首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
PDZ domains are key players in signalling pathways. These modular domains generally recognize short linear C-terminal stretches of sequences in proteins that organize the formation of complex multi-component assemblies. The development of new methodologies for the characterization of the molecular principles governing these interactions is critical to fully understand the functional diversity of the family and to elucidate biological functions for family members. Here, we applied an in vitro evolution strategy to explore comprehensively the capacity of PDZ domains for specific recognition of different amino acids at a key position in C-terminal peptide ligands. We constructed a phage-displayed library of the Erbin PDZ domain by randomizing the binding site−2 and adjacent residues, which are all contained in helix α2, and we selected for variants binding to a panel of peptides representing all possible position−2 residues. This approach generated insights into the basis for the common natural class I and II specificities, demonstrated an alternative basis for a rare natural class III specificity for Asp−2, and revealed a novel specificity for Arg−2 that has not been reported in natural PDZ domains. A structure of a PDZ-peptide complex explained the minimum requirement for switching specificity from class I ligands containing Thr/Ser−2 to class II ligands containing hydrophobic residues at position−2. A second structure explained the molecular basis for the specificity for ligands containing Arg−2. Overall, the evolved PDZ variants greatly expand our understanding of site−2 specificities and the variants themselves may prove useful as building blocks for synthetic biology.  相似文献   

2.
A key function of reversible protein phosphorylation is to regulate protein–protein interactions, many of which involve short linear motifs (3–12 amino acids). Motif‐based interactions are difficult to capture because of their often low‐to‐moderate affinities. Here, we describe phosphomimetic proteomic peptide‐phage display, a powerful method for simultaneously finding motif‐based interaction and pinpointing phosphorylation switches. We computationally designed an oligonucleotide library encoding human C‐terminal peptides containing known or predicted Ser/Thr phosphosites and phosphomimetic variants thereof. We incorporated these oligonucleotides into a phage library and screened the PDZ (PSD‐95/Dlg/ZO‐1) domains of Scribble and DLG1 for interactions potentially enabled or disabled by ligand phosphorylation. We identified known and novel binders and characterized selected interactions through microscale thermophoresis, isothermal titration calorimetry, and NMR. We uncover site‐specific phospho‐regulation of PDZ domain interactions, provide a structural framework for how PDZ domains accomplish phosphopeptide binding, and discuss ligand phosphorylation as a switching mechanism of PDZ domain interactions. The approach is readily scalable and can be used to explore the potential phospho‐regulation of motif‐based interactions on a large scale.  相似文献   

3.
Recognition of short linear motifs (SLiMs) or peptides by proteins is an important component of many cellular processes. However, due to limited and degenerate binding motifs, prediction of cellular targets is challenging. In addition, many of these interactions are transient and of relatively low affinity. Here, we focus on one of the largest families of SLiM‐binding domains in the human proteome, the PDZ domain. These domains bind the extreme C‐terminus of target proteins, and are involved in many signaling and trafficking pathways. To predict endogenous targets of PDZ domains, we developed MotifAnalyzer‐PDZ, a program that filters and compares all motif‐satisfying sequences in any publicly available proteome. This approach enables us to determine possible PDZ binding targets in humans and other organisms. Using this program, we predicted and biochemically tested novel human PDZ targets by looking for strong sequence conservation in evolution. We also identified three C‐terminal sequences in choanoflagellates that bind a choanoflagellate PDZ domain, the Monsiga brevicollis SHANK1 PDZ domain (mbSHANK1), with endogenously‐relevant affinities, despite a lack of conservation with the targets of a homologous human PDZ domain, SHANK1. All three are predicted to be signaling proteins, with strong sequence homology to cytosolic and receptor tyrosine kinases. Finally, we analyzed and compared the positional amino acid enrichments in PDZ motif‐satisfying sequences from over a dozen organisms. Overall, MotifAnalyzer‐PDZ is a versatile program to investigate potential PDZ interactions. This proof‐of‐concept work is poised to enable similar types of analyses for other SLiM‐binding domains (e.g., MotifAnalyzer‐Kinase). MotifAnalyzer‐PDZ is available at http://motifAnalyzerPDZ.cs.wwu.edu .  相似文献   

4.
The WW domain is an approximately 38 residue peptide-binding motif that binds a variety of sequences, including the consensus sequence xPPxY. We have displayed hYAP65 WW on the surface of M13 phage and randomized one-third of its three-stranded antiparallel beta-sheet. Improved binding to the hydrophobic peptide, GTPPPPYTVG (WW1), was selected in the presence of three different concentrations of proteinase K to simultaneously drive selection for improved stability as well as high-affinity binding. While some of the selected binders show cooperative unfolding transitions, others show noncooperative thermal unfolding curves. Two novel WW consensus sequences have been identified, which bind to the xPPxY motif with higher affinity than the wild-type hYAP65 WW domain. These WW domain sequences are not precedented in any natural WW domain sequence. Thus, there appear to be a large number of motifs capable of recognizing the target peptide sequence, only a subset of which appear to be used in natural proteins.  相似文献   

