associated with moderate to serious negative impacts on both economic resources and native biodiversity. After controlling for taxonomic effects, species with the greatest overall impacts were habitat generalists and multi‐brooded, while species with smaller bodies and the tendency to form large feeding or roosting flocks were linked with greater impacts on native biodiversity. Main conclusions This study presents the first synthesis of published impact data for alien birds and provides a broad‐scale perspective on factors that contribute to their impacts. The results show that accounting for both species traits and taxonomy improves our ability to predict the impacts of alien bird species. Because several species are currently in the early stages of establishment in Europe, there may be an opportunity to limit negative impacts with efforts that promote proactive strategies against species and families possessing the above characteristics.  相似文献   

10.
Climate change affects the rate of insect invasions as well as the abundance, distribution and impacts of such invasions on a global scale. Among the principal analytical approaches to predicting and understanding future impacts of biological invasions are Species Distribution Models (SDMs), typically in the form of correlative Ecological Niche Models (ENMs). An underlying assumption of ENMs is that species–environment relationships remain preserved during extrapolations in space and time, although this is widely criticised. The semi-mechanistic modelling platform, CLIMEX, employs a top-down approach using species ecophysiological traits and is able to avoid some of the issues of extrapolation, making it highly applicable to investigating biological invasions in the context of climate change. The tephritid fruit flies (Diptera: Tephritidae) comprise some of the most successful invasive species and serious economic pests around the world. Here we project 12 tephritid species CLIMEX models into future climate scenarios to examine overall patterns of climate suitability and forecast potential distributional changes for this group. We further compare the aggregate response of the group against species-specific responses. We then consider additional drivers of biological invasions to examine how invasion potential is influenced by climate, fruit production and trade indices. Considering the group of tephritid species examined here, climate change is predicted to decrease global climate suitability and to shift the cumulative distribution poleward. However, when examining species-level patterns, the predominant directionality of range shifts for 11 of the 12 species is eastward. Most notably, management will need to consider regional changes in fruit fly species invasion potential where high fruit production, trade indices and predicted distributions of these flies overlap.  相似文献   

11.
In this study we provide the first comprehensive assessment of the environmental and anthropogenic factors driving bryophyte invasions worldwide. We compiled data of alien bryophyte distributions from 82 regions on five continents and oceanic islands and region specific variables. For each species, we collected data on its region‐specific invasion stage, i.e. casual (ephemeral) vs naturalized (persistent) occurrences, and we differentiated between known aliens and those which are likely to be alien (cryptogenic). We used these data to test how species attributes, environmental and socio‐economic conditions of the study areas as well as introduction effort affect invasion probabilities at different invasion stages and of known alien vs cryptogenic species. We collected information on species’ attributes (native range size and location, niche breadth, habitat affiliation), and calculated variables characterising the environmental, biogeographic and socio‐economic features of the native and recepient regions. Subsequently, we related the probability of alien occurrence across different invasion stages with these species‐ and region‐wise predictor variables using generalized linear mixed effects models. Greater native range size raised the likelihood that a species becomes alien or cryptogenic. Islands are more invaded by alien (and cryptogenic) bryophytes than continental regions. Native range size and socio‐economic activity increase the likelihood that a species becomes alien or cryptogenic elsewhere. Interestingly, among alien bryophytes naturalizations occur more frequently in regions of the complementary hemisphere than in regions of their native hemisphere. In general, regions in the Southern Hemisphere have higher numbers of naturalized bryophytes. We conclude that there is a conspicuous change in factors determining bryophyte invasions at different invasion stages. Whereas alien and cryptogenic bryophyte species occurrences are more frequent on islands and depend on native range size, and hence probably propagule pressure, naturalized bryophytes are more frequent in areas which are biogeographically separated but climatically similar to the native ranges.  相似文献   

12.
This review deals with alien species invasion in Southeast Asia, an important conservation and management concern in the region. I report on the current and potential future impacts of biological invasions on biodiversity in Southeast Asia. Current knowledge of the invasive species in Southeast Asia is mostly based on anecdotal observations. Nevertheless, I attempt to compile existing empirical evidence on the negative effects of the biological invaders found in the region. These impacts include displacement of native biota, modification of ecosystems, hybridization, environmental disturbance, and economic loss. Any effective counter-measure will need to involve a multi-national strategy, yet such measure is challenging due to a broad spectrum of political and economic development models among the Southeast Asian countries. An overview of the taxonomic structure of the invasive species in Southeast Asia shows that the invasive plant and fish are the most represented taxonomic groups in all countries. The current research effort in invasion ecology from Southeast Asia is not being up to international standard in comparison to other regions, and the absence of recent international journal articles on invasive plant species reveals the biases in biological invasion-related research. The lack of research capacity and financial support from governments, and the inability to disseminate scholarly data in international journals are the possible reasons for the dearth of research literature on biological invasions from the region. Finally, a forward-looking agenda for the region should include improving the quality and quantity of biological invasion research; adopting a tough approach to the illegal release of wildlife; and applying multi-national strategies that integrate data sharing, prioritization, public awareness, policy work, capacity building, conservation actions and surveillance.  相似文献   

