首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Gram-negative bacteria, periplasmic domains in inner membrane proteins are cotranslationally translocated across the inner membrane through the SecYEG translocon. To what degree such domains also start to fold cotranslationally is generally difficult to determine using currently available methods. Here, we apply Force Profile Analysis (FPA) – a method where a translational arrest peptide is used to detect folding-induced forces acting on the nascent polypeptide – to follow the cotranslational translocation and folding of the large periplasmic domain of the E. coli inner membrane protease LepB in vivo. Membrane insertion of LepB’s two N-terminal transmembrane helices is initiated when their respective N-terminal ends reach 45–50 residues away from the peptidyl transferase center (PTC) in the ribosome. The main folding transition in the periplasmic domain involves all but the ~15 most C-terminal residues of the protein and happens when the C-terminal end of the folded part is ~70 residues away from the PTC; a smaller putative folding intermediate is also detected. This implies that wildtype LepB folds post-translationally in vivo, and shows that FPA can be used to study both co- and post-translational protein folding in the periplasm.  相似文献   

2.
Protein sequences evolved to fold in cells, including cotranslational folding of nascent polypeptide chains during their synthesis by the ribosome. The vectorial (N- to C-terminal) nature of cotranslational folding constrains the conformations of the nascent polypeptide chain in a manner not experienced by full-length chains diluted out of denaturant. We are still discovering to what extent these constraints affect later, posttranslational folding events. Here we directly address whether conformational constraints imposed by cotranslational folding affect the partitioning between productive folding to the native structure versus aggregation. We isolated polyribosomes from Escherichia coli cells expressing GFP, analyzed the nascent chain length distribution to determine the number of nascent chains that were long enough to fold to the native fluorescent structure, and calculated the folding yield for these nascent chains upon ribosome release versus the folding yield of an equivalent concentration of full-length, chemically denatured GFP polypeptide chains. We find that the yield of native fluorescent GFP is dramatically higher upon ribosome release of nascent chains versus dilution of full-length chains from denaturant. For kinetically trapped native structures such as GFP, folding correctly the first time, immediately after release from the ribosome, can lead to lifelong population of the native structure, as opposed to aggregation.  相似文献   

3.
S Kamitani  Y Akiyama    K Ito 《The EMBO journal》1992,11(1):57-62
Tn5 insertion mutations of Escherichia coli were isolated that impaired the formation of correctly folded alkaline phosphatase (PhoA) in the periplasm. The PhoA polypeptide synthesized in the mutants was translocated across the cytoplasmic membrane but not released into the periplasmic space. It was susceptible to degradation by proteases in vivo and in vitro. The wild-type counterpart of this gene (named ppfA) has been sequenced and shown to encode a periplasmic protein with a pair of potentially redox-active cysteine residues. PhoA synthesized in the mutants indeed lacked disulfide bridges. These results indicate that the folding of PhoA in vivo is not spontaneous but catalyzed at least at the disulfide bond formation step.  相似文献   

4.
An array of genetic screens and selections has been developed for reporting protein folding and solubility in the cytoplasm of living cells. However, there are currently no analogous folding assays for the bacterial periplasm, despite the significance of this compartment for the expression of recombinant proteins, especially those requiring important posttranslational modifications (e.g., disulfide bond formation). Here, we describe an engineered genetic selection for monitoring protein folding in the periplasmic compartment of Escherichia coli cells. In this approach, target proteins are sandwiched between an N‐terminal signal recognition particle (SRP)‐dependent signal peptide and a C‐terminal selectable marker, TEM‐1 β‐lactamase. The resulting chimeras are localized to the periplasmic space via the cotranslational SRP pathway. Using a panel of native and heterologous proteins, we demonstrate that the folding efficiency of various target proteins correlates directly with in vivo β‐lactamase activity and thus resistance to ampicillin. We also show that this reporter is useful for the discovery of extrinsic periplasmic factors (e.g., chaperones) that affect protein folding and for obtaining folding‐enhanced proteins via directed evolution. Collectively, these data demonstrate that our periplasmic folding reporter is a powerful tool for screening and engineering protein folding in a manner that does not require any structural or functional information about the target protein.  相似文献   

