首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
49Ti chemical shifts for a total of 20 titanium complexes are reported, and several levels of theory are evaluated in order to identify a reliable approach for the calculation of titanium NMR data. The popular B3LYP/6–31G(d)//B3LYP/6–31G(d) proves to give very good agreement with experimental data over a range from 1,400 to −1,300 ppm. The MP2/6–31G(d)//MP2/6–31G(d) level computes even smaller average deviations but fails for TiI4. This behavior together with its huge demand for computational resources requires careful handling of this theoretical level. In addition, NMR data for five titanium fulvene (or related) complexes are given. Dedicated to Professor Dr. Paul von Ragué Schleyer on the occasion of his 75th birthday  相似文献   

2.
Temperature coefficients have been measured by 2D NMR methods forthe amide and CH proton chemical shifts in two globularproteins, bovine pancreatic trypsin inhibitor and hen egg-white lysozyme.The temperature-dependent changes in chemical shift are generally linear upto about 15° below the global denaturation temperature, and the derivedcoefficients span a range of roughly –16 to +2 ppb/K for amide protonsand –4 to +3 ppb/K for CH. The temperaturecoefficients can be rationalized by the assumption that heating causesincreases in thermal motion in the protein. Precise calculations oftemperature coefficients derived from protein coordinates are not possible,since chemical shifts are sensitive to small changes in atomic coordinates.Amide temperature coefficients correlate well with the location of hydrogenbonds as determined by crystallography. It is concluded that a combined useof both temperature coefficients and exchange rates produces a far morereliable indicator of hydrogen bonding than either alone. If an amide protonexchanges slowly and has a temperature coefficient more positive than–4.5 ppb/K, it is hydrogen bonded, while if it exchanges rapidly andhas a temperature coefficient more negative than –4.5 ppb/K, it is nothydrogen bonded. The previously observed unreliability of temperaturecoefficients as measures of hydrogen bonding in peptides may arise fromlosses of peptide secondary structure on heating.  相似文献   

3.
Wang CC  Chen JH  Yin SH  Chuang WJ 《Proteins》2006,64(1):219-226
Different programs and methods were employed to superimpose protein structures, using members of four very different protein families as test subjects, and the results of these efforts were compared. Algorithms based on human identification of key amino acid residues on which to base the superpositions were nearly always more successful than programs that used automated techniques to identify key residues. Among those programs automatically identifying key residues, MASS could not superimpose all members of some families, but was very efficient with other families. MODELLER, MultiProt, and STAMP had varying levels of success. A genetic algorithm program written for this project did not improve superpositions when results from neighbor-joining and pseudostar algorithms were used as its starting cases, but it always improved superpositions obained by MODELLER and STAMP. A program entitled PyMSS is presented that includes three superposition algorithms featuring human interaction.  相似文献   

4.
For an amino acid in protein, its chemical shift, (, )s, is expressed as a function of its backbone torsion angles ( and ) and secondary state (s): (, )s=, )_coil+(, )_s, where (, )coil represents its chemical shift at coil state (s=coil); (, )s (s=sheet or helix) is herein defined as secondary structural effect correction factor, which are quantitatively determined from Residue-specific Secondary Structure Shielding Surface (RSS) for 13CO, 13C, 13C,1H, 15N, and 1HN nuclei. The secondary structural effect correction factors defined in this study differ from those in earlier investigations by separating out the backbone conformational effects. As a consequence, their magnitudes are significantly smaller than those earlier reported. The present (, )sheet and (, )helix were found varying little with backbone conformation and the 20 amino acids, specifically for 13CO, 13C, and 1H nuclei. This study also carries out some useful investigations on other chemical shift prediction approaches – the traditional shielding surfaces, SHIFTS, SHIFTX, PROSHIFT, and identifies some unexpected shortcomings with these methods. It provides some useful insights into understanding protein chemical shifts and suggests a new route to improving chemical shifts prediction. The RSS surfaces were incorporated into the program PRSI [Wang and Jardetzky, J. Biomol. NMR, 28: 327–340 (2004)], which is available for academic users at http://www.pronmr.com or by sending email to the author (yunjunwang@yahoo.com).  相似文献   

5.
Linear regression formulae are given for converting 1H and 13C magnetic shielding constants calculated at common ab initio and density functional theory levels of calculation into chemical shifts relative to tetramethylsilane. Accuracies of roughly ±2.2 ppm (13C) and ±0.15 ppm (1H) or better are found for the training set for most levels. The highest level calculations do not always give better results than economical standard calculations.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