13.
Biological invasions and land‐use changes are two major causes of the global modifications of biodiversity. Habitat suitability models are the tools of choice to predict potential distributions of invasive species. Although land‐use is a key driver of alien species invasions, it is often assumed that land‐use is constant in time. Here we combine historical and present day information, to evaluate whether land‐use changes could explain the dynamic of invasion of the American bullfrog Rana catesbeiana (=Lithobathes catesbeianus) in Northern Italy, from the 1950s to present‐day. We used maxent to build habitat suitability models, on the basis of past (1960s, 1980s) and present‐day data on land‐uses and species distribution. For example, we used models built using the 1960s data to predict distribution in the 1980s, and so on. Furthermore, we used land‐use scenarios to project suitability in the future. Habitat suitability models predicted well the spread of bullfrogs in the subsequent temporal step. Models considering land‐use changes predicted invasion dynamics better than models assuming constant land‐use over the last 50 years. Scenarios of future land‐use suggest that suitability will remain similar in the next years. Habitat suitability models can help to understand and predict the dynamics of invasions; however, land‐use is not constant in time: land‐use modifications can strongly affect invasions; furthermore, both land management and the suitability of a given land‐use class may vary in time. An integration of land‐use changes in studies of biological invasions can help to improve management strategies.  相似文献   

14.
Based on data of bryophyte invasions into 82 regions on five continents of both hemispheres, we aim here at a first comprehensive overview of the impacts that bryophytes may have on biodiversity and socio-economy. Of the 139 bryophytes species which are alien in the study regions seven cause negative impacts on biodiversity in 26 regions, whereas three species cause negative impacts on socio-economic sectors in five regions. The vast majority of impacts stem from anecdotal observations, whereas only 14 field or experimental studies (mostly on Campylopus introflexus in Europe) have quantitatively assessed the impacts of an alien bryophyte. The main documented type of impact on biodiversity is competition (8 alien bryophytes), with native cryptogams being most affected. In particular, C. introflexus (9 regions) and Pseudoscleropodium purum (7 regions) affect resident species composition. The few socio-economic impacts are caused by alien bryophytes which form dense mats in lawns and are then considered a nuisance. Most negative impacts on biodiversity have been recorded in natural grasslands, forests, and wetlands. Impacts of alien bryophytes on biodiversity and socio-economy are a recent phenomenon, with >85 % of impacts on biodiversity, and 80 % of impacts on socio-economy recorded since 1990. On average, 40 years (impacts on biodiversity) and 25 years (impacts on socio-economy) elapsed between the year a bryophyte species has been first recorded as alien in a region and the year impacts have been recorded first. Taking into account the substantial time lag between first record and first recorded impact in a region, it seems to be likely that the currently moderate impacts of alien bryophytes will continue to increase. As quantitative studies on impacts of alien bryophytes are rare and restricted to few environments and biogeographic regions, there is a need for addressing potential impacts of alien bryophytes in yet understudied settings.  相似文献   

15.
Invasive aliens on tropical East Asian islands   总被引:1,自引:0,他引:1  
Tropical East Asia (TEA) has numerous islands, both continental and oceanic. This study uses information on invasive aliens in terrestrial habitats on these islands to test the generality of the continental-oceanic contrast in invasibility, assess the conservation impacts of invasive species, and suggest ways to mitigate these. The continental islands of Hong Kong and Singapore are worst-case scenarios for continental invasibility and alien species often dominate in chronically disturbed sites, but very few have successfully invaded closed forests, with the exception of birds in Hong Kong. On other, less densely populated, continental islands, closed-canopy forests appear to resist invasions by all taxa, with few known exceptions. Forests on oceanic islands isolated by <100 km during the last glacial maximum appear no more susceptible to plant and invertebrate invasions than those on continental islands, but invasions by mammals are widespread. Snake invasions may be under-recognized. The remote oceanic Ogasawara (Bonin) Islands, >1000 km from the nearest continent, have a native biota of largely tropical East Asian origin and are suffering from alien forest invasions across the taxonomic spectrum. These patterns of invasibility are consistent with the idea that alien invasion is facilitated by the absence of native species in the same functional group. Alien invasives are not yet a major conservation problem in TEA, except on remote islands, but their dominance on disturbed sites may slow or prevent recovery of native biodiversity. Strict quarantine is impractical in TEA, although some major introduction routes could be blocked. Management efforts should focus on early recognition and immediate control of potential problem species.  相似文献   

