首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human fatty acid synthase (FAS) is a key enzyme in the metabolism of fatty acids and a target for antineoplastic and antiobesity drug development. Due to its size and flexibility, structural studies of mammalian FAS have been limited to individual domains or intermediate-resolution studies of the complete porcine FAS. We describe the high-resolution crystal structure of a large part of human FAS that encompasses the tandem domain of β-ketoacyl synthase (KS) connected by a linker domain to the malonyltransferase (MAT) domain. Hinge regions that allow for substantial flexibility of the subdomains are defined. The KS domain forms the canonical dimer, and its substrate-binding site geometry differs markedly from that of bacterial homologues but is similar to that of the porcine orthologue. The didomain structure reveals a possible way to generate a small and compact KS domain by omitting a large part of the linker and MAT domains, which could greatly aid in rapid screening of KS inhibitors. In the crystal, the MAT domain exhibits two closed conformations that differ significantly by rigid-body plasticity. This flexibility may be important for catalysis and extends the conformational space previously known for type I FAS and 6-deoxyerythronolide B synthase.  相似文献   

2.
Originally annotated as the initiator of fatty acid synthesis (FAS), β‐ketoacyl‐acyl carrier protein synthase III (KAS III) is a unique component of the bacterial FAS system. Novel variants of KAS III have been identified that promote the de novo use of additional extracellular fatty acids by FAS. These KAS III variants prefer longer acyl‐groups, notably octanoyl‐CoA. Acinetobacter baumannii, a clinically important nosocomial pathogen, contains such a multifunctional KAS III (AbKAS III). To characterize the structural basis of its substrate specificity, we determined the crystal structures of AbKAS III in the presence of different substrates. The acyl‐group binding cavity of AbKAS III and co‐crystal structure of AbKAS III and octanoyl‐CoA confirmed that the cavity can accommodate acyl groups with longer alkyl chains. Interestingly, Cys264 formed a disulfide bond with residual CoA used in the crystallization, which distorted helices at the putative interface with acyl‐carrier proteins. The crystal structure of KAS III in the alternate conformation can also be utilized for designing novel antibiotics.  相似文献   

3.
Fatty acid synthase (FAS) is a multifunctional homodimeric protein, and is the key enzyme required for the anabolic conversion of dietary carbohydrates to fatty acids. FAS synthesizes long-chain fatty acids from three substrates: acetyl-CoA as a primer, malonyl-CoA as a 2 carbon donor, and NADPH for reduction. The entire reaction is composed of numerous sequential steps, each catalyzed by a specific functional domain of the enzyme. FAS comprises seven different functional domains, among which the β-ketoacyl synthase (KS) domain carries out the key condensation reaction to elongate the length of fatty acid chain. Acyl tail length controlled fatty acid synthesis in eukaryotes is a classic example of how a chain building multienzyme works. Different hypotheses have been put forward to explain how those sub-units of FAS are orchestrated to produce fatty acids with proper molecular weight. In the present study, molecular dynamic simulation based binding free energy calculation and access tunnels analysis showed that the C16 acyl tail fatty acid, the major product of FAS, fits to the active site on KS domain better than any other substrates. These simulations supported a new hypothesis about the mechanism of fatty acid production ratio: the geometric shape of active site on KS domain might play a determinate role.  相似文献   

