共查询到20条相似文献,搜索用时 9 毫秒
1.
Despite recent improvements in computational methods for protein design, we still lack a quantitative, predictive understanding of the intrinsic probabilities for amino acids to adopt particular side‐chain conformations. Surprisingly, this question has remained unsettled for many years, in part because of inconsistent results from different experimental approaches. To explicitly determine the relative populations of different side‐chain dihedral angles, we performed all‐atom hard‐sphere Langevin Dynamics simulations of leucine (Leu) and isoleucine (Ile) dipeptide mimetics with stereo‐chemical constraints and repulsive‐only steric interactions between non‐bonded atoms. We determine the relative populations of the different χ1 and χ2 dihedral angle combinations as a function of the backbone dihedral angles ? and ψ. We also propose, and test, a mechanism for inter‐conversion between the different side‐chain conformations. Specifically, we discover that some of the transitions between side‐chain dihedral angle combinations are very frequent, whereas others are orders of magnitude less frequent, because they require rare coordinated motions to avoid steric clashes. For example, to transition between different values of χ2, the Leu side‐chain bond angles κ1 and κ2 must increase, whereas to transition in χ1, the Ile bond angles λ1 and λ2 must increase. These results emphasize the importance of computational approaches in stimulating further experimental studies of the conformations of side‐chains in proteins. Moreover, our studies emphasize the power of simple steric models to inform our understanding of protein structure, dynamics, and design. Proteins 2015; 83:1488–1499. © 2015 Wiley Periodicals, Inc. 相似文献
2.
Adolfo H. Moraes Daniela Ackerbauer Maria Kostadinova Merima Bublin Guilherme Augusto de Oliveira Fátima Ferreira Fabio C. L. Almeida Heimo Breiteneder Ana Paula Valente 《Proteins》2014,82(11):3032-3042
Beta‐parvalbumins from different fish species have been identified as the main elicitors of IgE‐mediated reactions in fish‐allergic individuals. Here, we report for the first time the NMR determination of the structure and dynamics of the major Atlantic cod (Gadus morhua) allergen Gad m 1 and compare them with other known parvalbumins. Although the Gad m 1 structure and accessibility of putative IgE epitopes are similar to parvalbumins in mackerel and carp, the charge distribution at the putative epitopes is different. The determination of the Gad m 1 structure contributes to a better understanding of cross‐reactivity among fish parvalbumins. In addition, the high‐pressure NMR and temperature variation experiments revealed the important contribution of the AB motif and other regions to the protein folding. This structural information could assist the future identification of hot spots for targeted mutations to develop hypoallergenic Ca2+‐free forms for potential use in immunotherapy. Proteins 2014; 82:3032–3042. © 2014 Wiley Periodicals, Inc. 相似文献
3.
The molecular dynamics of solid poly-L-lysine has been studied by the following natural abundance (13)C-NMR relaxation methods: measurements of the relaxation times T(1) at two resonance frequencies, off-resonance T(1rho) at two spin-lock frequencies, and proton-decoupled T(1rho). Experiments were performed at different temperatures and hydration levels (up to 17% H(2)O by weight). The natural abundance (13)C-CPMAS spectrum of polylysine provides spectral resolution of all types of backbone and side chain carbons and thus, dynamic parameters could be determined separately for each of them. At the same time, the conformational properties of polylysine were investigated by Fourier transform infrared spectroscopy. The data obtained from the different NMR experiments were simultaneously analyzed using the correlation function formalism and model-free approach. The results indicate that in dry polylysine both backbone and side chains take part in two low amplitude motions with correlation times of the order of 10(-4) s and 10(-9) s. Upon hydration, the dynamic parameters of the backbone remain almost constant except for the amplitude of the slower process that increases moderately. The side chain dynamics reveals a much stronger hydration response: the amplitudes of both slow and fast motions increase significantly and the correlation time of the slow motion shortens by about five orders of magnitude, and at hydration levels of more than 10% H(2)O fast and slow side chain motions are experimentally indistinguishable. These changes in the molecular dynamics cannot be ascribed to any hydration-dependent conformational transitions of polylysine because IR spectra reveal almost no hydration dependence in either backbone or side chain absorption domains. The physical nature of the fast and slow motions, their correlation time distributions, and hydration dependence of microdynamic parameters are discussed. 相似文献
4.
