首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herpesviruses are the most prevalent viruses that infect the human and animal body. They can escape a host immune response in numerous ways. One way is to block the TAP complex so that viral peptides, originating from proteasomal degradation, cannot be transported to the endoplasmic reticulum. As a result, a reduced number of MHC class I molecules appear on the surface of infected cells and, thus, the immune system is not efficiently activated. BoHV-1-encoded UL49.5 protein is one such TAP transporter inhibitor. This protein binds to TAP in such a way that its N-terminal fragment interacts with the loops of the TAP complex, and the C-terminus stimulates proteasomal degradation of TAP. Previous studies have indicated certain amino acid residues, especially the RRE(9–11) motif, within the helical structure of the UL49.5 N-terminal fragment, as being crucial to the protein's activity. In this work, we investigated the effects of modifications within the RRE region on the spatial structure of the UL49.5 N-terminal fragment. The introduced RRE(9–11) variations were designed to abolish or stabilize the structure of the α-helix and, consequently, to increase or decrease protein activity compared to the wild type. The terminal structure of the peptides was established using circular dichroism (CD), 2D nuclear magnetic resonance (NMR), and molecular dynamics (MD) in membrane-mimetic or membrane-model environments. Our structural results show that in the RRE(9–11)AAA and E11G peptides the helical structure has been stabilized, whereas for the RRE(9–11)GGG peptide, as expected, the helix structure has partially unfolded compared to the native structure. These RRE modifications, in the context of the entire UL49.5 proteins, slightly altered their biological activity in human cells.  相似文献   

2.
Herpes simplex virus 1 (HSV-1) is a well-studied herpesvirus that causes various human diseases. Like other herpesviruses, HSV-1 produces the transmembrane glycoprotein N (gN/UL49.5 protein), which has been extensively studied, but its function in HSV-1 remains largely unknown. The amino-acid sequences and lengths of UL49.5 proteins differ between herpesvirus species. It is, therefore, crucial to determine whether and to what extent the spatial structure of UL49.5 orthologs that are transporter associated with antigen processing (TAP) inhibitors (i.e., of bovine herpesvirus 1; BoHV-1) differ from that of non-TAP inhibitors (i.e., of HSV-1). Our study aimed to examine the 3D structure of the HSV-1-encoded UL49.5 protein in an advanced model of the endoplasmic reticulum (ER) membrane using circular dichroism, 2D nuclear magnetic resonance, and multiple-microsecond all-atom molecular dynamics simulations in an ER membrane mimetic environment. According to our findings, the N-terminus of the HSV-1-encoded UL49.5 adopts a highly flexible, unordered structure in the extracellular part due to the presence of a large number of proline and glycine residues. In contrast to the BoHV-1-encoded homolog, the transmembrane region of the HSV-1-encoded UL49.5 is formed by a single long transmembrane α-helix, rather than two helices oriented perpendicularly, while the cytoplasmic part of the protein (C-terminus) has a short unordered structure. Our findings provide valuable experimental structural information on the HSV-1-encoded UL49.5 protein and offer, based on the obtained structure, insight into its lack of biological activity in inhibiting the TAP-dependent antigen presentation pathway.  相似文献   

3.
Due to unique features, proline residues may control protein structure and function. Here, we investigated the role of 52PPQ54 residues, indicated by the recently established experimental 3D structure of bovine herpesvirus 1-encoded UL49.5 protein as forming a characteristic proline hinge motif in its N-terminal domain. UL49.5 acts as a potent inhibitor of the transporter associated with antigen processing (TAP), which alters the antiviral immune response. Mechanisms employed by UL49.5 to affect TAP remain undetermined on a molecular level. We found that mutations in the 52PPQ54 region had a vast impact on its immunomodulatory function, increasing cell surface MHC class I expression, TAP levels, and peptide transport efficiency. This inhibitory effect was specific for UL49.5 activity towards TAP but not towards the viral glycoprotein M. To get an insight into the impact of proline hinge modifications on structure and dynamics, we performed all-atom and coarse-grained molecular dynamics studies on the native protein and PPQ mutants. The results demonstrated that the proline hinge sequence with its highly rigid conformation served as an anchor into the membrane. This anchor was responsible for the structural and dynamical behavior of the whole protein, constraining the mobility of the C-terminus, increasing the mobility of the transmembrane region, and controlling the accessibility of the C-terminal residues to the cytoplasmic environment. Those features appear crucial for TAP binding and inhibition. Our findings significantly advance the structural understanding of the UL49.5 protein and its functional regions and support the importance of proline motifs for the protein structure.  相似文献   