5.
Protein folding in cells reflects a delicate interplay between biophysical properties of the nascent polypeptide, the vectorial nature and rate of translation, molecular crowding, and cellular biosynthetic machinery. To better understand how this complex environment affects de novo folding pathways as they occur in the cell, we expressed β-barrel fluorescent proteins derived from GFP and RFP in an in vitro system that allows direct analysis of cotranslational folding intermediates. Quantitative analysis of ribosome-bound eCFP and mCherry fusion proteins revealed that productive folding exhibits a sharp threshold as the length of polypeptide from the C terminus to the ribosome peptidyltransferase center is increased. Fluorescence spectroscopy, urea denaturation, and limited protease digestion confirmed that sequestration of only 10-15 C-terminal residues within the ribosome exit tunnel effectively prevents stable barrel formation, whereas folding occurs unimpeded when the C terminus is extended beyond the ribosome exit site. Nascent FPs with 10 of the 11 β-strands outside the ribosome exit tunnel acquire a non-native conformation that is remarkably stable in diverse environments. Upon ribosome release, these structural intermediates fold efficiently with kinetics that are unaffected by the cytosolic crowding or cellular chaperones. Our results indicate that during synthesis, fluorescent protein folding is initiated cotranslationally via rapid formation of a highly stable, on-pathway structural intermediate and that the rate-limiting step of folding involves autonomous incorporation of the 11th β-strand into the mature barrel structure.  相似文献   

6.
Dsb proteins (DsbA, DsbB, DsbC, and DsbD) catalyze formation and isomerization of protein disulfide bonds in the periplasm of Escherichia coli. By using a set of Dsb coexpression plasmids constructed recently, we analyzed the effects of Dsb overexpression on production of horseradish peroxidase (HRP) isozyme C that contains complex disulfide bonds and tends to aggregate when produced in E. coli. When transported to the periplasm, HRP was unstable but was markedly stabilized upon simultaneous overexpression of the set of Dsb proteins (DsbABCD). Whereas total HRP production increased severalfold upon overexpression of at least disulfide-bonded isomerase DsbC, maximum transport of HRP to the periplasm seemed to require overexpression of all DsbABCD proteins, suggesting that excess Dsb proteins exert synergistic effects in assisting folding and transport of HRP. Periplasmic production of HRP also increased when calcium, thought to play an essential role in folding of nascent HRP polypeptide, was added to the medium with or without Dsb overexpression. These results suggest that Dsb proteins and calcium play distinct roles in periplasmic production of HRP, presumably through facilitating correct folding. The present Dsb expression plasmids should be useful in assessing and dissecting periplasmic production of proteins that contain multiple disulfide bonds in E. coli.  相似文献   

7.
Numerous proteins initiate their folding, localization, and modifications early during translation, and emerging data show that the ribosome actively participates in diverse protein biogenesis pathways. Here we show that the ribosome imposes an additional layer of substrate selection during N-terminal methionine excision (NME), an essential protein modification in bacteria. Biochemical analyses show that cotranslational NME is exquisitely sensitive to a hydrophobic signal sequence or transmembrane domain near the N terminus of the nascent polypeptide. The ability of the nascent chain to access the active site of NME enzymes dictates NME efficiency, which is inhibited by confinement of the nascent chain on the ribosome surface and exacerbated by signal recognition particle. In vivo measurements corroborate the inhibition of NME by an N-terminal hydrophobic sequence, suggesting the retention of formylmethionine on a substantial fraction of the secretory and membrane proteome. Our work demonstrates how molecular features of a protein regulate its cotranslational modification and highlights the active participation of the ribosome in protein biogenesis pathways via interactions of the ribosome surface with the nascent protein.  相似文献   