6.
7.
A computer program (ORB) has been developed to predict 1H,13C and 15N NMR chemical shifts of previouslyunassigned proteins. The program makes use of the information contained in achemical shift database of previously assigned proteins supplemented by astatistically derived averaged chemical shift database in which the shifts arecategorized according to their residue, atom and secondary structure type[Wishart et al. (1991) J. Mol. Biol., 222, 311–333]. The predictionprocess starts with a multiple alignment of all previously assigned proteinswith the unassigned query protein. ORB uses the sequence and secondarystructure alignment program XALIGN for this task [Wishart et al. (1994)CABIOS, 10, 121–132; 687–688]. The prediction algorithm in ORB isbased on a scoring of the known shifts for each sequence. The scores dependon global sequence similarity, local sequence similarity, structuralsimilarity and residue similarity and determine how much weight one particularshift is given in the prediction process. In situations where no applicablepreviously assigned chemical shifts are available, the shifts derived from theaveraged database are used. In addition to supplying the user with predictedchemical shifts, ORB calculates a confidence value for every prediction. Theseconfidence values enable the user to judge which predictions are the mostaccurate and they are particularly useful when ORB is incorporated into acomplete autoassignment package. The usefulness of ORB was tested on threemedium-sized proteins: an interleukin-8 analog, a troponin C synthetic peptideheterodimer and cardiac troponin C. Excellent results are obtained if ORB isable to use the chemical shifts of at least one highly homologous sequence.ORB performs well as long as the sequence identity between proteins with knownchemical shifts and the new sequence is not less than 30%.  相似文献   

8.
The presence of disulfide bonds can be detected unambiguously only by X-ray crystallography, and otherwise must be inferred by chemical methods. In this study we demonstrate that 13C NMR chemical shifts are diagnostic of disulfide bond formation, and can discriminate between cysteine in the reduced (free) and oxidized (disulfide bonded) state. A database of cysteine 13C C and C chemical shifts was constructed from the BMRB and Sheffield databases, and published journals. Statistical analysis indicated that the C shift is extremely sensitive to the redox state, and can predict the disulfide-bonded state. Further, chemical shifts in both states occupy distinct clusters as a function of secondary structure in the C/C chemical shift map. On the basis of these results, we provide simple ground rules for predicting the redox state of cysteines; these rules could be used effectively in NMR structure determination, predicting new folds, and in protein folding studies.  相似文献   

9.
Spectral overlap of 31P NMR resonances and the lack of reproducibility in chemical shifts corresponding to phospholipids in organic solvents challenge the accuracy of band assignments and quantification. To alleviate these problems, the use of temperature coefficients is proposed. Changes in temperature enable the resolution of overlapped resonances and provide a facile approach for the computation of temperature coefficients. The coefficients were evaluated for various glycero- and sphingo-phospholipids. Their values suggest that differences in H-bonding between the phosphate and the head groups are responsible for the changes of chemical shift with temperature. Among parent phospholipids, and in addition to sphingomyelin, the smallest temperature coefficient values (closest to zero) were observed for phosphatidylcholine, phosphatidylglycerol, dihydrosphingomyelin, and cardiolipin. The highest values were exhibited by phospholipids with protonated head groups, such as phosphatidylserine and phosphatidylethanolamine. The lowest and, in fact, negative values were measured for phospholipids with an exposed phosphate group: phosphatidic acid, ceramide-1-phosphate, and dihydroceramide-1-phosphate. Diacyl, alkyl-acyl, and alkenyl-acyl phospholipids with the same head group exhibited comparable coefficients but differed slightly in chemical shifts. Compared to their parent glycerophospholipids, all lyso analogs had greater temperature coefficients, possibly due to the presence of an extra OH capable of forming a H-bond with the phosphate group.  相似文献   

10.
The [H26N, H33N] mutant of horse heart cytochrome c was expressed in E. coli during growth on isotopically enriched minimal media. Complete resonance assignments of both the diamagnetic reduced (spin zero) and paramagnetic oxidized (spin (1/2)) states of the protein were obtained using standard triple resonance and total correlation spectroscopy using the previously determined (1)H chemical shifts of the wild-type protein as a guide. The correspondence of chemical shifts between the wild type and the mutant protein is excellent, indicating that they have nearly identical structures. The expanded library of chemical shifts for both redox states in both proteins allowed the refinement of the electron spin g-tensor of the oxidized states. The g-tensors of the oxidized states of the wild-type and [H26N, H33N] mutant proteins are closely similar, indicating that the subtle details of the ligand fields are nearly identical. The refined g-tensors were then used to probe for redox-dependent structure change in the two proteins.  相似文献   