4.
Fatty acid synthase (FAS) in animal tissues consists of two identical monomers and is known to be a complex multi-functional enzyme that plays an important role in energy homeostasis. However, there are few reports of studies focused on the relationship between FAS and virus infection in invertebrates. In the present study, we cloned the FAS gene from an economically important invertebrate, the Pacific white shrimp Litopenaeus vannamei. The full-length FAS cDNA is 8268 bp, including a 5'-terminal untranslated region of 137 bp, a 3'-terminal untranslated region of 601 bp and an open reading frame of 7530 bp. FAS cDNA encodes a polypeptide of 2509 amino acid residues that contains a typical β-ketoacyl synthase (KS) domain at the N-terminus, next to a malonyl/acetyltransferase (MAT) domain, a dehydrase domain, an enoyl reductase domain, a ketoacyl reductase domain, a phosphopantetheine attachment site domain and a thioesterase domain at the C-terminus. Quantitative real-time RT-PCR revealed the up-regulated expression of FAS in L. vannamei hepatopancreas and muscle after white spot syndrome virus (WSSV) infection. The expression of FAS in muscle was 13.03-fold greater than that in the control (p<0.05) and 2.93-fold greater in hepatopancreas (p>0.05). Meanwhile, expression of the fatty acid-binding protein (FABP), another important factor in lipid metabolism, was increased in muscle to 19.20-fold greater than that in the control (p<0.05) but only 0.76-fold in hepatopancreas (p>0.05). These results implied that WSSV infected body surface tissues, but there was very little infection of internal organs. We suggest that the increase of FAS expression is induced in WSSV-infected shrimps, and the virus changes the lipid metabolism of the host, which directly affects virus assembly or defense against virus infection.  相似文献   

5.
Ma SM  Tang Y 《The FEBS journal》2007,274(11):2854-2864
The biosynthesis of lovastatin in Aspergillus terreus requires two megasynthases. The lovastatin nonaketide synthase, LovB, synthesizes the intermediate dihydromonacolin L using nine malonyl-coenzyme A molecules, and is a reducing, iterative type I polyketide synthase. The iterative type I polyketide synthase is mechanistically different from bacterial type I polyketide synthases and animal fatty acid synthases. We have cloned the minimal polyketide synthase domains of LovB as standalone proteins and assayed their activities and substrate specificities. The didomain proteins ketosynthase-malonyl-coenzyme A:acyl carrier protein acyltransferase (KS-MAT) and acyl carrier protein-condensation (ACP-CON) domain were expressed solubly in Escherichia coli. The monodomains MAT, ACP and CON were also obtained as soluble proteins. The MAT domain can be readily labeled by [1,2-(14)C]malonyl-coenzyme A and can transfer the acyl group to both the cognate LovB ACP and heterologous ACPs from bacterial type I and type II polyketide synthases. Using the LovB ACP-CON didomain as an acyl acceptor, LovB MAT transferred malonyl and acetyl groups with k(cat)/K(m) values of 0.62 min(-1).mum(-1) and 0.032 min(-1).mum(-1), respectively. The LovB MAT domain was able to substitute the Streptomyces coelicolor FabD in supporting product turnover in a bacterial type II minimal polyketide synthase assay. The activity of the KS domain was assayed independently using a KS-MAT (S656A) mutant in which the MAT domain was inactivated. The KS domain displayed no activity towards acetyl groups, but was able to recognize malonyl groups in the absence of cerulenin. The relevance of these finding to the priming mechanism of fungal polyketide synthase is discussed.  相似文献   

6.
Search of the protein database with the aflatoxin pathway polyketide synthase (PKS) revealed putative PKSs in the pathogenic fungi Coccidioides immitis and Coccidioides posadasii that could require partnerships with a pair of fatty acid synthase (FAS) subunits for the biosynthesis of fatty acid-polyketide hybrid metabolites. A starter unit:acyl-carrier protein transacylase (SAT) domain was discovered in the nonreducing PKS. This domain is thought to accept the fatty acid product from the FAS to initiate polyketide synthesis. We expressed the C. immitis SAT domain in Escherichia coli and showed that this domain, unlike that from the aflatoxin pathway PKS, transferred octanoyl-CoA four times faster than hexanoyl-CoA. The SAT domain also formed a covalent octanoyl intermediate and transferred this group to a free-standing ACP domain. Our results suggest that C. immitis/posadasii, both human fungal pathogens, contain a FAS/PKS cluster with functional similarity to the aflatoxin cluster found in Aspergillus species. Dissection of the PKS and determination of in vitro SAT domain specificity provides a tool to uncover the growing number of similar sequenced pathways in fungi, and to guide elucidation of the fatty acid-polyketide hybrid metabolites that they produce.  相似文献   