8.
Dsb proteins (DsbA, DsbB, DsbC, and DsbD) catalyze formation and isomerization of protein disulfide bonds in the periplasm of Escherichia coli. By using a set of Dsb coexpression plasmids constructed recently, we analyzed the effects of Dsb overexpression on production of horseradish peroxidase (HRP) isozyme C that contains complex disulfide bonds and tends to aggregate when produced in E. coli. When transported to the periplasm, HRP was unstable but was markedly stabilized upon simultaneous overexpression of the set of Dsb proteins (DsbABCD). Whereas total HRP production increased severalfold upon overexpression of at least disulfide-bonded isomerase DsbC, maximum transport of HRP to the periplasm seemed to require overexpression of all DsbABCD proteins, suggesting that excess Dsb proteins exert synergistic effects in assisting folding and transport of HRP. Periplasmic production of HRP also increased when calcium, thought to play an essential role in folding of nascent HRP polypeptide, was added to the medium with or without Dsb overexpression. These results suggest that Dsb proteins and calcium play distinct roles in periplasmic production of HRP, presumably through facilitating correct folding. The present Dsb expression plasmids should be useful in assessing and dissecting periplasmic production of proteins that contain multiple disulfide bonds in E. coli.  相似文献   

9.
It is becoming increasingly clear that many proteins start to fold cotranslationally before the entire polypeptide chain has been synthesized on the ribosome. One class of proteins that a priori would seem particularly prone to cotranslational folding is repeat proteins, that is, proteins that are built from an array of nearly identical sequence repeats. However, while the folding of repeat proteins has been studied extensively in vitro with purified proteins, only a handful of studies have addressed the issue of cotranslational folding of repeat proteins. Here, we have determined the structure and studied the cotranslational folding of a β-helix pentarepeat protein from the human pathogen Clostridium botulinum—a homolog of the fluoroquinolone resistance protein MfpA—using an assay in which the SecM translational arrest peptide serves as a force sensor to detect folding events. We find that cotranslational folding of a segment corresponding to the first four of the eight β-helix coils in the protein produces enough force to release ribosome stalling and that folding starts when this unit is ~ 35 residues away from the P-site, near the distal end of the ribosome exit tunnel. An additional folding transition is seen when the whole PENT moiety emerges from the exit tunnel. The early cotranslational formation of a folded unit may be important to avoid misfolding events in vivo and may reflect the minimal size of a stable β-helix since it is structurally homologous to the smallest known β-helix protein, a four-coil protein that is stable in solution.  相似文献   

10.
Numerous high‐value therapeutic proteins are produced in Escherichia coli and exported to the periplasm, as this approach simplifies downstream processing and enables disulfide bond formation. Most recombinant proteins are exported by the Sec pathway, which transports substrates across the plasma membrane in an unfolded state. The Tat system also exports proteins to the periplasm, but transports them in a folded state. This system has attracted interest because of its tendency to transport correctly folded proteins, but this trait renders it unable to export proteins containing disulfide bonds since these are normally acquired only in the periplasm; reduced substrates tend to be recognized as incorrectly folded and rejected. In this study we have used a series of novel strains (termed CyDisCo) which oxidise disulfide bonds in the cytoplasm, and we show that these cells efficiently export a range of disulfide‐containing proteins when a Tat signal peptide is attached. These test proteins include alkaline phosphatase (PhoA), a phytase containing four disulfide bonds (AppA), an antiinterleukin 1β scFv and human growth hormone. No export of PhoA or AppA is observed in wild‐type cells lacking the CyDisCo factors. The PhoA, AppA and scFv proteins were exported in an active form by Tat in the CyDisCo strain, and mass spectrometry showed that the vast majority of the scFv protein was disulfide‐bonded and correctly processed. The evidence indicates that this combination of Tat + CyDisCo offers a novel means of exporting active, correctly folded disulfide bonded proteins to the periplasm. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:281–290, 2014  相似文献   

