首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The HSSP (Homology-Derived Secondary Structure of Proteins) database provides multiple sequence alignments (MSAs) for proteins of known three-dimensional (3D) structure in the Protein Data Bank (PDB). The database also contains an estimate of the degree of evolutionary conservation at each amino acid position. This estimate, which is based on the relative entropy, correlates with the functional importance of the position; evolutionarily conserved positions (i.e., positions with limited variability and low entropy) are occasionally important to maintain the 3D structure and biological function(s) of the protein. We recently developed the Rate4Site algorithm for scoring amino acid conservation based on their calculated evolutionary rate. This algorithm takes into account the phylogenetic relationships between the homologs and the stochastic nature of the evolutionary process. Here we present the ConSurf-HSSP database of Rate4Site estimates of the evolutionary rates of the amino acid positions, calculated using HSSP's MSAs. The database provides precalculated evolutionary rates for nearly all of the PDB. These rates are projected, using a color code, onto the protein structure, and can be viewed online using the ConSurf server interface. To exemplify the database, we analyzed in detail the conservation pattern obtained for pyruvate kinase and compared the results with those observed using the relative entropy scores of the HSSP database. It is reassuring to know that the main functional region of the enzyme is detectable using both conservation scores. Interestingly, the ConSurf-HSSP calculations mapped additional functionally important regions, which are moderately conserved and were overlooked by the original HSSP estimate. The ConSurf-HSSP database is available online (http://consurf-hssp.tau.ac.il).  相似文献   

2.
Urease plays a central role in the pathogenesis of Helicobacter pylori in humans. Maturation of this nickel metalloenzyme in bacteria requires the participation of the accessory proteins UreD (termed UreH in H. pylori), UreF, and UreG, which form sequential complexes with the urease apoprotein as well as UreE, a metallochaperone. Here, we describe the crystal structure of C‐terminal truncated UreF from H. pylori (residues 1–233), the first UreF structure to be determined, at 1.55 Å resolution using SAD methods. UreF forms a dimer in vitro and adopts an all‐helical fold congruent with secondary structure prediction. On the basis of evolutionary conservation analysis, the structure reveals a probable binding surface for interaction with other urease components as well as key conserved residues of potential functional relevance. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
We present a general framework for modelling adaptive trait dynamics in which we integrate various concepts and techniques from modern ESS-theory. The concept of evolutionarily singular strategies is introduced as a generalization of the ESS-concept. We give a full classification of the singular strategies in terms of ESS-stability, convergence stability, the ability of the singular strategy to invade other populations if initially rare itself, and the possibility of protected dimorphisms occurring within the singular strategy's neighbourhood. Of particular interest is a type of singular strategy that is an evolutionary attractor from a great distance, but once in its neighbourhood a population becomes dimorphic and undergoes disruptive selection leading to evolutionary branching. Modelling the adaptive growth and branching of the evolutionary tree can thus be considered as a major application of the framework. A haploid version of Levene's soft selection model is developed as a specific example to demonstrate evolutionary dynamics and branching in monomorphic and polymorphic populations.  相似文献   

4.
5.
In this paper I review some theoretical exchanges and empiricalresults from recent work on human behavior and cognition in thehope of indicating some productive avenues for critical engagement.I focus particular attention on methodological debates between Evolutionary Psychologists and behavioral ecologists. I argue for a broader and more encompassing approach to the evolutionarily based study of human behavior and cognition than either of these two rivals present.  相似文献   

6.
The accurate identification of ligand binding sites in protein structures can be valuable in determining protein function. Once the binding site is known, it becomes easier to perform in silico and experimental procedures that may allow the ligand type and the protein function to be determined. For example, binding pocket shape analysis relies heavily on the correct localization of the ligand binding site. We have developed SURFNET-ConSurf, a modular, two-stage method for identifying the location and shape of potential ligand binding pockets in protein structures. In the first stage, the SURFNET program identifies clefts in the protein surface that are potential binding sites. In the second stage, these clefts are trimmed in size by cutting away regions distant from highly conserved residues, as defined by the ConSurf-HSSP database. The largest clefts that remain tend to be those where ligands bind. To test the approach, we analyzed a nonredundant set of 244 protein structures from the PDB and found that SURFNET-ConSurf identifies a ligand binding pocket in 75% of them. The trimming procedure reduces the original cleft volumes by 30% on average, while still encompassing an average 87% of the ligand volume. From the analysis of the results we conclude that for those cases in which the ligands are found in large, highly conserved clefts, the combined SURFNET-ConSurf method gives pockets that are a better match to the ligand shape and location. We also show that this approach works better for enzymes than for nonenzyme proteins.  相似文献   