4.
The lifelong infection by varicelloviruses is characterized by a fine balance between the host immune response and immune evasion strategies used by these viruses. Virus-derived peptides are presented to cytotoxic T lymphocytes by major histocompatibility complex (MHC) class I molecules. The transporter associated with antigen processing (TAP) transports the peptides from the cytosol into the endoplasmic reticulum, where the loading of MHC-I molecules occurs. The varicelloviruses bovine herpesvirus 1 (BoHV-1), pseudorabies virus, and equid herpesviruses 1 and 4 have been found to encode a UL49.5 protein that inhibits TAP-mediated peptide transport. To investigate to what extent UL49.5-mediated TAP inhibition is conserved within the family of Alphaherpesvirinae, the homologs of another five varicelloviruses, one mardivirus, and one iltovirus were studied. The UL49.5 proteins of BoHV-5, bubaline herpesvirus 1, cervid herpesvirus 1, and felid herpesvirus 1 were identified as potent TAP inhibitors. The varicella-zoster virus and simian varicellovirus UL49.5 proteins fail to block TAP; this is not due to the absence of viral cofactors that might assist in this process, since cells infected with these viruses did not show reduced TAP function either. The UL49.5 homologs of the mardivirus Marek's disease virus 1 and the iltovirus infectious laryngotracheitis virus did not block TAP, suggesting that the capacity to inhibit TAP via UL49.5 has been acquired by varicelloviruses only. A phylogenetic analysis of viruses that inhibit TAP through their UL49.5 proteins reveals an interesting hereditary pattern, pointing toward the presence of this capacity in defined clades within the genus Varicellovirus.  相似文献   

5.
Cytotoxic T-lymphocytes play an important role in the protection against viral infections, which they detect through the recognition of virus-derived peptides, presented in the context of MHC class I molecules at the surface of the infected cell. The transporter associated with antigen processing (TAP) plays an essential role in MHC class I-restricted antigen presentation, as TAP imports peptides into the ER, where peptide loading of MHC class I molecules takes place. In this study, the UL 49.5 proteins of the varicelloviruses bovine herpesvirus 1 (BHV-1), pseudorabies virus (PRV), and equine herpesvirus 1 and 4 (EHV-1 and EHV-4) are characterized as members of a novel class of viral immune evasion proteins. These UL 49.5 proteins interfere with MHC class I antigen presentation by blocking the supply of antigenic peptides through inhibition of TAP. BHV-1, PRV, and EHV-1 recombinant viruses lacking UL 49.5 no longer interfere with peptide transport. Combined with the observation that the individually expressed UL 49.5 proteins block TAP as well, these data indicate that UL 49.5 is the viral factor that is both necessary and sufficient to abolish TAP function during productive infection by these viruses. The mechanisms through which the UL 49.5 proteins of BHV-1, PRV, EHV-1, and EHV-4 block TAP exhibit surprising diversity. BHV-1 UL 49.5 targets TAP for proteasomal degradation, whereas EHV-1 and EHV-4 UL 49.5 interfere with the binding of ATP to TAP. In contrast, TAP stability and ATP recruitment are not affected by PRV UL 49.5, although it has the capacity to arrest the peptide transporter in a translocation-incompetent state, a property shared with the BHV-1 and EHV-1 UL 49.5. Taken together, these results classify the UL 49.5 gene products of BHV-1, PRV, EHV-1, and EHV-4 as members of a novel family of viral immune evasion proteins, inhibiting TAP through a variety of mechanisms.  相似文献   