5.
Filamentous bacteriophage assemble at the host membrane in a non-lytic process; the gene-3 minor coat protein (P3) is required for release from the membrane and subsequently, for recognition and infection of a new host. P3 contains at least three distinct domains: two N-terminal domains that mediate host recognition and infection, and a C-terminal domain (P3-C) that is required for release from the host cell following phage assembly and contributes to the structural stability of the phage particle. A comprehensive mutational analysis of the 150 residue P3-C revealed that only 24 side-chains, located within the last 70 residues of sequence, were necessary for efficient incorporation into a wild-type coat. The results reveal that the requirements for the assembly of P3 into the phage particle are quite lax and involve only a few key side-chains. These findings shed light on the functional and structural requirements for filamentous phage assembly, and they may provide guidelines for the engineering of improved coat proteins as scaffolds for phage display technology.  相似文献   

6.
A peptide was fused to the C terminus of the M13 bacteriophage major coat protein (P8), and libraries of P8 mutants were screened to select for variants that displayed the peptide with high efficiency. Over 600 variants were sequenced to compile a comprehensive database of P8 sequence diversity compatible with assembly into the wild-type phage coat. The database reveals that, while the alpha-helical P8 molecule was highly tolerant to mutations, certain functional epitopes were required for efficient incorporation. Three hydrophobic epitopes were located approximately equidistantly along the length of the alpha-helix. In addition, a positively charged epitope was required directly opposite the most C-terminal hydrophobic epitope and on the same side as the other two epitopes. Both ends of the protein were highly tolerant to mutations, consistent with the use of P8 as a scaffold for both N and C-terminal phage display. Further rounds of selection were used to enrich for P8 variants that supported higher levels of C-terminal peptide display. The largest improvements in display resulted from mutations around the junction between P8 and the C-terminal linker, and additional mutations in the N-terminal region were selected for further improvements in display. The best P8 variants improved C-terminal display more than 100-fold relative to the wild-type, and these variants could support the simultaneous display of N and C-terminal fusions. These finding provide information on the requirements for filamentous phage coat assembly, and provide improved scaffolds for phage display technology.  相似文献   

7.
The E6 oncoproteins from high‐risk mucosal human papillomavirus (HPV) induce cervical cancer via two major activities, the binding and the degradation of the p53 protein and PDZ domain‐containing proteins. Human MAGI‐1 is a multi‐PDZ domain protein implicated into protein complex assembly at cell–cell contacts. High‐risk mucosal HPV E6 proteins interact with the PDZ1 domain of MAGI‐1 via a C‐terminal consensus binding motif. Here, we developed a medium throughput protocol to accurately measure by surface plasmon resonance affinity constants of protein domains binding to peptidic sequences produced as recombinant fusions to the glutathione‐S‐transferase (GST). This approach was applied to measure the binding of MAGI‐1 PDZ1 to the C‐termini of viral or cellular proteins. Both high‐risk mucosal HPV E6 C‐terminal peptides and cellular partners of MAGI‐1 PDZ1 bind to MAGI‐1 PDZ1 with comparable dissociation constants in the micromolar range. MAGI‐1 PDZ1 shows a preference for C‐termini with a valine at position 0 and a negative charge at position ?3, confirming previous studies performed with HPV18 E6. A detailed combined analysis via site‐directed mutagenesis of the HPV16 C‐terminal peptide and PDZ1 indicated that interactions mediated by charged residues upstream the PDZ‐binding motif strongly contribute to binding selectivity of this interaction. In addition, our work highlighted the K499 residue of MAGI‐1 as a novel determinant of binding specificity. Finally, we showed that MAGI‐1 PDZ1 also binds to the C‐termini of LPP and Tax proteins, which were already known to bind to PDZ proteins but not to MAGI‐1. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Diverse peptide sequences recognizing the lambda boxB RNA hairpin were previously isolated from a library encoding the 22-residue lambda N peptide with random amino acids at positions 13-22 using mRNA display. We have statistically analyzed amino acid distributions in 65 unique sequences from rounds 11 and 12 of this selection and evaluated the resulting structural and functional predictions by alanine-scanning mutagenesis and circular dichroism spectrometry. This artificial sequence family has a consensus structure that continues the bent alpha helix of lambda N up to position 17 when bound to lambda boxB. A charge pair (E(14)R(15)) and hydrophobic patch (A(21)L(22) or V(21)L(22)) have important functional roles in this context. Notably, amino acid covariance reveals six specific pairs of random region positions with >95% significant linkage and strong overall helical (i+1, i+3, and i+4) couplings. The covariance analysis suggests that (1) the sequence context of every residue in each insert has been optimized, (2) selected sequences are local optima on a rugged fitness landscape, and (3) it is possible to detect more subtle structural features with artificial protein sequence families than natural homologs. Our results provide a framework for investigating the structures of in vitro selected proteins by functional minimization, reselection, and covariance analysis.  相似文献   