7.
Limited trypsinization of rat fatty acid synthase monomers results in cleavage at sites protected in the native dimer. A 47,000-Da polypeptide containing the transferase component was isolated from the digest and its location in the multifunctional polypeptide established. Both acetyl and malonyl moieties are transferred stoichiometrically from CoA ester to this polypeptide and each can replace the other, confirming that a single common site is utilized in the loading of these substrates onto the fatty acid synthase. Transferase activity of the 47,000-Da polypeptide decreases with increasing acyl donor chain length (malonyl = acetyl greater than butyryl greater than hexanoyl greater than octanoyl). Activity is inhibited by certain thiol-directed reagents, and protection is afforded by substrate suggesting the presence of a sensitive cysteine residue near the substrate binding site. The transferase was also able to utilize as acyl acceptor the Escherichia coli acyl carrier protein and the acyl carrier protein domain of the multifunctional fatty acid synthase. When the fatty acid synthase monomer was trypsinized under milder conditions, the 47,000-Da transferase domain could be isolated in association with the 8,000-Da acyl carrier protein domain. The transferase was capable of translocating substrate moieties from CoA ester donors to the associated acyl carrier protein. The results provide the first direct evidence that, in the head-to-tail oriented fatty acid synthase homodimer, functional communication between the transferase domain located near the end of one polypeptide and the acyl carrier protein domain located at the opposite end of the other polypeptide is facilitated by a stable physical interaction between these domains.  相似文献   

8.
9.
Development of fatty acid synthase (FAS) inhibitors has increasingly attracted much attention in recent years due to their potential therapeutic use in obesity and cancers. In this investigation, pharmacophore modeling based on the first crystal structure of human KS domain of FAS was carried out. The established pharmacophore model was taken as a 3D query for retrieving potent FAS inhibitors from the chemical database Specs. Docking study was further carried out to refine the obtained hit compounds. Finally, a total of 28 compounds were selected based on the ranking order and visual examination, which were first evaluated by a cell line-based assay. Seven compounds that have good inhibition activity against two FAS overexpressing cancer cell lines were further evaluated by an enzyme-based assay. One compound with a new chemical scaffold was found to have low micromolar inhibition potency against FAS, which has been subjected to further chemical structural modification.  相似文献   

10.
Two distinct ways of organizing fatty acid biosynthesis exist: the multifunctional type I fatty acid synthase (FAS) of mammals, fungi, and lower eukaryotes with activities residing on one or two polypeptides; and the dissociated type II FAS of prokaryotes, plastids, and mitochondria with individual activities encoded by discrete genes. The beta-ketoacyl [ACP] synthase (KAS) moiety of the mitochondrial FAS (mtKAS) is targeted by the antibiotic cerulenin and possibly by the other antibiotics inhibiting prokaryotic KASes: thiolactomycin, platensimycin, and the alpha-methylene butyrolactone, C75. The high degree of structural similarity between mitochondrial and prokaryotic KASes complicates development of novel antibiotics targeting prokaryotic KAS without affecting KAS domains of cytoplasmic FAS. KASes catalyze the C(2) fatty acid elongation reaction using either a Cys-His-His or Cys-His-Asn catalytic triad. Three KASes with different substrate specificities participate in synthesis of the C(16) and C(18) products of prokaryotic FAS. By comparison, mtKAS carries out all elongation reactions in the mitochondria. We present the X-ray crystal structures of the Cys-His-His-containing human mtKAS and its hexanoyl complex plus the hexanoyl complex of the plant mtKAS from Arabidopsis thaliana. The structures explain (1) the bimodal (C(6) and C(10)-C(12)) substrate preferences leading to the C(8) lipoic acid precursor and long chains for the membranes, respectively, and (2) the low cerulenin sensitivity of the human enzyme; and (3) reveal two different potential acyl-binding-pocket extensions. Rearrangements taking place in the active site, including subtle changes in the water network, indicate a change in cooperativity of the active-site histidines upon primer binding.  相似文献   