Dan Zabetakis Lisa C. Shriver‐Lake Mark A. Olson Ellen R. Goldman George P. Anderson 《Protein science : a publication of the Protein Society》2019,28(10):1909-1912
Recently Bekker et al. [Bekker G‐J et al. Protein Sci. 2019;28:429–438.] described a computational strategy of applying molecular‐dynamics simulations to estimate the relative stabilities of single‐domain antibodies, and utilized their method to design changes with the aim of increasing the stability of a single‐domain antibody with a known crystal structure. The structure from which they generated potentially stabilizing mutations is an anti‐cholera toxin single domain antibody selected from a naïve library which has relatively low thermal stability, reflected by a melting point of 48°C. Their work was purely theoretical, so to examine their predictions, we prepared the parental and predicted stabilizing mutant single domain antibodies and examined their thermal stability, ability to refold and affinity. We found that the mutation that improved stability the most (~7°C) was one which changed an amino acid in CDR1 from an asparagine to an aspartic acid. This change unfortunately was also accompanied by a reduction in affinity. Thus, while their modeling did appear to successfully predict stabilizing mutations, introducing mutations in the binding regions is problematic. Of further interest, the mutations selected via their high temperature simulations, did improve refolding, suggesting that they were successful in stabilizing the structure at high temperatures and thereby decrease aggregation. Our result should permit them to reassess and refine their model and may one day lead to a usefulin silico approach to protein stabilization. 相似文献
5.
Clusters of isoleucine,leucine, and valine side chains define cores of stability in high‐energy states of globular proteins: Sequence determinants of structure and stability 下载免费PDF全文
Sagar V. Kathuria Yvonne H. Chan R. Paul Nobrega Ayşegül Özen C. Robert Matthews 《Protein science : a publication of the Protein Society》2016,25(3):662-675
Measurements of protection against exchange of main chain amide hydrogens (NH) with solvent hydrogens in globular proteins have provided remarkable insights into the structures of rare high‐energy states that populate their folding free‐energy surfaces. Lacking, however, has been a unifying theory that rationalizes these high‐energy states in terms of the structures and sequences of their resident proteins. The Branched Aliphatic Side Chain (BASiC) hypothesis has been developed to explain the observed patterns of protection in a pair of TIM barrel proteins. This hypothesis supposes that the side chains of isoleucine, leucine, and valine (ILV) residues often form large hydrophobic clusters that very effectively impede the penetration of water to their underlying hydrogen bond networks and, thereby, enhance the protection against solvent exchange. The linkage between the secondary and tertiary structures enables these ILV clusters to serve as cores of stability in high‐energy partially folded states. Statistically significant correlations between the locations of large ILV clusters in native conformations and strong protection against exchange for a variety of motifs reported in the literature support the generality of the BASiC hypothesis. The results also illustrate the necessity to elaborate this simple hypothesis to account for the roles of adjacent hydrocarbon moieties in defining stability cores of partially folded states along folding reaction coordinates. 相似文献
6.
Calligari PA Salgado GF Pelupessy P Lopes P Ouazzani J Bodenhausen G Abergel D 《Proteins》2012,80(4):1196-1210
Nuclear magnetic resonance is used to investigate the backbone dynamics in 6-phosphogluconolactonase from Trypanosoma brucei (Tb6PGL) with (holo-) and without (apo-) 6-phosphogluconic acid as ligand. Relaxation data were analyzed using the model-free approach and reduced spectral density mapping. Comparison of predictions, based on 77 ns molecular dynamics simulations, with the observed relaxation rates gives insight into dynamical properties of the protein and their alteration on ligand binding. Data indicate dynamics changes in the vicinity of the binding site. More interesting is the presence of perturbations located in remote regions of this well-structured globular protein in which no large-amplitude motions are involved. This suggests that delocalized changes in dynamics that occur upon binding could be a general feature of protein-target interactions. 相似文献
7.