9.
Human small C‐terminal domain phosphatase 1 (Scp1) modulates the phosphorylation state of the C‐terminal domain (CTD) of eukaryotic RNA polymerase II (RNAP II), with preference for phosphorylated Ser5 in the tandem heptad repeats of the CTD. Additionally, Scp1 was identified as a conserved regulator of neuronal stem cell development. Scp1 is a member of haloacid dehalogenase (HAD) superfamily, whose catalysis depends on a Mg2+ ion and a DXDX(T/V) motif. The first Asp of the motif is identified as the nucleophile that is subject to phosphorylation leading to a phosphoryl‐aspartate intermediate. This high‐energy mixed anhydride intermediate is subsequently hydrolyzed to regenerate the enzyme. In the present study, we successfully captured the phosphoryl‐aspartate intermediate in the crystal structure of a Scp1D206A mutant soaked with para‐nitrophenyl phosphate (pNPP), providing strong evidence for the proposed mechanism. Furthermore, steady‐state kinetic analysis of a variety of Scp1 mutants revealed the importance of Asp206 in Mg2+ coordination mediated by a water molecule. Overall, we captured the snapshots of the phosphoryl transfer reaction at each stage of Scp1‐mediated catalysis. Through structural‐based sequence alignment, we show that the spatial position of the D206 side chain is strictly conserved throughout HAD family. Our results strongly suggest that Asp206 and its equivalent residues in other HAD family members play important structural and possible mechanistic roles.  相似文献   

10.
Designed ankyrin repeat proteins (DARPins) are well‐established binding molecules based on a highly stable nonantibody scaffold. Building on 13 crystal structures of DARPin‐target complexes and stability measurements of DARPin mutants, we have generated a new DARPin library containing an extended randomized surface. To counteract the enrichment of unspecific hydrophobic binders during selections against difficult targets containing hydrophobic surfaces such as membrane proteins, the frequency of apolar residues at diversified positions was drastically reduced and substituted by an increased number of tyrosines. Ribosome display selections against two human caspases and membrane transporter AcrB yielded highly enriched pools of unique and strong DARPin binders which were mainly monomeric. We noted a prominent enrichment of tryptophan residues during binder selections. A crystal structure of a representative of this library in complex with caspase‐7 visualizes the key roles of both tryptophans and tyrosines in providing target contacts. These aromatic and polar side chains thus substitute the apolar residues valine, leucine, isoleucine, methionine, and phenylalanine of the original DARPins. Our work describes biophysical and structural analyses required to extend existing binder scaffolds and simplifies an existing protocol for the assembly of highly diverse synthetic binder libraries.  相似文献   

11.
Thaumatin‐like proteins (TLPs) share structural similarity with the sweet‐tasting thaumatin protein but exhibit antifungal activity by inhibiting growth of fungal pathogens. In a Tenebrio model, two TLP genes were identified by RNA‐sequencing analysis and genome sequencing. Both TmTLP1 and TmTLP2 genes contain 729 nucleotide sequences encoding 242 amino acid residues, including an initiation codon (ATG) and a termination codon (TAA). Interestingly, TmTLPs are proteins with 14 central cysteine residues that may have an important role in structure formation. These data will be used to characterize the innate immune functions of TmTLPs in Tenebrio molitor.  相似文献   

12.
13.
Chromosomal microarray analysis is now commonly used in clinical practice to identify copy number variants (CNVs) in the human genome. We report our experience with the use of the 105 K and 180 K oligonucleotide microarrays in 215 consecutive patients referred with either autism or autism spectrum disorders (ASD) or developmental delay/learning disability for genetic services at the University of Kansas Medical Center during the past 4 years (2009–2012). Of the 215 patients [140 males and 75 females (male/female ratio = 1.87); 65 with ASD and 150 with learning disability], abnormal microarray results were seen in 45 individuals (21%) with a total of 49 CNVs. Of these findings, 32 represented a known diagnostic CNV contributing to the clinical presentation and 17 represented non-diagnostic CNVs (variants of unknown significance). Thirteen patients with ASD had a total of 14 CNVs, 6 CNVs recognized as diagnostic and 8 as non-diagnostic. The most common chromosome involved in the ASD group was chromosome 15. For those with a learning disability, 32 patients had a total of 35 CNVs. Twenty-six of the 35 CNVs were classified as a known diagnostic CNV, usually a deletion (n = 20). Nine CNVs were classified as an unknown non-diagnostic CNV, usually a duplication (n = 8). For the learning disability subgroup, chromosomes 2 and 22 were most involved. Thirteen out of 65 patients (20%) with ASD had a CNV compared with 32 out of 150 patients (21%) with a learning disability. The frequency of chromosomal microarray abnormalities compared by subject group or gender was not statistically different. A higher percentage of individuals with a learning disability had clinical findings of seizures, dysmorphic features and microcephaly, but not statistically significant. While both groups contained more males than females, a significantly higher percentage of males were present in the ASD group.  相似文献   

14.
Keyword index     
《Journal of neurochemistry》2002,83(6):1543-1546
  相似文献   

15.
Keyword index     
《Journal of neurochemistry》2003,87(6):1579-1582
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号