11.
The mechanism by which protein folding is coupled to biosynthesis is a critical, but poorly understood, aspect of protein conformational diseases. Here we use fluorescence resonance energy transfer (FRET) to characterize tertiary structural transitions of nascent polypeptides and show that the first nucleotide-binding domain (NBD1) of human CFTR, whose folding is defective in cystic fibrosis, folds via a cotranslational multistep pathway as it is synthesized on the ribosome. Folding begins abruptly as NBD1 residues 389-500 emerge from the ribosome exit tunnel, initiating compaction of a small, N-terminal α/β-subdomain. Real-time kinetics of synchronized nascent chains revealed that subdomain folding is rapid, occurs coincident with synthesis, and is facilitated by direct ATP binding to the nascent polypeptide. These findings localize the major CF defect late in the NBD1 folding pathway and establish a paradigm wherein a cellular ligand promotes vectorial domain folding by facilitating an energetically favored local peptide conformation.  相似文献   

12.
Determining the relationship between protein folding pathways on and off the ribosome remains an important area of investigation in biology. Studies on isolated domains have shown that alteration of the separation of residues in a polypeptide chain, while maintaining their spatial contacts, may affect protein stability and folding pathway. Due to the vectorial emergence of the polypeptide chain from the ribosome, chain connectivity may have an important influence upon cotranslational folding. Using MATH, an all β-sandwich domain, we investigate whether the connectivity of residues and secondary structure elements is a key determinant of when cotranslational folding can occur on the ribosome. From Φ-value analysis, we show that the most structured region of the transition state for folding in MATH includes the N and C terminal strands, which are located adjacent to each other in the structure. However, arrest peptide force-profile assays show that wild-type MATH is able to fold cotranslationally, while some C-terminal residues remain sequestered in the ribosome, even when destabilized by 2–3?kcal?mol?1. We show that, while this pattern of Φ-values is retained in two circular permutants in our studies of the isolated domains, one of these permutants can fold only when fully emerged from the ribosome. We propose that in the case of MATH, onset of cotranslational folding is determined by the ability to form a sufficiently stable folding nucleus involving both β-sheets, rather than by the location of the terminal strands in the ribosome tunnel.  相似文献   

13.
Periplasmic protein thiol:disulfide oxidoreductases of Escherichia coli   总被引:1,自引:0,他引:1  
Disulfide bond formation is part of the folding pathway for many periplasmic and outer membrane proteins that contain structural disulfide bonds. In Escherichia coli, a broad variety of periplasmic protein thiol:disulfide oxidoreductases have been identified in recent years, which substantially contribute to this pathway. Like the well-known cytoplasmic thioredoxins and glutaredoxins, these periplasmic protein thiol:disulfide oxidoreductases contain the conserved C-X-X-C motif in their active site. Most of them have a domain that displays the thioredoxin-like fold. In contrast to the cytoplasmic system, which consists exclusively of reducing proteins, the periplasmic oxidoreductases have either an oxidising, a reducing or an isomerisation activity. Apart from understanding their physiological role, it is of interest to learn how these proteins interact with their target molecules and how they are recycled as electron donors or acceptors. This review reflects the recently made efforts to elucidate the sources of oxidising and reducing power in the periplasm as well as the different properties of certain periplasmic protein thiol:disulfide oxidoreductases of E. coli.  相似文献   