7.
Eukaryotes have several highly conserved actin-binding proteins that crosslink filamentous actin into compact ordered bundles present in distinct cytoskeletal processes, including microvilli, stereocilia and filopodia. Fascin is an actin-binding protein that is present predominantly in filopodia, which are believed to play a central role in normal and aberrant cell migration. An important outstanding question regards the molecular basis for the unique localization and functional properties of fascin compared with other actin crosslinking proteins. Here, we present the crystal structure of full-length Homo sapiens fascin-1, and examine its packing, conformational flexibility, and evolutionary sequence conservation. The structure reveals a novel arrangement of four tandem β-trefoil domains that form a bi-lobed structure with approximate pseudo 2-fold symmetry. Each lobe has internal approximate pseudo 2-fold and pseudo 3-fold symmetry axes that are approximately perpendicular, with β-hairpin triplets located symmetrically on opposite sides of each lobe that mutational data suggest are actin-binding domains. Sequence conservation analysis confirms the importance of hydrophobic core residues that stabilize the β-trefoil fold, as well as interfacial residues that are likely to stabilize the overall fascin molecule. Sequence conservation also indicates highly conserved surface patches near the putative actin-binding domains of fascin, which conformational dynamics analysis suggests to be coupled via an allosteric mechanism that might have important functional implications for F-actin crosslinking by fascin.  相似文献   

8.
关于卵菌纲分类地位演变的教学体会   总被引:1,自引:0,他引:1  
随着学科的发展,卵菌纲(Oomycetes)早已从真菌中划分到藻界或茸鞭生物界(Stramenopilia),因此,在真菌学教学中,关于卵菌纲分类地位的变化是一个必须讲解的知识点,同时也是一个较困难的教学点。在这里,就我们授课的内容和体会作一具体介绍,供大家讨论。  相似文献   

9.
Recently, Doolittle and Inkpen formulated a thought provoking theory, asserting that evolution by natural selection was responsible for the sideways evolution of two radically different kinds of selective units (also called Domains). The former entities, termed singers, correspond to the usual objects studied by evolutionary biologists (gene, genomes, individuals, species, etc.), whereas the later, termed songs, correspond to re‐produced biological and ecosystemic functions, processes, information, and memes. Singers perform songs through selected patterns of interactions, meaning that a wealth of critical phenomena might receive novel evolutionary explanations. However, this theory did not provide an empirical approach to study evolution in such a broadened context. Here, we show that analyzing songs and singers, using patterns of interaction networks as a common ontology for both, offers a novel, actionable, inclusive and mathematical way to analyze not only the re‐production but also the evolution and fitness of biological and ecosystemic interconnected processes.  相似文献   

10.
Directions, modes, specializations, and coordination systems of morphofunctional changes are discussed based on modern data. Phylogenetic heterochronies (pedomorphoses and outstripping), which provide the basis for parallel, mosaic, and saltation development and different rates of morphological evolution, are regarded as important events of morphological diversification. The analysis of specificity and relationships of structural levels of organization (including genetic and epigenetic) and the elaboration of evolutionary principles of their dynamic stability are thought to be the most promising fields of modern research.  相似文献   

11.
Alpha/beta barrel structures very similar to that first observed in triose phosphate isomerase are now known to occur in 14 enzymes. To understand the origin of this fold, we analyzed in three of these proteins the geometry of the eight-stranded beta-sheets and the packing of the residues at the center of the barrel. The packing in this region is seen in its simplest form in glycolate oxidase. It consists of 12 residues arranged in three layers. Each layer contains four side chains. The packing of RubisCO and TIM can be understood in terms of distortions of this simple pattern, caused by residues with small side chains at some of the positions inside the barrel. Two classes of packing are found. In one class, to which RubisCO and TIM belong, the central layer is formed by a residue from the first, third, fifth, and seventh strands; the upper and lower layers are formed by residues from the second, fourth, sixth, and eighth strands. In the second class, to which GAO belongs, this is reversed: it is side chains from the even-numbered strands that form the central layer, and side chains from the odd-numbered strands that form the outer layers. Our results suggest that not all proteins with this fold are related by evolution, but that they represent a common favorable solution to the structural problems involved in the creation of a closed beta barrel.  相似文献   