6.
TAP translocates virus-derived peptides from the cytosol into the endoplasmic reticulum, where the peptides are loaded onto MHC class I molecules. This process is crucial for the detection of virus-infected cells by CTL that recognize the MHC class I-peptide complexes at the cell surface. The varicellovirus bovine herpesvirus 1 encodes a protein, UL49.5, that acts as a potent inhibitor of TAP. UL49.5 acts in two ways, as follows: 1) by blocking conformational changes of TAP required for the translocation of peptides into the endoplasmic reticulum, and 2) by targeting TAP1 and TAP2 for proteasomal degradation. At present, it is unknown whether UL49.5 interacts with TAP1, TAP2, or both. The contribution of other members of the peptide-loading complex has not been established. Using TAP-deficient cells reconstituted with wild-type and recombinant forms of TAP1 and TAP2, TAP was defined as the prime target of UL49.5 within the peptide-loading complex. The presence of TAP1 and TAP2 was required for efficient interaction with UL49.5. Using deletion mutants of TAP1 and TAP2, the 6+6 transmembrane core complex of TAP was shown to be sufficient for UL49.5 to interact with TAP and block its function. However, UL49.5-induced inhibition of peptide transport was most efficient in cells expressing full-length TAP1 and TAP2. Inhibition of TAP by UL49.5 appeared to be independent of the presence of other peptide-loading complex components, including tapasin. These results demonstrate that UL49.5 acts directly on the 6+6 transmembrane TAP core complex of TAP by blocking essential conformational transitions required for peptide transport.  相似文献   

7.
Bovine herpesvirus type 1 (BoHV-1) is a pathogen of cattle responsible for infectious bovine rhinotracheitis. The BoHV-1 UL49.5 is a transmembrane protein that binds to the transporter associated with antigen processing (TAP) and downregulates cell surface expression of the antigenic peptide complexes with the major histocompatibility complex class I (MHC-I). KLHDC3 is a kelch domain-containing protein 3 and a substrate receptor of a cullin2-RING (CRL2) E3 ubiquitin ligase. Recently, it has been identified that CRL2KLHDC3 is responsible for UL49.5-triggered TAP degradation via a C-degron pathway and the presence of the degron sequence does not lead to the degradation of UL49.5 itself. The molecular modeling of KLHDC3 in complexes with four UL49.5 C-terminal decapeptides (one native protein and three mutants) revealed their activity to be closely correlated with the conformation which they adopt in KLHDC3 binding cleft. To analyze the interaction between UL49.5 and KLHDC3 in detail, in this work a total of 3.6 μs long molecular dynamics simulations have been performed. The complete UL49.5-KLHDC3 complexes were embedded into the fully hydrated all-atom lipid membrane model with explicit water molecules. The network of polar interactions has been proposed to be responsible for the recognition and binding of the degron in KLHDC3. The interaction network within the binding pocket appeared to be very similar between two CRL2 substrate receptors: KLHDC3 and KLHDC2.  相似文献   

8.
Bovine herpesvirus 1 (BHV-1) interferes with peptide translocation by the transporter associated with antigen processing (TAP). Recently, the UL49.5 gene product of BHV-1 was identified as the protein responsible for the observed inhibition of TAP. In BHV-1-infected cells and virions, the UL49.5 protein forms a complex with glycoprotein M (gM). Hence, it was investigated whether UL49.5 can combine the interactions with gM and the TAP complex. In cell lines constitutively expressing both UL49.5 and gM, UL49.5 appears to be required for functional processing of gM. Immunofluorescence-confocal laser scanning microscopy demonstrated that both proteins are interdependent for their redistribution from the endoplasmic reticulum to the trans-Golgi network. Remarkably, expression of cloned gM results in the abrogation of the UL49.5-mediated inhibition of TAP and prevents the degradation of the transporter. However, in BHV-1-infected cells, differences in UL49.5 and gM expression kinetics were seen to create a window of opportunity at the early stages of infection, during which time the UL49.5 protein can act on TAP without gM interference. Moreover, in later periods, non-gM-associated UL49.5 can be detected in addition to the UL49.5/gM complex. Thus, it has been deduced that different functions of UL49.5, editing of gM processing and inhibition of TAP, can be combined during BHV-1 infection.  相似文献   