11.
Resonance assignments recently obtained on immobilized polypeptides and a membrane protein aggregate under Magic Angle Spinning are compared to random coil values in the liquid state. The resulting chemical shift differences (secondary chemical shifts) are evaluated in light of the backbone torsion angle previously reported using X-ray crystallography. In all cases, a remarkable correlation is found suggesting that the concept of secondary chemical shifts, well established in the liquid state, can be of similar importance in the context of multiple-labelled polypeptides studied under MAS conditions.  相似文献   

12.
Johnson E  Palmer AG  Rance M 《Proteins》2007,66(4):796-803
The study of protein conformational dynamics is motivated in large part by a desire to understand the forces present at different sites throughout the molecular structure. The generalized order parameter determined by NMR spectroscopy has played a central role in the study of protein dynamics on the picosecond-nanosecond time scale. A modeling procedure is presented for analysis of the temperature dependence of the generalized order parameter that extends a previous analysis (Massi and Palmer, J Am Chem Soc 2003;125:11158-11159). As part of this procedure, the potential of mean force is characterized for the N-H bond vectors of the protein backbone. This procedure accounts for the observed temperature dependence of the generalized order parameter in a representative data set from the B1 domain of Streptococcal protein G (Seewald, Pichumani, Stowell, Tibbals, Regan, and Stone, Protein Sci 2000;9:1177-1193). The results indicate a general trend, in which the force constants associated with the potential of mean force decrease with increasing temperature. The analysis also provides evidence for variations in the potential of mean force for different secondary structural elements.  相似文献   

13.
Coxon B 《Carbohydrate research》2005,340(10):1714-1721
Complete 1H and 13C NMR chemical shift assignments have been generated from a series of acetamidodeoxy and aminodeoxy sugar derivatives. For free sugars, the enhanced sensitivity of an NMR cryoprobe allowed simple 1D and 2D NMR spectra to be obtained from essentially single anomers, before significant mutarotation had occurred. The NMR assignments have been used to characterize deuterium isotope effects on 13C chemical shifts measured under conditions of slow NH to ND exchange in single solutions. Within a range of 0 to −0.138 ppm, β, γ, δ, and ζ deuterium isotope effects have been observed, thus providing additional reference data for assignment of the 13C NMR spectra of nitrogenous saccharides.  相似文献   

14.
We recently reported a theoretical characterization of representative ensembles of statistical-coil conformations for tetrapeptides with unblocked termini in aqueous solution, at pH 7. The results showed good agreement between the computed Boltzmann-averaged and experimentally-determined values for both the vicinal coupling constants 3JNH and the -proton chemical shifts. Here, we carry out a cluster analysis of the ensembles of conformations generated in that study, and use them to compute the Boltzmann-averaged values of the quantum-chemical 13C chemical shifts for different amino acids in the unblocked tetrapeptides GGXA (where X stands for Phe, Arg, His, Glu, Ile, Lys, Gln, Tyr, Leu, Thr, Ala, Gly and Val). The values of the 13C chemical shifts in these thirteen amino acids (for which experimental data are available) were computed by using Density Functional Theory with a 6–311+G(2d,p) basis set. Good agreement is found in terms of both the correlation coefficient (R) and standard deviations of the difference between the computed Bolztmann-averaged and the NMR-determined values for the 13C chemical shifts. These results suggest that it may be possible to build a reliable theoretically-derived database of chemical shifts for statistical-coil residues. The results of the current study contribute to our understanding of the relations between chemical shifts, dihedral angles and vicinal coupling constants, 3JNH. In addition, they can shed light as to how the statistical-coilconformation is related to the conformational preference of more structured states, such as the -helical conformation.  相似文献   

15.
RefDB: a database of uniformly referenced protein chemical shifts   总被引:8,自引:8,他引:0  
RefDB is a secondary database of reference-corrected protein chemical shifts derived from the BioMagResBank (BMRB). The database was assembled by using a recently developed program (SHIFTX) to predict protein 1H, 13C and 15N chemical shifts from X-ray or NMR coordinate data of previously assigned proteins. The predicted shifts were then compared with the corresponding observed shifts and a variety of statistical evaluations performed. In this way, potential mis-assignments, typographical errors and chemical referencing errors could be identified and, in many cases, corrected. This approach allows for an unbiased, instrument-independent solution to the problem of retrospectively re-referencing published protein chemical shifts. Results from this study indicate that nearly 25% of BMRB entries with 13C protein assignments and 27% of BMRB entries with 15N protein assignments required significant chemical shift reference readjustments. Additionally, nearly 40% of protein entries deposited in the BioMagResBank appear to have at least one assignment error. From this study it evident that protein NMR spectroscopists are increasingly adhering to recommended IUPAC 13C and 15N chemical shift referencing conventions, however, approximately 20% of newly deposited protein entries in the BMRB are still being incorrectly referenced. This is cause for some concern. However, the utilization of RefDB and its companion programs may help mitigate this ongoing problem. RefDB is updated weekly and the database, along with its associated software, is freely available at http://redpoll.pharmacy.ualberta.ca and the BMRB website.  相似文献   