11.
It was found that the partially purified beta-ketoacyl-ACP synthase of Bacillus insolitus did not require the addition of FabD (malonyl-CoA:ACP transacylase, MAT) for the activity assay. This study therefore examined the necessity of FabD protein for in vitro branched-chain fatty acid (BCFA) biosynthesis by crude fatty acid synthetases (FAS) of Bacilli. To discover the involvement of FabD in the BCFA biosynthesis, the protein was removed from the crude FAS by immunoprecipitation. The His-tag fusion protein FabD of Bacillus subtilis was expressed in Escherichia coli and used for the preparation of antibody. The rabbit antibody raised against the expressed fusion protein specifically recognized the FabD in the crude FAS of B. subtilis. Evaluation of the efficacy of the immunoprecipitation showed that a trace of FabD protein was present in the antibody-treated crude FAS. However, this complete removal of FabD from the crude FAS did not abolish its BCFA biosynthesis, but only reduced the level to 50-60% of the control level for acyl-CoA primer and to 80% for alpha-keto-beta-methylvalerate primer. Furthermore, the FabD concentration did not necessarily correlate with the MAT specific activity in the enzyme fractions, suggesting the presence of another enzyme source of MAT activity. This study, therefore, suggests that FabD is not the sole enzyme source of MAT for in vitro BCFA biosynthesis, and implies the existence of a functional connection between fatty acid biosynthesis and another metabolic pathway.  相似文献   

12.
Human fatty acid synthase (FAS) is a large, multidomain protein that synthesizes long chain fatty acids. Because these fatty acids are primarily provided by diet, FAS is normally expressed at low levels; however, it is highly up-regulated in many cancers. Human enoyl-acyl carrier protein-reductase (hER) is one of the FAS catalytic domains, and its inhibition by drugs like triclosan (TCL) can increase cytotoxicity and decrease drug resistance in cancer cells. We have determined the structure of hER in the presence and absence of TCL. TCL was not bound in the active site, as predicted, but rather at the protein-protein interface (PPI). TCL binding induces a dimer orientation change that causes downstream structural rearrangement in critical active site residues. Kinetics studies indicate that TCL is capable of inhibiting the isolated hER domain with an IC50 of ∼55 μm. Given the hER-TCL structure and the inhibition observed in the hER domain, it seems likely that TCL is observed in the physiologically relevant binding site and that it acts as an allosteric PPI inhibitor. TCL may be a viable scaffold for the development of anti-cancer PPI FAS inhibitors.  相似文献   

13.
Analogs of pyrazinamide (=pyrazine‐2‐carboxamide; PZA), an essential component of short‐course antituberculous chemotherapy, such as 5‐chloropyrazinamide (5‐Cl‐PZA) act as competitive inhibitors of NADPH binding to purified mycobacterial fatty acid synthase I (FAS I) as shown by Saturation Transfer Difference (STD) NMR studies. In addition, pyrazinoic acid esters (POE) and 5‐Cl‐POE reversibly bind to FAS I with the relatively greater affinity of longer‐chain esters for FAS I, clear from the STD amplification factors. The competitive binding of PZA and 5‐Cl‐PZA clearly illustrates that both agents bind FAS. In contrast to PZA, at low NADPH concentrations 5‐Cl‐PZA is a cooperative inhibitor of NADPH binding.  相似文献   