9.
X Liang  B Chow  C Raggo    L A Babiuk 《Journal of virology》1996,70(3):1448-1454
We previously reported that the genome of bovine herpesvirus 1 (BHV-1) contains an open reading frame (ORF) homologous to the herpes simplex virus UL49.5 ORF, and as with the herpes simplex virus UL49.5 ORF, the deduced amino acid sequence of the BHV-1 UL49.5 homolog (UL49.5h) contains features characteristic of an integral membrane protein, implying that it may constitute a functional gene encoding a novel viral envelope protein. This communication reports on the identification of the BHV-1 UL49.5h gene product. By employing an antibody against a synthetic BHV-1 UL49.5h peptide and an UL49.5h gene deletion mutant, the primary product of BHV-UL49.5h gene was identified as a polypeptide with a size of approximately 9 kDa; in both infected cells and isolated virions, the UL49.5h products were found to exist in three forms; monomer, disulfide-linked homodimer, and disulfide-linked heterodimer containing a second viral protein with a size of about 39 kDa. O-Glycosidase digestion and [3H]glucosamine labelling experiments showed that the UL49.5h protein is not glycosylated. Although the deduced amino acid sequence contains putative sites for myristylation and phosphorylation, we were unable to detect either modification. Surface labelling and trypsin digestion protection experiments showed that the BHV-1 UL49.5h protein was present on the surface of infected cells and on the surface of mature virions. Nonionic detergent partition of isolated virions revealed that the UL49.5h protein is more tightly associated with the virion tegument-nucleocapsid structure than envelope protein gD. The results from this study demonstrate that the BHV-1 UL49.5h gene encodes a nonglycosylated virion envelope protein which may associate with virion internal structures by forming a complex with the 39-kDa virion structural protein.  相似文献   

10.
Cytotoxic T lymphocytes eliminate infected cells upon surface display of antigenic peptides on major histocompatibility complex I molecules. To promote immune evasion, UL49.5 of several varicelloviruses interferes with the pathway of major histocompatibility complex I antigen processing. However, the inhibition mechanism has not been elucidated yet. Within the macromolecular peptide-loading complex we identified the transporter associated with antigen processing (TAP1 and TAP2) as the prime target of UL49.5. Moreover, we determined the active oligomeric state and crucial elements of the viral factor. Remarkably, the last two residues of the cytosolic tail of UL49.5 are essential for endoplasmic reticulum (ER)-associated proteasomal degradation of TAP. However, this process strictly requires additional signaling of an upstream regulatory element in the ER lumenal domain of UL49.5. Within this new immune evasion mechanism, we show for the first time that additive elements of a small viral factor and their signaling across the ER membrane are essential for targeted degradation of a multi-subunit membrane complex.  相似文献   

11.
Major histocompatibility complex class I (MHC-I) molecules are critically important in the host defense against various pathogens through presentation of viral peptides to cytotoxic T lymphocytes (CTLs), a process resulting in the destruction of virus-infected cells. Herpesviruses interfere with CTL-mediated elimination of infected cells by various mechanisms, including inhibition of peptide transport and loading, perturbation of MHC-I trafficking, and rerouting and proteolysis of cell surface MHC-I. In this study, we show that equine herpesvirus type 4 (EHV-4) modulates MHC-I cell surface expression through two different mechanisms. First, EHV-4 can lead to a significant downregulation of MHC-I expression at the cell surface through the product of ORF1, a protein expressed with early kinetics from a gene that is homologous to herpes simplex virus 1 UL56. The EHV-4 UL56 protein reduces cell surface MHC-I as early as 4 h after infection. Second, EHV-4 can interfere with MHC-I antigen presentation, starting at 6 h after infection, by inhibition of the transporter associated with antigen processing (TAP) through its UL49.5 protein. Although pUL49.5 has no immediate effect on overall surface MHC-I levels in infected cells, it blocks the supply of antigenic peptides to the endoplasmic reticulum (ER) and transport of peptide-loaded MHC-I to the cell surface. Taken together, our results show that EHV-4 encodes at least two viral immune evasion proteins: pUL56 reduces MHC-I molecules on the cell surface at early times after infection, and pUL49.5 interferes with MHC-I antigen presentation by blocking peptide transport in the ER.  相似文献   

