首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reptiles are especially vulnerable to climate warming because their behavior, physiology, and life history are highly dependent on environmental temperature. In this study, we envisaged new probable mechanisms underlying the high vulnerability of lizards, wherein heat exposure induces oxidative stress and leads to immunosuppression. To test this hypothesis, we conducted a warming experiment on a lizard (Eremias multiocellata) from a desert steppe in Inner Mongolia from May to September using open-top chambers set up in their natural habitat and compared the components of oxidative stress (antioxidant ability [Superoxide dismutase (SOD) activity], extent of oxidative damage [malondialdehyde (MDA) content]), and immunocompetence (white blood cells [WBC] counts and immunoglobulin M [IgM] expression) between the warming and control groups. At the end of the experiment, the warming treatment did not affect the survival rate of the lizards. However, MDA content, but not SOD activity, was significantly higher in the warming group than in the control group. The WBC counts and IgM expression were significantly lower in the warming group than in the control group. Our results verified our hypothesis and provided novel cues and methods for the investigation of the mechanisms behind the high probability of extinction of other ectotherms under warming conditions.  相似文献   

2.
Intertidal organisms are vulnerable to global warming as they already live at, or near to, the upper limit of their thermal tolerance window. The behaviour of ectotherms could, however, dampen their limited physiological abilities to respond to climate change (e.g. drier and warmer environmental conditions) which could substantially increase their survival rates. The behaviour of ectotherms is still mostly overlooked in climate change studies. Here, we investigate the potential of aggregation behaviour to compensate for climate change in an intertidal gastropod species (Nerita atramentosa) in South Australia. We used thermal imaging to investigate (1) the heterogeneity in individual snail water content and body temperature and surrounding substratum temperature on two topographically different habitats (i.e. rock platform and boulders) separated by 250 m at both day- and night-times, (2) the potential relationship between environment temperature (air and substratum) and snail water content and body temperature, and (3) the potential buffering effect of aggregation behaviour on snail water content and body temperature. Both substratum and snail temperature were more heterogeneous at small spatial scales (a few centimetres to a few metres) than between habitats. This reinforces the evidence that mobile intertidal ectotherms could survive locally under warmer conditions if they can locate and move behaviourally in local thermal refuges. N. atramentosa behaviour, water content and body temperature during emersion seem to be related to the thermal stability and local conditions of the habitat occupied. Aggregation behaviour reduces both desiccation and heat stresses but only on the boulder field. Further investigations are required to identify the different behavioural strategies used by ectothermic species to adapt to heat and dehydrating conditions at the habitat level. Ultimately, this information constitutes a fundamental prerequisite to implement conservation management plans for ectothermic species identified as vulnerable in the warming climate.  相似文献   

3.
Predicted changes in global temperature are expected to increase extinction risk for ectotherms, primarily through increased metabolic rates. Higher metabolic rates generate increased maintenance energy costs which are a major component of energy budgets. Organisms often employ plastic or evolutionary (e.g., local adaptation) mechanisms to optimize metabolic rate with respect to their environment. We examined relationships between temperature and standard metabolic rate across four populations of a widespread amphibian species to determine if populations vary in metabolic response and if their metabolic rates are plastic to seasonal thermal cues. Populations from warmer climates lowered metabolic rates when acclimating to summer temperatures as compared to spring temperatures. This may act as an energy saving mechanism during the warmest time of the year. No such plasticity was evident in populations from cooler climates. Both juvenile and adult salamanders exhibited metabolic plasticity. Although some populations responded to historic climate thermal cues, no populations showed plastic metabolic rate responses to future climate temperatures, indicating there are constraints on plastic responses. We postulate that impacts of warming will likely impact the energy budgets of salamanders, potentially affecting key demographic rates, such as individual growth and investment in reproduction.  相似文献   

4.
Kelp communities are experiencing exacerbated heat-related impacts from more intense, frequent, and deeper marine heatwaves (MHWs), imperiling the long-term survival of kelp forests in the climate change scenario. The occurrence of deep thermal anomalies is of critical importance, as elevated temperatures can impact kelp populations across their entire bathymetric range. This study evaluates the impact of MHWs on mature sporophytes of Pterygophora californica (walking kelp) from the bathymetric extremes (8–10 vs. 25–27 m) of a population situated in Baja California (Mexico). The location is near the southernmost point of the species's broad distribution (from Alaska to Mexico). The study investigated the ecophysiological responses (e.g., photobiology, nitrate uptake, oxidative stress) and growth of adult sporophytes through a two-phase experiment: warming simulating a MHW and a post-MHW phase without warming. Generally, the effects of warming differed depending on the bathymetric origin of the sporophytes. The MHW facilitated essential metabolic functions of deep-water sporophytes, including photosynthesis, and promoted their growth. In contrast, shallow-water sporophytes displayed metabolic stress, reduced growth, and oxidative damage. Upon the cessation of warming, certain responses, such as a decline in nitrate uptake and net productivity, became evident in shallow-water sporophytes, implying a delay in heat-stress response. This indicates that variation in temperatures can result in more prominent effects than warming alone. The greater heat tolerance of sporophytes in deeper waters shows convincing evidence that deep portions of P. californica populations have the potential to serve as refuges from the harmful impacts of MHWs on shallow reefs.  相似文献   