12.
Biologists and philosophers have long recognized the importance of species, yet species concepts serve two masters, evolutionary theory on the one hand and taxonomy on the other. Much of present-day evolutionary and systematic biology has confounded these two roles primarily through use of the biological species concept. Theories require entities that are real, discrete, irreducible, and comparable. Within the neo-Darwinian synthesis, however, biological species have been treated as real or subjectively delimited entities, discrete or nondiscrete, and they are often capable of being decomposed into other, smaller units. Because of this, biological species are generally not comparable across different groups of organisms, which implies that the ontological structure of evolutionary theory requires modification. Some biologists, including proponents of the biological species concept, have argued that no species concept is universally applicable across all organisms. Such a view means, however, that the history of life cannot be embraced by a common theory of ancestry and descent if that theory uses species as its entities.These ontological and biological difficulties can be alleviated if species are defined in terms of evolutionary units. The latter are irreducible clusters of reproductively cohesive organisms that are diagnosably distinct from other such clusters. Unlike biological species, which can include two or more evolutionary units, these phylogenetic species are discrete entities in space and time and capable of being compared from one group to the next.  相似文献   

13.
Zhou Y  Wang R  Li L  Xia X  Sun Z 《Journal of molecular biology》2006,359(4):1150-1159
Identifying potential protein interactions is of great importance in understanding the topologies of cellular networks, which is much needed and valued in current systematic biological studies. The development of our computational methods to predict protein-protein interactions have been spurred on by the massive sequencing efforts of the genomic revolution. Among these methods is phylogenetic profiling, which assumes that proteins under similar evolutionary pressures with similar phylogenetic profiles might be functionally related. Here, we introduce a method for inferring functional linkages between proteins from their evolutionary scenarios. The term evolutionary scenario refers to a series of events that occurred in speciation over time, which can be reconstructed given a phylogenetic profile and a species tree. Common evolutionary pressures on two proteins can then be inferred by comparing their evolutionary scenarios, which is a direct indication of their functional linkage. This scenario method has proven to have better performance compared with the classical phylogenetic profile method, when applied to the same test set. In addition, predicted results of the two methods are found to be fairly different, suggesting the possibility of merging them in order to achieve a better performance. We analyzed the influence of the topology of the phylogenetic tree on the performance of this method, and found it to be robust to perturbations in the topology of the tree. However, if a completely random tree is incorporated, performance will decline significantly. The evolutionary scenario method was used for inferring functional linkages in 67 species, and 40,006 linkages were predicted. We examine our prediction for budding yeast and find that almost all predicted linkages are supported by further evidence.  相似文献   

14.
Decades of research on human fertility has presented a clear picture of how fertility varies, including its dramatic decline over the last two centuries in most parts of the world. Why fertility varies, both between and within populations, is not nearly so well understood. Fertility is a complex phenomenon, partly physiologically and partly behaviourally determined, thus an interdisciplinary approach is required to understand it. Evolutionary demographers have focused on human fertility since the 1980s. The first wave of evolutionary demographic research made major theoretical and empirical advances, investigating variation in fertility primarily in terms of fitness maximization. Research focused particularly on variation within high-fertility populations and small-scale subsistence societies and also yielded a number of hypotheses for why fitness maximization seems to break down as fertility declines during the demographic transition. A second wave of evolutionary demography research on fertility is now underway, paying much more attention to the cultural and psychological mechanisms underpinning fertility. It is also engaging with the complex, multi-causal nature of fertility variation, and with understanding fertility in complex modern and transitioning societies. Here, we summarize the history of evolutionary demographic work on human fertility, describe the current state of the field, and suggest future directions.  相似文献   

15.
It has recently been demonstrated that ecological feedback mechanisms can facilitate the emergence and maintenance of cooperation in public goods interactions: the replicator dynamics of defectors and cooperators can result, for example, in the ecological coexistence of cooperators and defectors. Here we show that these results change dramatically if cooperation strategy is not fixed but instead is a continuously varying trait under natural selection. For low values of the factor with which the value of resources is multiplied before they are shared among all participants, evolution will always favour lower cooperation strategies until the population falls below an Allee threshold and goes extinct, thus evolutionary suicide occurs. For higher values of the factor, there exists a unique evolutionarily singular strategy, which is convergence stable. Because the fitness function is linear with respect to the strategy of the mutant, this singular strategy is neutral against mutant invasions. This neutrality disappears if a nonlinear functional response in receiving benefits is assumed. For strictly concave functional responses, singular strategies become uninvadable. Evolutionary branching, which could result in the evolutionary emergence of cooperators and defectors, can occur only with locally convex functional responses, but we illustrate that it can also result in coevolutionary extinction.  相似文献   