16.
An approach to automatic prediction of the amino acid type from NMR chemical shift values of its nuclei is presented here, in the frame of a model to calculate the probability of an amino acid type given the set of chemical shifts. The method relies on systematic use of all chemical shift values contained in the BioMagResBank (BMRB). Two programs were designed, one (BMRB stats) for extracting statistical chemical shift parameters from the BMRB and another one (RESCUE2) for computing the probabilities of each amino acid type, given a set of chemical shifts. The Bayesian prediction scheme presented here is compared to other methods already proposed: PROTYP RESCUE and PLATON and is found to be more sensitive and more specific. Using this scheme, we tested various sets of nuclei. The two nuclei carrying the most information are C(beta) and H(beta), in agreement with observations made in Grzesiek and Bax, 1993. Based on four nuclei: H(beta), C(beta), C(alpha) and C', it is possible to increase correct predictions to a rate of more than 75%. Taking into account the correlations between the nuclei chemical shifts has only a slight impact on the percentage of correct predictions: indeed, the largest correlation coefficients display similar features on all amino acids.  相似文献   

17.
The 1H, 13C, 15N and 31 P random-coil chemical shifts and phosphate pKa values of the phosphorylated amino acids pSer, pThr and pTyr in the protected peptide Ac-Gly-Gly-X-Gly-Gly-NH2 have been obtained in water at 25°C over the pH range 2 to 9. Analysis of ROESY spectra indicates that the peptides are unstructured. Phosphorylation induces changes in random-coil chemical shifts, some of which are comparable to those caused by secondary structure formation, and are therefore significant in structural analyses based on the chemical shift.  相似文献   

18.
Complete and accurate NMR spectral assignment is a prerequisite for high-throughput automated structure determination of biological macromolecules. However, completely automated assignment procedures generally encounter difficulties for all but the most ideal data sets. Sources of these problems include difficulty in resolving correlations in crowded spectral regions, as well as complications arising from dynamics, such as weak or missing peaks, or atoms exhibiting more than one peak due to exchange phenomena. Smartnotebook is a semi-automated assignment software package designed to combine the best features of the automated and manual approaches. The software finds and displays potential connections between residues, while the spectroscopist makes decisions on which connection is correct, allowing rapid and robust assignment. In addition, smartnotebook helps the user fit chains of connected residues to the primary sequence of the protein by comparing the experimentally determined chemical shifts with expected shifts derived from a chemical shift database, while providing bookkeeping throughout the assignment procedure.  相似文献   

19.
The conformation of an elastin-mimetic recombinant protein, [(VPGVG)4(VPGKG)]39, is investigated using solid-state NMR spectroscopy. The protein is extensively labeled with 13C and 15N, and two-dimensional 13C-13C and 15N-13C correlation experiments were carried out to resolve and assign the isotropic chemical shifts of the various sites. The Pro 15N, 13Calpha, and 13Cbeta isotropic shifts, and the Gly-3 Calpha isotropic and anisotropic chemical shifts support the predominance of type-II beta-turn structure at the Pro-Gly pair but reject a type-I beta-turn. The Val-1 preceding Pro adopts mostly beta-sheet torsion angles, while the Val-4 chemical shifts are intermediate between those of helix and sheet. The protein exhibits a significant conformational distribution, shown by the broad line widths of the 15N and 13C spectra. The average chemical shifts of the solid protein are similar to the values in solution, suggesting that the low-hydration polypeptide maintains the same conformation as in solution. The ability to measure these conformational restraints by solid-state NMR opens the possibility of determining the detailed structure of this class of fibrous proteins through torsion angles and distances.  相似文献   

20.
In this paper the NMR secondary chemical shifts, that are estimated from a set of 3D-structures, are compared with the observed ones to appraise the behaviour of a known x-ray diffraction structure (of the bovine pancreatic trypsin inhibitor protein) when various molecular dynamics are applied. The results of a 200 ps molecular dynamics under various conditions are analysed and different ways to modify the molecular dynamics are considered. With the purpose of avoiding the time-consuming explicit representation of the solvent (water) molecules, an attempt was made to understand the role of the solvent and to develop an implicit representation, which may be refined. A simulation of hydrophobic effects in an aqueous environment is also proposed which seems to provide a better approximation of the observed solution structure of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号