《Proteins》2018,86(5):581-591
We compare side chain prediction and packing of core and non‐core regions of soluble proteins, protein‐protein interfaces, and transmembrane proteins. We first identified or created comparable databases of high‐resolution crystal structures of these 3 protein classes. We show that the solvent‐inaccessible cores of the 3 classes of proteins are equally densely packed. As a result, the side chains of core residues at protein‐protein interfaces and in the membrane‐exposed regions of transmembrane proteins can be predicted by the hard‐sphere plus stereochemical constraint model with the same high prediction accuracies (>90%) as core residues in soluble proteins. We also find that for all 3 classes of proteins, as one moves away from the solvent‐inaccessible core, the packing fraction decreases as the solvent accessibility increases. However, the side chain predictability remains high (80% within ) up to a relative solvent accessibility, , for all 3 protein classes. Our results show that % of the interface regions in protein complexes are “core”, that is, densely packed with side chain conformations that can be accurately predicted using the hard‐sphere model. We propose packing fraction as a metric that can be used to distinguish real protein‐protein interactions from designed, non‐binding, decoys. Our results also show that cores of membrane proteins are the same as cores of soluble proteins. Thus, the computational methods we are developing for the analysis of the effect of hydrophobic core mutations in soluble proteins will be equally applicable to analyses of mutations in membrane proteins. 相似文献
8.
Workalemahu M. Berhanu Ulrich H. E. Hansmann 《Protein science : a publication of the Protein Society》2012,21(12):1837-1848
Recent mutagenesis studies using the hydrophobic segment of Aβ suggest that aromatic π‐stacking interactions may not be critical for fibril formation. We have tested this conjecture by probing the effect of Leu, Ile, and Ala mutation of the aromatic Phe residues at positions 19 and 20, on the double‐layer hexametric chains of Aβ fragment Aβ16–22 using explicit solvent all‐atom molecular dynamics. As these simulations rely on the accuracy of the utilized force fields, we first evaluated the dynamic and stability dependence on various force fields of small amyloid aggregates. These initial investigations led us to choose AMBER99SB‐ILDN as force field in multiple long molecular dynamics simulations of 100 ns that probe the stability of the wild‐type and mutants oligomers. Single‐point and double‐point mutants confirm that size and hydrophobicity are key for the aggregation and stability of the hydrophobic core region (Aβ16–22). This suggests as a venue for designing Aβ aggregation inhibitors the substitution of residues (especially, Phe 19 and 20) in the hydrophobic region (Aβ16–22) with natural and non‐natural amino acids of similar size and hydrophobicity. 相似文献
9.
Water scaffolding in collagen: Implications on protein dynamics as revealed by solid‐state NMR 下载免费PDF全文
Solid‐state NMR studies of collagen samples of various origins confirm that the amplitude of collagen backbone and sidechain motions increases significantly on increasing the water content. This conclusion is supported by the changes observed in three different NMR observables: (i) the linewidth dependence on the 1H decoupling frequency; (ii) 13C CSA changes for the peptide carbonyl groups, and (iii) dephasing rates of 1H‐13C dipolar couplings. In particular, a nearly threefold increase in motional amplitudes of the backbone librations about C‐Cα or N‐Cα bonds was found on increasing the added water content up to 47 wt%D2O. On the basis of the frequencies of NMR observables involved, the timescale of the protein motions dependent on the added water content is estimated to be of the order of microseconds. This estimate agrees with that from wideline T2 1H NMR measurements. Also, our wideline 1H NMR measurements revealed that the timescale of the microsecond motions in proteins reduces significantly on increasing the added water content, i.e., an ~15‐fold increase in protein motional frequencies is observed on increasing the added water content to 45 wt% D2O. The observed changes in collagen dynamics is attributed to the increase in water translational diffusion on increasing the amount of added water, which leads to more frequent “bound water/free water” exchange on the protein surface, accompanied by the breakage and formation of new hydrogen bonds with polar functionalities of protein. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 246–256, 2014. 相似文献
10.