16.
Populations subject to severe stress may be rescued by natural selection, but its operation is restricted by ecological and genetic constraints. The cost of natural selection expresses the limited capacity of a population to sustain the load of mortality or sterility required for effective selection. Genostasis expresses the lack of variation that prevents many populations from adapting to stress. While the role of relative fitness in adaptation is well understood, evolutionary rescue emphasizes the need to recognize explicitly the importance of absolute fitness. Permanent adaptation requires a range of genetic variation in absolute fitness that is broad enough to provide a few extreme types capable of sustained growth under a stress that would cause extinction if they were not present. This principle implies that population size is an important determinant of rescue. The overall number of individuals exposed to selection will be greater when the population declines gradually under a constant stress, or is progressively challenged by gradually increasing stress. In gradually deteriorating environments, survival at lethal stress may be procured by prior adaptation to sublethal stress through genetic correlation. Neither the standing genetic variation of small populations nor the mutation supply of large populations, however, may be sufficient to provide evolutionary rescue for most populations.  相似文献   

17.
Taphonomic information is examined to evaluate the early history of connective tissues in the Crinoidea. The pattern of stalk segmentation of Middle and Late Ordovician crinoids is consistent with the two-ligament (intercolumnal and through-going ligaments) pattern present in living isocrinid crinoids and interpreted for fossil isocrinids, holocrinids, and Lower Mississippian crinoids. A single rhombiferan was also examined; its taphonomic pattern is also indicative of this style of tissue organization. Furthermore, the taphonomy of all Middle and Late Ordovician crinoids may reflect that they lacked discretely organized muscles between arm brachials, which is consistent with the hypothesis that muscles evolved as a connective tissue between plates only once within the Crinoidea, during the Early Devonian. These data indicate that the two-ligament organization of the stalk is a primitive feature among the Crinoidea and perhaps even among stalked echinoderms. Therefore, the autotomy function of this column-tissue organization among living crinoids is an exaptation. On the other hand, discretely organized muscles as connective tissue in crinoid arms is a derived trait that first appeared during the middle Paleozoic; this adaptation proved very successful for the advanced cladid crinoids.  相似文献   

18.
Life-history evolution is a complexprocess. Life-history theory covers the fundamentallevel of the process, the evolution of life-historytraits. Life-history traits interact; thosecoevolving as a response to the same selectionpressure form life-history tactics. Top level of thehierarchy, life-history strategy, is formed bygenetically interconnected tactics. Our aim is toexpand the traditional view to life-history evolutionby considering what boundary conditions a successfullife-history strategy has to fulfil. We claim thatthe most fundamental condition successful strategieshave to meet is to minimize the risk of evolutionaryfailure. Here the risk of failure refers to failurein transferring practitioners of the strategy to thenext time point, either through survival, or byreproduction. We make an attempt to classify types ofrisks as they lead to evolutionary failure, anddiscuss how risk minimization ideas may be approachedempirically. We conclude that understanding howtraits evolve may not cover all aspects of howstrategies evolve. We emphasize that bookkeeping ofthe actual causes of failure might help in developinglife-history theory that uses causes of selection topredict responses to selection.  相似文献   

19.
The subterranean organs of the achlorophyllous Sciaphila polygyna (Triuridaceae) are described, depicted, and structurally explained for the first time. Unlike other Triuridaceae, the subterranean system of S. polygyna appears as a complex star-like structure of short, but thickened, roots as well as scale leaves and shoots. A complete series of sections revealed the following construction. In the axil of a scale leaf at a shoot of first order, a side shoot of second order as well as a pair of endogenous shoot-borne roots arise. This side shoot of second order also develops a scale leaf very early in ontogeny, which again gives rise to a side shoot of third order and a pair of shoot-borne roots. Other scale leaves at shoots of any order may also bear shoots and root pairs. This growth pattern occurs in a very close manner without internode elongation, resulting in the clumped, star-like appearance. The structures described superficially resemble the root systems of many mycoheterotrophic plants from other families. Comparisons with respect to how they develop, however, show that these similar root systems can result from distinct developmental patterns, suggesting independent evolutionary pathways and a considerable evolutionary pressure towards abbreviated and thickened roots in mycoheterotrophic plants. Possible advantages as well as evolutionary implications of the structures described are discussed.  © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society , 2004, 146 , 295–301.  相似文献   

20.
The allometric-constraint hypothesis states that evolutionary divergence of morphological traits is restricted by integrated growth regulation. In this study, we test this hypothesis on a time-calibrated and well-documented palaeontological sequence of dental measurements on the Pleistocene arvicoline rodent species Mimomys savini from the Iberian Peninsula. Based on 507 specimens representing nine populations regularly spaced over 600 000 years, we compare static (within-population) and evolutionary (among-population) allometric slopes between the width and the length of the first lower molar. We find that the static allometric slope remains evolutionary stable and predicts the evolutionary allometry quite well. These results support the hypothesis that the macroevolutionary divergence of molar traits is constrained by static allometric relationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号