14.
A Kihara  Y Akiyama    K Ito 《The EMBO journal》1999,18(11):2970-2981
Escherichia coli FtsH degrades several integral membrane proteins, including YccA, having seven transmembrane segments, a cytosolic N-terminus and a periplasmic C-terminus. Evidence indicates that FtsH initiates proteolysis at the N-terminal cytosolic domain. SecY, having 10 transmembrane segments, is also a substrate of FtsH. We studied whether and how the FtsH-catalyzed proteolysis on the cytosolic side continues into the transmembrane and periplasmic regions using chimeric proteins, YccA-(P3)-PhoA-His6-Myc and SecY-(P5)-PhoA, with the alkaline phosphatase (PhoA) mature sequence in a periplasmic domain. The PhoA domain that was present within the fusion protein was rapidly degraded by FtsH when it lacked the DsbA-dependent folding. In contrast, both PhoA itself and the TM9-PhoA region of SecY-(P5)-PhoA were stable when expressed as independent polypeptides. In the presence of DsbA, the FtsH-dependent degradation stopped at a site near to the N-terminus of the PhoA moiety, leaving the PhoA domain (and its C-terminal region) undigested. The efficiency of this degradation stop correlated well with the rapidity of the folding of the PhoA domain. Thus, both transmembrane and periplasmic domains are degraded by the processive proteolysis by FtsH, provided they are not tightly folded. We propose that FtsH dislocates the extracytoplasmic domain of a substrate, probably using its ATPase activity.  相似文献   

15.
E F Eppens  N Nouwen    J Tommassen 《The EMBO journal》1997,16(14):4295-4301
The transport of bacterial outer membrane proteins to their destination might be either a one-step process via the contact zones between the inner and outer membrane or a two-step process, implicating a periplasmic intermediate that inserts into the membrane. Furthermore, folding might precede insertion or vice versa. To address these questions, we have made use of the known 3D-structure of the trimeric porin PhoE of Escherichia coli to engineer intramolecular disulfide bridges into this protein at positions that are not exposed to the periplasm once the protein is correctly assembled. The mutations did not interfere with the biogenesis of the protein, and disulfide bond formation appeared to be dependent on the periplasmic enzyme DsbA, which catalyzes disulfide bond formation in the periplasm. This proves that the protein passes through the periplasm on its way to the outer membrane. Furthermore, since the disulfide bonds create elements of tertiary structure within the mutant proteins, it appears that these proteins are at least partially folded before they insert into the outer membrane.  相似文献   

16.
Newly synthesized proteins must form their native structures in the crowded environment of the cell, while avoiding non-native conformations that can lead to aggregation. Yet, remarkably little is known about the progressive folding of polypeptide chains during chain synthesis by the ribosome or of the influence of this folding environment on productive folding in vivo. P22 tailspike is a homotrimeric protein that is prone to aggregation via misfolding of its central β-helix domain in vitro. We have produced stalled ribosome:tailspike nascent chain complexes of four fixed lengths in vivo, in order to assess cotranslational folding of newly synthesized tailspike chains as a function of chain length. Partially synthesized, ribosome-bound nascent tailspike chains populate stable conformations with some native-state structural features even prior to the appearance of the entire β-helix domain, regardless of the presence of the chaperone trigger factor, yet these conformations are distinct from the conformations of released, refolded tailspike truncations. These results suggest that organization of the aggregation-prone β-helix domain occurs cotranslationally, prior to chain release, to a conformation that is distinct from the accessible energy minimum conformation for the truncated free chain in solution.  相似文献   

17.
A one-step mutant of Escherichia coli K-12 lacking both glucose-1-phosphatase (Agp) and pH 2.5 acid phosphatase (AppA) activities in the periplasmic space was isolated. The mutation which mapped close to ch1B, at 87 min on the E. coli linkage map, also caused the loss of alkaline phosphatase (PhoA) activity, even when this activity was expressed from TnphoA fusions to genes encoding periplasmic or membrane proteins. A DNA fragment that complements the mutation was cloned and shown to carry the dsbA gene, which encodes a periplasmic disulphide bond-forming factor. The mutant had an ochre triplet in dsbA, truncating the protein at amino acid 70. Introduction of TnphoA fusions into a plasmid-borne dsbA gene resulted in DsbA-PhoA hybrid proteins that were all exported to the periplasmic space in both dsbA + and dsbA strains. They belong to three different classes, depending on the length of the DsbA fragment fused to PhoA. When PhoA was fused to an amino-terminal DsbA heptapeptide, the protein was only seen in the periplasm of a dsbA + strain, as in the case of wild-type PhoA. Hybrid proteins missing up to 29 amino acids at the carboxy-terminus of DsbA were stable and retained both the DsbA and PhoA activities. Those with shorter DsbA fragments that still carried the -Cys-ProHis-Cys-motif were rapidly degraded (no DsbA activity). The presence is discussed of a structural domain lying around amino acid 170 of DsbA and which is probably essential for its folding into a proteolytic-resistant and enzymatically active form.  相似文献   