Plant LTP1 are small helical proteins stabilized by four disulfide bridges and are characterized by the presence of an internal cavity, in which various hydrophobic ligands can be inserted. Recently, we have determined the solution structure of the recombinant tobacco LTP1_1. Unexpectedly, despite a global fold very similar to the structures already known for cereal seed LTP1, its binding properties are different: Tobacco LTP1_1 is able to bind only one monoacylated lipid, whereas cereal LTP1 can bind either one or two. The 3D structure of tobacco LTP1_1 revealed the presence of a hydrophobic cluster, not observed on cereal LTP1 structures, which may hinder one of the two entrances of the cavity defined for wheat LTP1. To better understand the mechanism of lipid entrance for tobacco LTP1_1 and to define the regions of the protein monitoring the accessibility of the cavity, we have complemented our structural data by the study of the internal dynamics of tobacco LTP1_1, using (15)N magnetic relaxation rate data and MD simulations at room and high temperatures. This work allowed us to define two regions of the protein experiencing the largest motions. These two regions delineate a portal that opens up during the simulation constituting a unique entrance of the hydrophobic cavity, in contrast with wheat LTP1 where two routes were detected. The hydrophobic interactions resulting from a few point mutations are strong enough to completely block the second portal so that the accessibility of the cavity is restricted to one entrance, explaining why this particular LTP1 binds only one lipid molecule. 相似文献
11.
Elisabetta Schievano Stefano Mammi Alessandro Bisello Michael Rosenblatt Michael Chorev Evaristo Peggion 《Journal of peptide science》1999,5(7):330-337
The N‐terminal 1–34 segments of both parathyroid hormone (PTH) and parathyroid hormone‐related protein (PTHrP) bind and activate the same membrane receptor in spite of major differences in their amino acid sequence. The hypothesis was made that they share the same bioactive conformation when bound to the receptor. A common structural motif in all bioactive fragments of the hormone in water/trifluoroethanol mixtures or in aqueous solution containing detergent micelles is the presence of two helical segments at the N‐ and C‐termini of the sequence. In order to stabilize the helical structures, we have recently synthesized and studied the PTHrP(1–34) analog [(Lys13–As p17, Lys26–As p30)]PTHrP(1–34)NH2, which contains lactam‐constrained Lys‐Asp side chains at positions i, i+4. This very potent agonist exhibits enhanced helix stability with respect to the corresponding linear peptide and also two flexible sites at positions 12 and 19 in 1:1 trifluoroethanol/water. These structural elements have been suggested to play a critical role in bioactivity. In the present work we have extended our conformational studies on the bicyclic lactam‐constrained analog to aqueous solution. By CD, 2D‐NMR and structure calculations we have shown that in water two helical segments are present in the region of the lactam bridges (13–18, and 26–31) with high flexibility around Gly12 and Arg19. Thus, the essential structural features observed in the aqueous‐organic medium are maintained in water even if, in this solvent, the overall structure is more flexible. Our findings confirm the stabilizing effect of side‐chain lactam constraints on the α‐helical structure. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
12.
A series of 1-ns MD simulations were performed on the scorpion toxin Lqh III in native and disulfide bond broken states. The removal of disulfide bonds has caused hydrogen bond network alteration in the five-residue turn, the long loop, the alpha-helix, the loop connecting strands II and III, and the C-terminal region. In addition and more importantly, it has influenced the amplitude of the fluctuations of five-residue turn, loops, and C-terminal region with a minor effect on the fluctuations of the cysteines in the broken bond sites. These findings suggest that disulfide bonds are not the most important factors in rigidifying their own locations, while they have more important effects at a global scale. Furthermore, our results reveal that disulfide bonds have considerable influence on the functionally important essential modes of motions and the correlations between the motions of the binding site residues. Therefore, we can conclude that disulfide bonds have a crucial role in modulating the function via adjusting the dynamics of scorpion toxin molecules. Although this conclusion cannot be generalized to all peptides and proteins, it demonstrates the importance of more investigations on this aspect of disulfide bond efficacy. 相似文献
13.