12.
During herpes simplex virus 1 (HSV-1) infection, empty procapsids are assembled and subsequently filled with the viral genome by means of a protein complex called the terminase, which is comprised of the HSV-1 UL15, UL28, and UL33 proteins. Biochemical studies of the terminase proteins have been hampered by the inability to purify the intact terminase complex. In this study, terminase complexes were isolated by tandem-affinity purification (TAP) using recombinant viruses expressing either a full-length NTAP-UL28 fusion protein (vFH476) or a C-terminally truncated NTAP-UL28 fusion protein (vFH499). TAP of the UL28 protein from vFH476-infected cells, followed by silver staining, Western blotting, and mass spectrometry, identified the UL15, UL28, and UL33 subunits, while TAP of vFH499-infected cells confirmed previous findings that the C terminus of UL28 is required for UL28 interaction with UL33 and UL15. Analysis of the oligomeric state of the purified complexes by sucrose density gradient ultracentrifugation revealed that the three proteins formed a complex with a molecular mass that is consistent with the formation of a UL15-UL28-UL33 heterotrimer. In order to assess the importance of conserved regions of the UL15 and UL28 proteins, recombinant NTAP-UL28 viruses with mutations of the putative UL28 metal-binding domain or within the UL15 nuclease domain were generated. TAP of UL28 complexes from cells infected with each domain mutant demonstrated that the conserved cysteine residues of the putative UL28 metal-binding domain and conserved amino acids within the UL15 nuclease domain are required for the cleavage and packaging functions of the viral terminase, but not for terminase complex assembly.  相似文献   

13.
Wei H  Wang Y  Chowdhury SI 《PloS one》2011,6(10):e25742
Bovine herpesvirus type 1 (BHV-1) U(L)49.5 inhibits transporter associated with antigen processing (TAP) and down-regulates cell-surface expression of major histocompatibility complex (MHC) class I molecules to promote immune evasion. We have constructed a BHV-1 U(L)49.5 cytoplasmic tail (CT) null and several U(L)49.5 luminal domain mutants in the backbone of wild-type BHV-1 or BHV-1 U(L)49.5 CT- null viruses and determined their relative TAP mediated peptide transport inhibition and MHC-1 down-regulation properties compared with BHV-1 wt. Based on our results, the U(L)49.5 luminal domain residues 30-32 and U(L)49.5 CT residues, together, promote efficient TAP inhibition and MHC-I down-regulation functions. In vitro, BHV-1 U(L)49.5 Δ30-32 CT-null virus growth property was similar to that of BHV-1 wt and like the wt U(L)49.5, the mutant U(L)49.5 was incorporated in the virion envelope and it formed a complex with gM in the infected cells.  相似文献   

14.
Kamil JP  Coen DM 《Journal of virology》2007,81(19):10659-10668
UL97 is a protein kinase encoded by human cytomegalovirus (HCMV) and is an important target for antiviral drugs against this ubiquitous herpesvirus, which is a major cause of life-threatening opportunistic infections in the immunocompromised host. In an effort to better understand the function(s) of UL97 during HCMV replication, a recombinant HCMV, NTAP97, which expresses a tandem affinity purification (TAP) tag at the amino terminus of UL97, was used to obtain UL97 protein complexes from infected cells. pp65 (also known as UL83), the 65-kDa virion tegument phosphoprotein, specifically copurified with UL97 during TAP, as shown by mass spectrometry and Western blot analyses. Reciprocal coimmunoprecipitation experiments using lysates of infected cells also indicated an interaction between UL97 and pp65. Moreover, in a glutathione S-transferase (GST) pull-down experiment, purified GST-pp65 fusion protein specifically bound in vitro-translated UL97, suggesting that UL97 and pp65 do not require other viral proteins to form a complex and may directly interact. Notably, pp65 has been previously reported to form unusual aggregates during viral replication when UL97 is pharmacologically inhibited or genetically ablated, and a pp65 deletion mutant was observed to exhibit modest resistance to a UL97 inhibitor (M. N. Prichard, W. J. Britt, S. L. Daily, C. B. Hartline, and E. R. Kern, J. Virol. 79:15494-15502, 2005). A stable protein-protein interaction between pp65 and UL97 may be relevant to incorporation of these proteins into HCMV particles during virion morphogenesis, with potential implications for immunomodulation by HCMV, and may also be a mechanism by which UL97 is negatively regulated during HCMV replication.  相似文献   