14.
Friulimicin is a cyclic lipodecapeptide antibiotic that is produced by Actinoplanes friuliensis. Similar to the related lipopeptide drug daptomycin, the peptide skeleton of friulimicin is synthesized by a large multienzyme nonribosomal peptide synthetase (NRPS) system. The LipD protein plays a major role in the acylation reaction of friulimicin. The attachment of the fatty acid group promotes its antibiotic activity. Phylogenetic analysis reveals that LipD is most closely related to other freestanding acyl carrier proteins (ACPs), for which the genes are located near to NRPS gene clusters. Here, we report that the solution NMR structure of apo‐LipD is very similar to other four‐helix bundle forming ACPs from fatty acid synthase (FAS), polyketide synthase, and NRPS systems. By recording NMR dynamics data, we found that the backbone motions in holo‐LipD are more restricted than in apo‐LipD due to the attachment of phosphopantetheine moiety. This enhanced stability of holo‐LipD was also observed in differential scanning calorimetry experiments. Furthermore, we demonstrate that, unlike several other ACPs, the folding of LipD does not depend on the presence of divalent cations, although the presence of Mg2+ or Ca2+ can increase the protein stability. We propose that small structural rearrangements in the tertiary structure of holo‐LipD which lead to the enhanced stability are important for the cognate enzyme recognition for the acylation reaction. Our results also highlight the different surface charges of LipD and FAS‐ACP from A. friuliensis that would allow the acyl‐CoA ligase to interact preferentially with the LipD instead of binding to the FAS‐ACP.  相似文献   

15.
The fatty acid synthase (FAS) of animal tissue is a dimer of two identical subunits, each with a Mr of 260,000. The subunit is a single multifunctional protein having seven catalytic activities and a site for binding of the prosthetic group 4'-phosphopantetheine. The mRNA coding for the subunit has an estimated size of 10-16 kb, which is about twice the number of nucleotides needed to code for the estimated 2300 amino acids. We have isolated a positive clone, lambda CFAS, containing FAS gene sequences by screening a chicken genomic library with a segment of a 3' untranslated region of goose fatty acid synthase cDNA clone, pGFAS3, as a hybridization probe. The DNA insert in lambda CFAS hybridizes with synthetic oligonucleotide probes prepared according to the known amino acid sequence of the thioesterase component of the chicken liver fatty acid synthase [Yang, C.-Y., Huang, W.-Y., Chirala, S., & Wakil, S.J. (1988) Biochemistry (preceding paper in this issue)]. Further characterization of the DNA insert shows that the lambda CFAS clone contains about a 4.7-kbp segment from the 3' end of the chicken FAS gene that codes for a portion of the thioesterase domain. Complete sequence analyses of this segment including S1 nuclease mapping, showed that the lambda CFAS clone contains the entire 3' untranslated region of the chicken FAS gene and three exons that code for 162 amino acids of the thioesterase domain from the COOH-terminal end of the fatty acid synthase. Using the exon region of the genomic clone, we were able to isolate a cDNA clone that codes for the entire thioesterase domain of chicken liver fatty acid synthase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
5‐Aminolevulinate synthase (ALAS) controls the rate‐limiting step of heme biosynthesis in mammals by catalyzing the condensation of succinyl‐coenzyme A and glycine to produce 5‐aminolevulinate, coenzyme‐A (CoA), and carbon dioxide. ALAS is a member of the α‐oxoamine synthase family of pyridoxal 5′‐phosphate (PLP)‐dependent enzymes and shares high degree of structural similarity and reaction mechanism with the other members of the family. The X‐ray crystal structure of ALAS from Rhodobacter capsulatus reveals that the alkanoate component of succinyl‐CoA is coordinated by a conserved arginine and a threonine. The functions of the corresponding acyl‐CoA‐binding residues in murine erthyroid ALAS (R85 and T430) in relation to acyl‐CoA binding and substrate discrimination were examined using site‐directed mutagenesis and a series of CoA‐derivatives. The catalytic efficiency of the R85L variant with octanoyl‐CoA was 66‐fold higher than that of the wild‐type protein, supporting the proposal of this residue as key in discriminating substrate binding. Substitution of the acyl‐CoA‐binding residues with hydrophobic amino acids caused a ligand‐induced negative dichroic band at 420 nm in the CD spectra, suggesting that these residues affect substrate‐mediated changes to the PLP microenvironment. Transient kinetic analyses of the R85K variant‐catalyzed reactions confirm that this substitution decreases microscopic rates associated with formation and decay of a key reaction intermediate and show that the nature of the acyl‐CoA tail seriously affect product binding. These results show that the bifurcate interaction of the carboxylate moiety of succinyl‐CoA with R85 and T430 is an important determinant in ALAS function and may play a role in substrate specificity.  相似文献   