The side‐chain dihedral angle distributions of all amino acids have been measured from myriad high‐resolution protein crystal structures. However, we do not yet know the dominant interactions that determine these distributions. Here, we explore to what extent the defining features of the side‐chain dihedral angle distributions of different amino acids can be captured by a simple physical model. We find that a hard‐sphere model for a dipeptide mimetic that includes only steric interactions plus stereochemical constraints is able to recapitulate the key features of the back‐bone dependent observed amino acid side‐chain dihedral angle distributions of Ser, Cys, Thr, Val, Ile, Leu, Phe, Tyr, and Trp. We find that for certain amino acids, performing the calculations with the amino acid of interest in the central position of a short α‐helical segment improves the match between the predicted and observed distributions. We also identify the atomic interactions that give rise to the differences between the predicted distributions for the hard‐sphere model of the dipeptide and that of the α‐helical segment. Finally, we point out a case where the hard‐sphere plus stereochemical constraint model is insufficient to recapitulate the observed side‐chain dihedral angle distribution, namely the distribution P(χ3) for Met. Proteins 2014; 82:2574–2584. © 2014 Wiley Periodicals, Inc. 相似文献
14.
Tomohiro Kimura Krishna Vukoti Diane L. Lynch Dow P. Hurst Alan Grossfield Michael C. Pitman Patricia H. Reggio Alexei A. Yeliseev Klaus Gawrisch 《Proteins》2014,82(3):452-465
The global fold of human cannabinoid type 2 (CB2) receptor in the agonist‐bound active state in lipid bilayers was investigated by solid‐state 13C‐ and 15N magic‐angle spinning (MAS) NMR, in combination with chemical‐shift prediction from a structural model of the receptor obtained by microsecond‐long molecular dynamics (MD) simulations. Uniformly 13C‐ and 15N‐labeled CB2 receptor was expressed in milligram quantities by bacterial fermentation, purified, and functionally reconstituted into liposomes. 13C MAS NMR spectra were recorded without sensitivity enhancement for direct comparison of Cα, Cβ, and C?O bands of superimposed resonances with predictions from protein structures generated by MD. The experimental NMR spectra matched the calculated spectra reasonably well indicating agreement of the global fold of the protein between experiment and simulations. In particular, the 13C chemical shift distribution of Cα resonances was shown to be very sensitive to both the primary amino acid sequence and the secondary structure of CB2. Thus the shape of the Cα band can be used as an indicator of CB2 global fold. The prediction from MD simulations indicated that upon receptor activation a rather limited number of amino acid residues, mainly located in the extracellular Loop 2 and the second half of intracellular Loop 3, change their chemical shifts significantly (≥1.5 ppm for carbons and ≥5.0 ppm for nitrogens). Simulated two‐dimensional 13Cα(i)? 13C?O(i) and 13C?O(i)? 15NH(i + 1) dipolar‐interaction correlation spectra provide guidance for selective amino acid labeling and signal assignment schemes to study the molecular mechanism of activation of CB2 by solid‐state MAS NMR. Proteins 2014; 82:452–465. © 2013 Wiley Periodicals, Inc. 相似文献
15.