18.
The adaptation of protein synthesis to environmental and physiological challenges is essential for cell viability. Here, we show that translation is tightly linked to the protein‐folding environment of the cell through the functional properties of the ribosome bound chaperone NAC (nascent polypeptide‐associated complex). Under non‐stress conditions, NAC associates with ribosomes to promote translation and protein folding. When proteostasis is imbalanced, NAC relocalizes from a ribosome‐associated state to protein aggregates in its role as a chaperone. This results in a functional depletion of NAC from the ribosome that diminishes translational capacity and the flux of nascent proteins. Depletion of NAC from polysomes and re‐localisation to protein aggregates is observed during ageing, in response to heat shock and upon expression of the highly aggregation‐prone polyglutamine‐expansion proteins and Aβ‐peptide. These results demonstrate that NAC has a central role as a proteostasis sensor to provide the cell with a regulatory feedback mechanism in which translational activity is also controlled by the folding state of the cellular proteome and the cellular response to stress.  相似文献   

19.
Polypeptides exiting the ribosome must fold and assemble in the crowded environment of the cell. Chaperones and other protein homeostasis factors interact with newly translated polypeptides to facilitate their folding and correct localization. Despite the extensive efforts, little is known about the specificity of the chaperones and other factors that bind nascent polypeptides. To address this question we present an approach that systematically identifies cotranslational chaperone substrates through the mRNAs associated with ribosome-nascent chain-chaperone complexes. We here focused on two Saccharomyces cerevisiae chaperones: the Signal Recognition Particle (SRP), which acts cotranslationally to target proteins to the ER, and the Nascent chain Associated Complex (NAC), whose function has been elusive. Our results provide new insights into SRP selectivity and reveal that NAC is a general cotranslational chaperone. We found surprising differential substrate specificity for the three subunits of NAC, which appear to recognize distinct features within nascent chains. Our results also revealed a partial overlap between the sets of nascent polypeptides that interact with NAC and SRP, respectively, and showed that NAC modulates SRP specificity and fidelity in vivo. These findings give us new insight into the dynamic interplay of chaperones acting on nascent chains. The strategy we used should be generally applicable to mapping the specificity, interplay, and dynamics of the cotranslational protein homeostasis network.  相似文献   

20.
Preferential binding of an unfolded protein to DsbA.   总被引:6,自引:0,他引:6       下载免费PDF全文
The oxidoreductase DsbA from the periplasm of escherichia coli introduces disulfide bonds into proteins at an extremely high rate. During oxidation, a mixed disulfide is formed between DsbA and the folding protein chain, and this covalent intermediate reacts very rapidly either to form the oxidized protein or to revert back to oxidized DsbA. To investigate its properties, a stable form of the intermediate was produced by reacting the C33A variant of DsbA with a variant of RNase T1. We find that in this stable mixed disulfide the conformational stability of the substrate protein is decreased by 5 kJ/mol, whereas the conformational stability of DsbA is increased by 5 kJ/mol. This reciprocal effect suggests strongly that DsbA interacts with the unfolded substrate protein not only by the covalent disulfide bond, but also by preferential non-covalent interactions. The existence of a polypeptide binding site explains why DsbA oxidizes protein substrates much more rapidly than small thiol compounds. Such a very fast reaction is probably important for protein folding in the periplasm, because the accessibility of the thiol groups for DsbA can decrease rapidly when newly exported polypeptide chains begin to fold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号