16.
Nations have committed to ambitious conservation targets in response to accelerating rates of global biodiversity loss. Anticipating future impacts is essential to inform policy decisions for achieving these targets, but predictions need to be of sufficiently high spatial resolution to forecast the local effects of global change. As part of the intercomparison of biodiversity and ecosystem services models of the Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services, we present a fine‐resolution assessment of trends in the persistence of global plant biodiversity. We coupled generalized dissimilarity models, fitted to >52 million records of >254 thousand plant species, with the species–area relationship, to estimate the effect of land‐use and climate change on global biodiversity persistence. We estimated that the number of plant species committed to extinction over the long term has increased by 60% globally between 1900 and 2015 (from ~10,000 to ~16,000). This number is projected to decrease slightly by 2050 under the most optimistic scenario of land‐use change and to substantially increase (to ~18,000) under the most pessimistic scenario. This means that, in the absence of climate change, scenarios of sustainable socio‐economic development can potentially bring extinction risk back to pre‐2000 levels. Alarmingly, under all scenarios, the additional impact from climate change might largely surpass that of land‐use change. In this case, the estimated number of species committed to extinction increases by 3.7–4.5 times compared to land‐use‐only projections. African regions (especially central and southern) are expected to suffer some of the highest impacts into the future, while biodiversity decline in Southeast Asia (which has previously been among the highest globally) is projected to slow down. Our results suggest that environmentally sustainable land‐use planning alone might not be sufficient to prevent potentially dramatic biodiversity loss, unless a stabilization of climate to pre‐industrial times is observed.  相似文献   

17.
Biological Invasions - Biological invasions are one of the top drivers of the ongoing biodiversity crisis. An underestimated consequence of invasions is the enormity of their economic impacts....  相似文献   

18.
Alien species indicators provide vital information to the biodiversity policy sector on the status-quo and trends of biological invasions and on the efficacy of response measures. Applicable at different geographical scales and organizational levels, alien species indicators struggle with data availability and quality. Based on policy needs and previous work on the global scale, we here present a set of six alien species indicators for Europe, which capture complementary facets of biological invasions in Europe: (a) an combined index of invasion trends, (b) an indicator on pathways of invasions, (c) the Red List Index of Invasive Alien Species (IAS), (d) an indicator of IAS impacts on ecosystem services, (e) trends in incidence of livestock diseases and (f) an indicator on costs for alien species management and research. Each of these indicators has its particular strengths and shortcomings, but combined they allow for a nuanced understanding of the status and trends of biological invasions in Europe. We found that the scale and impact of biological invasions are steadily increasing across all impact indicators, although societal response in recent years has increased. The Red List Index is fit-for-purpose and demonstrates that overall extinction risks (here shown for amphibians in Europe) are increasing. Introduction pathway dynamics have changed, with some pathways decreasing in relevance (e.g., biological control agents) and others increasing (e.g., horticultural trade) providing a leverage for targeted policy and stakeholder response. The IAS indicators presented here for the first time on a continental basis serve as a starting point for future improvements, and as a basis for monitoring the efficacy of the recent EU legislation of IAS. This will need a better workflow for data collection and management. To achieve this, all main actors must work toward improving the interoperability among existing databases and between data holders.  相似文献   

19.
齐相贞  林振山  温腾 《生态学报》2007,27(9):3835-3843
生物入侵带来的生态和经济危害引起了人们的广泛关注。在入侵生态学研究方面,生物多样性与生物入侵之间的关系长久以来成为群落可入侵性探讨的焦点。Elton经典假说认为,物种多样性越高对外来种入侵的抵抗能力越强,许多模型或野外试验都支持这一假说。但现在越来越多的试验对此提出了异议,各种假说纷纷出现。究竟生物多样性会不会影响外来种的入侵?假设两种不同的群落结构(功能群),设计6种外来种入侵土著群落的情景分析不同多样性及相同多样性下外来种的入侵状况。结果发现,在多样性相同的情况下,两种群落对外来种入侵的抵抗力不同。外来种成功入侵等比群落,却被倍数群落排斥在系统之外。进一步分析表明这主要是由于可利用资源的波动引起的,即Davis提出的"资源机遇假说"。在相同的物种多样性下,由于倍数群落的特殊结构,整个群落所占有资源远远大于等比群落资源比率。因此,外来种在等比群落中更易找到合适的入侵机会。而在物种多样性不同的情况下,由于物种多样性与已占有资源的变化是成正比的,因此,混淆了多样性与剩余资源可利用性对外来种入侵的影响。  相似文献   

20.
Abstract Monitoring the biodiversity of Australian rangelands has been identified as a means of informing policy and supporting funding decisions in relation to the conservation of biodiversity. Australian rangelands are subject to invasion by alien plants that have the potential to have major impacts on ecosystem function and biodiversity, although there has been little quantitative documentation of these effects. Research is needed to improve our understanding of how and to what extent alien plants affect biodiversity in Australian rangelands so that this relationship can be considered when developing and implementing programmes to monitor biodiversity. It is also important to consolidate existing efforts to quantify the extent of alien plant invasions and monitor their progress, thus documenting a process that threatens biodiversity. Information on the presence and abundance of alien plant species should be considered for inclusion as a component of biodiversity monitoring programmes that are undertaken. Monitoring components of biodiversity can itself provide a basis for evaluating weed management strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号