Oleg V. Stroganov Fedor N. Novikov Alexey A. Zeifman Viktor S. Stroylov Ghermes G. Chilov 《Proteins》2011,79(9):2693-2710
A new graph–theoretical approach called thermodynamic sampling of amino acid residues (TSAR) has been elaborated to explicitly account for the protein side chain flexibility in modeling conformation‐dependent protein properties. In TSAR, a protein is viewed as a graph whose nodes correspond to structurally independent groups and whose edges connect the interacting groups. Each node has its set of states describing conformation and ionization of the group, and each edge is assigned an array of pairwise interaction potentials between the adjacent groups. By treating the obtained graph as a belief‐network—a well‐established mathematical abstraction—the partition function of each node is found. In the current work we used TSAR to calculate partition functions of the ionized forms of protein residues. A simplified version of a semi‐empirical molecular mechanical scoring function, borrowed from our Lead Finder docking software, was used for energy calculations. The accuracy of the resulting model was validated on a set of 486 experimentally determined pKa values of protein residues. The average correlation coefficient (R) between calculated and experimental pKa values was 0.80, ranging from 0.95 (for Tyr) to 0.61 (for Lys). It appeared that the hydrogen bond interactions and the exhaustiveness of side chain sampling made the most significant contribution to the accuracy of pKa calculations. Proteins 2011; © 2011 Wiley‐Liss, Inc. 相似文献
16.
A new and very promising strategy for HIV drug discovery consists in blocking the multiple functional interactions between HIV‐1 integrase (IN) and its cellular cofactors. At present, this line of action is hindered by the absence of three‐dimensional structures of IN in complex with any of them. In this article, we developed a full‐length three‐dimensional structure of IN, including the highly flexible terminal residues 270–288, which are not experimentally solved. Additionally, we built models of IN complexed to the human acetyltransferases GCN5 and p300 based on available structural and mutagenesis data. Then, we studied the dynamical behavior of these models by means of the Coarse‐Grained Molecular Dynamics (CGMD) and Essential Dynamics (ED) to locate and characterize the nature of the largest collective motions. We found correlated motions involving distant regions of IN. Moreover, we found that these are influenced by the binding with the acetyltransferases (HATs). Taken together these findings suggest a way to affect the acetyltransferase binding by an allosteric type of inhibition and provide an important new approach for the drug design against HIV disease. Proteins 2009. © 2009 Wiley‐Liss, Inc. 相似文献
17.
18.
Interactions measurement is a valuable tool to predict equilibrium phase separation of a desired protein in the presence of unwanted macromolecules. In this study, cross‐interactions were measured as the osmotic second virial cross‐coefficients (B23) for the three binary protein systems involving lysozyme, ovalbumin, and α‐amylase in salt solutions (sodium chloride and ammonium sulfate). They were correlated with solubility for the binary protein mixtures. The cross‐interaction behavior at different salt concentrations was interpreted by either electrostatic or hydrophobic interaction forces. At low salt concentrations, the protein surface charge dominates cross‐interaction behavior as a function of pH. With added ovalbumin, the lysozyme solubility decreased linearly at low salt concentration in sodium chloride and increased at high salt concentration in ammonium sulfate. The B23 value was found to be proportional to the slope of the lysozyme solubility against ovalbumin concentration and the correlation was explained by preferential interaction theory. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1203–1211, 2013 相似文献
19.
20.
Many membrane peptides and protein domains contain functionally important cationic Arg and Lys residues, whose insertion into the hydrophobic interior of the lipid bilayer encounters significant energy barriers. To understand how these cationic molecules overcome the free energy barrier to insert into the lipid membrane, we have used solid-state NMR spectroscopy to determine the membrane-bound topology of these peptides. A versatile array of solid-state NMR experiments now readily yields the conformation, dynamics, orientation, depth of insertion, and site-specific protein-lipid interactions of these molecules. We summarize key findings of several Arg-rich membrane peptides, including β-sheet antimicrobial peptides, unstructured cell-penetrating peptides, and the voltage-sensing helix of voltage-gated potassium channels. Our results indicate the central role of guanidinium-phosphate and guanidinium-water interactions in dictating the structural topology of these cationic molecules in the lipid membrane, which in turn account for the mechanisms of this functionally diverse class of membrane peptides. 相似文献