15.
Degenerate PCR method for identification of an antiapoptotic gene in BHV-1   总被引:2,自引:0,他引:2  
To investigate on the hypothetical presence of an antiapoptotic gene, we utilized the CODEHOP (COnsensus-DEgenerate Hybrid Oligonucleotide Primers) strategy amplifying unknown sequences from a background of genomic (bovine herpesvirus type-1) BHV-1 DNA. An alignment of carboxyl-terminal domains belonging to three proteins encoded by gamma34.5, MyD116 and GADD34 genes, was carried out to design degenerate PCR primers in highly conserved regions. This allowed the amplification of a 110 bp fragment. This fragment was subjected to automatic sequencing and DNA sequence analysis revealed that its position resided between the nt 14363 and the nt 14438 in bovine herpesvirus type-1 (BHV-1) Cooper strain sharing an identity of 86% (UL14). Transient transfections showed that UL14 protein is efficient in protecting MDBK and K562 cells from sorbitol induced apoptosis. The protein's anti-apoptotic function may derive from its heat shock protein-like properties.  相似文献   

16.
Sequence analysis of BamHI fragment 1 of the pseudorabies virus (PrV) genome identified a novel PrV gene located upstream of the UL50 gene encoding PrV dUTPase. The deduced protein product displayed homology to the product of the herpes simplex virus type 1 UL49.5 protein. The predicted PrV UL49.5 protein consists of 98 amino acids with a calculated molecular mass of 10,155 Da. It contains putative signal peptide and transmembrane domains but lacks a consensus sequence for N glycosylation. PrV UL49.5 was expressed as a fusion protein with glutathione S-transferase in Escherichia coli, and a rabbit antiserum was generated. In Western blots (immunoblots) of purified virions, the antiserum detected a protein with an apparent molecular mass of 14 kDa. After fractionation of the virions, the 14-kDa protein was detected in the envelope fraction. Localization of the UL49.5 protein in the viral envelope was confirmed by immunoelectron microscopy. The treatment of purified virions with glycosidases led to a reduction of the apparent molecular mass in Western blots by approximately 2 kDa following digestion with neuraminidase and O-glycosidase. Our results demonstrate that the PrV UL49.5 protein is an O-glycosylated structural component of the viral envelope. It represents the 10th PrV glycoprotein described. According to the unified nomenclature for alphaherpesvirus glycoproteins, we propose to designate it glycoprotein N (gN).  相似文献   

17.
The transporter associated with antigen processing (TAP) enables the flow of viral peptides generated in the cytosol by the proteasome and other proteases to the endoplasmic reticulum, where they complex with nascent human leukocyte antigen (HLA) class I. Later, these peptide-HLA class I complexes can be recognized by CD8+ lymphocytes. Cancerous cells and infected cells in which TAP is blocked, as well as individuals with unusable TAP complexes, are able to present peptides on HLA class I by generating them through TAP-independent processing pathways. Here, we identify a physiologically processed HLA-E ligand derived from the D8L protein in TAP-deficient vaccinia virus-infected cells. This natural high affinity HLA-E class I ligand uses alternative interactions to the anchor motifs previously described to be presented on nonclassical HLA class I molecules. This octameric peptide was also presented on HLA-Cw1 with similar binding affinity on both classical and nonclassical class I molecules. In addition, this viral peptide inhibits HLA-E-mediated cytolysis by natural killer cells. Comparison between the amino acid sequences of the presenting HLA-E and HLA-Cw1 alleles revealed a shared structural motif in both HLA class molecules, which could be related to their observed similar cross-reactivity affinities. This motif consists of several residues located on the floor of the peptide-binding site. These data expand the role of HLA-E as an antigen-presenting molecule.  相似文献   