17.
Li BH  Ma XF  Wu XD  Tian WX 《IUBMB life》2006,58(1):39-46
It was found that chlorogenic acid inhibited in vitro animal fatty acid synthase (FAS I) and the ss-ketoacyl-ACP reductase (FabG) from Escherichia coli in a concentration-dependent manner with respective IC50 of 94.8 and 88.1 microM. The results of Lineweaver-Burk plots indicated that chlorogenic acid inhibited competitively the binding of NADPH to FAS I, while left those of acetyl-CoA and malonyl-CoA unaffected. Further kinetic studies showed that chlorogenic acid blocked the activity of FAS I mainly by inhibiting the ss-ketoacyl reductase domain, which catalyzed the same reaction as that done by FabG in the fatty acid synthesis. The ss-ketoacyl reduction reactions accomplished by both FAS I and FabG required nucleotide cofactor, NADPH. Furthermore, the Lineweaver-Burk and Yonetani-Theorell analyses implicated that chlorogenic acid filled competitively in the binding-pocket of NADPH in the ss-ketoacyl reductase domain of FAS I. The similar results were also obtained from the inhibition of FabG by chlorogenic acid. As observed in these results, the inhibitions of FAS I and FabG by chlorogenic acid were highly related to the interference of the inhibitor with NADPH, which was possibly due to the similarity between chlorogenic acid and some portion of NADPH, maybe the section consisting of the two ribose groups.  相似文献   

18.
19.
The enoylreductase (ER) is the final common enzyme from modular polyketide synthases (PKSs) to be structurally characterized. The 3.0 ?-resolution structure of the didomain comprising the ketoreductase (KR) and ER from the second module of the spinosyn PKS reveals that ER shares an ~600-?(2) interface with KR distinct from that of the related mammalian fatty acid synthase (FAS). In contrast to the ER domains of the mammalian FAS, the ER domains of the second module of the spinosyn PKS do not make contact across the two-fold axis of the synthase. This monomeric organization may have been necessary in the evolution of multimodular PKSs to enable acyl carrier proteins to access each of their cognate enzymes. The isolated ER domain showed activity toward a substrate analog, enabling us to determine the contributions of its active site residues.  相似文献   

20.
Fatty acids that are chemically functionalized at their ω-ends are rare in nature yet offer unique chemical and physical properties with wide ranging industrial applications as feedstocks for bio-based polymers, lubricants and surfactants. Two enzymatic determinants control this ω-group functionality, the availability of an appropriate acyl-CoA substrate for initiating fatty acid biosynthesis, and a fatty acid synthase (FAS) variant that can accommodate that substrate in the initial condensation reaction of the process. In Type II FAS, 3-ketoacyl-ACP synthase III (KASIII) catalyses this initial condensation reaction. We characterized KASIIIs from diverse bacterial sources, and identified variants with novel substrate specificities towards atypical acyl-CoA substrates, including 3-hydroxybutyryl-CoA. Using Alicyclobacillus acidocaldarius KASIII, we demonstrate the in vivo diversion of FAS to produce novel ω-1 hydroxy-branched fatty acids from glucose in two bioengineered microbial hosts. This study unveils the biocatalytic potential of KASIII for synthesizing diverse ω-functionalized fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号