18.
We have investigated by multidimensional NMR the structural and dynamic characteristics of the urea-denatured state of activated SUMO-1, a 97-residue protein belonging to the growing family of ubiquitin-like proteins involved in post-translational modifications. Complete backbone amide and 15N resonance assignments were obtained in the denatured state by using HNN and HN(C)N experiments. These enabled other proton assignments from TOCSY-HSQC spectra. Secondary Halpha chemical shifts and 1H-1H NOE indicate that the protein chain in the denatured state has structural preferences in the broad beta-domain for many residues. Several of these are seen to populate the (phi,psi) space belonging to polyproline II structure. Although there is no evidence for any persistent structures, many contiguous stretches of three or more residues exhibit structural propensities suggesting possibilities of short-range transient structure formation. The hetero-nuclear 1H-15N NOEs are extremely weak for most residues, except for a few at the C-terminal, and the 15N relaxation rates show sequence-wise variation. Some of the regions of slow motions coincide with those of structural preferences and these are interspersed by highly flexible residues. The implications of these observations for the early folding events starting from the urea-denatured state of activated SUMO-1 have been discussed.  相似文献   

19.
Affibody molecules constitute a class of engineered binding proteins based on the 58-residue three-helix bundle Z domain derived from staphylococcal protein A (SPA). Affibody proteins are selected as binders to target proteins by phage display of combinatorial libraries in which typically 13 side-chains on the surface of helices 1 and 2 in the Z domain have been randomized. The Z(Taq):anti-Z(Taq) affibody-affibody complex, consisting of Z(Taq), originally selected as a binder to Taq DNA polymerase, and anti-Z(Taq), selected as binder to Z(Taq), is formed with a dissociation constant K(d) approximately 100 nM. We have determined high-precision solution structures of free Z(Taq) and anti-Z(Taq), and the Z(Taq):anti-Z(Taq) complex under identical experimental conditions (25 degrees C in 50 mM NaCl with 20 mM potassium phosphate buffer at pH 6.4). The complex is formed with helices 1 and 2 of anti-Z(Taq) in perpendicular contact with helices 1 and 2 of Z(Taq). The interaction surface is large ( approximately 1670 A(2)) and unusually non-polar (70 %) compared to other protein-protein complexes. It involves all varied residues on anti-Z(Taq), most corresponding (Taq DNA polymerase binding) side-chains on Z(Taq), and several additional side-chain and backbone contacts. Other notable features include a substantial rearrangement (induced fit) of aromatic side-chains in Z(Taq) upon binding, a close contact between glycine residues in the two subunits that might involve aliphatic glycine Halpha to backbone carbonyl hydrogen bonds, and four hydrogen bonds made by the two guanidinium N(eta)H(2) groups of an arginine side-chain. Comparisons of the present structure with other data for affibody proteins and the Z domain suggest that intrinsic binding properties of the originating SPA surface might be inherited by the affibody binders. A thermodynamic characterization of Z(Taq) and anti-Z(Taq) is presented in an accompanying paper.  相似文献   

20.
Cationic and aromatic side chains from protein residues interact to stabilize tertiary structure. The stabilization energy originates in part from electrostatic attraction between the cation, and regions of high electron density in pi-orbitals of the aromatic group, leading to the name cation-pi interaction. The lysine and tyrosine containing peptide, N-acetyl-Pro-Pro-Lys-Tyr-Asp-Lys-NH(2), has near uv CD characteristic of tyrosine in a structured environment. Nuclear Overhauser effect (NOE), coupling constant, and ring current chemical shift constraints obtained with (1)H NMR confirm that the peptide (t6p) folds. Simulated annealing consistent with all NMR constraints produces a 40-structure ensemble for t6p with potential energies within one standard deviation of the lowest value observed. Calculated binding energies indicate that cation-pi and cation-phenolic OH interactions exists between the Lys3 and Tyr4 side chains in most of the structures. The t6p peptide in solution is a model for these interactions in a protein. A perturbing electric field from the cationic ground state charge intermingles the excited states of the aromatic group. This intermingling effect may provide a cation-pi signature effect in the tyrosine spectroscopy. The absorption and CD for the lowest energy electronic transitions of the tyrosine phenol were computed for the ensemble. Red-shifted peak energy and hypochromicity in the absorbance band, and decreasing rotational strength, correlates with increasing binding energy of the complex indicating the cation-pi spectroscopic signature. The ensemble average spectroscopic signature effects in t6p are small and in agreement with observation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号