5.
Production of heat-shock proteins (Hsps) is a key adaptation to acute heat stress and will be Important in determining plant responses to climate change. Further, intraspecifc variation in Hsps, which will influence species-level response to global warming, has rarely been examined in naturally occurring plants. To understand intraspeciflc variation in plant Hsps and its relevance to global warming, we examined Hsp content and thermotolerance in five naturally occurring populations of Chenopodium album L. from contrasting thermal environments grown at low and high temperatures. As expected,Hsp accumulation varied between populations, but this was related more to habitat variability than to mean temperature.Unexpectedly, Hsp accumulation decreased with increasing variability of habitat temperatures. Hsp accumulation also decreased with increased experimental growth temperatures. Physiological thermotolerance was partitioned into basal and induced components. As with Hsps, induced thermotolerance decreased with increasing temperature variability. Thus,populations native to the more stressful habitats, or grown at higher temperatures, had lower Hsp levels and induced thermotolerance, suggesting a greater reliance on basal mechanisms for thermotolerance. These results suggest that future global climate change will differentially impact ecotypes within species, possibly by selecting for increased basal versus inducible thermotolerance.  相似文献   

6.
The ability to express heat‐shock proteins (HSP) under thermal stress is an essential mechanism for ectotherms to cope with unfavourable conditions. In this study, we investigate if Copper butterflies originating from different altitudes and/or being exposed to different rearing and induction temperatures show differences in HSP70 expression. HSP70 expression increased substantially at the higher rearing temperature in low‐altitude butterflies, which might represent an adaptation to occasionally occurring heat spells. On the other hand, high‐altitude butterflies showed much less plasticity in response to rearing temperatures, and overall seem to rely more on genetically fixed thermal stress resistance. Whether the latter indicates a higher vulnerability of high‐altitude populations to global warming needs further investigation. HSP70 expression increased with both colder and warmer induction temperatures.  相似文献   

7.
Global climate change poses one of the greatest threats to biodiversity. Most analyses of the potential biological impacts have focused on changes in mean temperature, but changes in thermal variance will also impact organisms and populations. We assessed the combined effects of the mean and variance of temperature on thermal tolerances, organismal survival, and population growth in Drosophila melanogaster. Because the performance of ectotherms relates nonlinearly to temperature, we predicted that responses to thermal variation (±0° or ±5°C) would depend on the mean temperature (17° or 24°C). Consistent with our prediction, thermal variation enhanced the rate of population growth (r(max)) at a low mean temperature but depressed this rate at a high mean temperature. The interactive effect on fitness occurred despite the fact that flies improved their heat and cold tolerances through acclimation to thermal conditions. Flies exposed to a high mean and a high variance of temperature recovered from heat coma faster and survived heat exposure better than did flies that developed at other conditions. Relatively high survival following heat exposure was associated with low survival following cold exposure. Recovery from chill coma was affected primarily by the mean temperature; flies acclimated to a low mean temperature recovered much faster than did flies acclimated to a high mean temperature. To develop more realistic predictions about the biological impacts of climate change, one must consider the interactions between the mean environmental temperature and the variance of environmental temperature.  相似文献   

8.
Global warming and its associated increase in temperature extremes pose a substantial challenge on natural systems. Tropical ectotherms, living close to their (upper) critical thermal limits, may be particularly vulnerable to global warming, yet they are as a group understudied. Most studies assessing fitness effects under global warming focused on life‐history correlates such as body size and largely neglected immune function. Furthermore they did not consider to what extent temperature effects may be modulated under resource‐based trade‐offs. Against this background we here investigate effects of temperature extremes on fitness‐related adult traits (viz. body mass, fat content, and two key parameters of arthropod immune function: phenoloxidase (PO) activity and haemocyte numbers) at different levels of larval and adult food stress in the tropical butterfly Bicyclus anynana. Body mass and PO activity decreased after short‐term larval food stress, but not fat content and haemocyte numbers (probably owing to compensatory mechanisms during further development). Longer‐term food deprivation in the adult stage, in contrast, diminished performance throughout, confirming that the feeding treatments chosen imposed stress. Temperature manipulations yielded contrary responses between life‐history correlates and immune function: while body mass and fat content increased by increasing temperatures, PO activity and haemocyte numbers decreased. The latter was particularly pronounced under adult food stress, suggesting a resource‐allocation trade‐off. Our data suggest that global warming will not only reduce performance through direct effects of thermal stress, but also through secondary effects on adult immune function, which may be missed when exclusively focussing on other life‐history correlates.  相似文献   

9.
The marine ecosystems are under severe climate change‐induced stress globally. The Baltic Sea is especially vulnerable to ongoing changes, such as warming. The aim of this study was to measure eco‐physiological responses of a key copepod species to elevated temperature in an experiment, and by collecting field samples in the western Gulf of Finland. The potential trade‐off between reproductive output and oxidative balance in copepods during thermal stress was studied by incubating female Acartia sp. for reproduction rate and oxidative stress measurements in ambient and elevated temperatures. Our field observations show that the glutathione cycle had a clear response in increasing stress and possibly had an important role in preventing oxidative damage: Lipid peroxidation and ratio of reduced and oxidized glutathione were negatively correlated throughout the study. Moreover, glutathione‐s‐transferase activated in late July when the sea water temperature was exceptionally high and Acartia sp. experienced high oxidative stress. The combined effect of a heatwave, increased cyanobacteria, and decreased dinoflagellate abundance may have caused larger variability in reproductive output in the field. An increase of 7°C had a negative effect on egg production rate in the experiment. However, the effect on reproduction was relatively small, implying that Acartia sp. can tolerate warming at least within the temperature range of 9–16°C. However, our data from the experiment suggest a link between reproductive success and oxidative stress during warming, shown as a significant combined effect of temperature and catalase on egg production rate.  相似文献   

10.
Although climate change models predict relatively modest increases in temperature in the tropics by the end of the century, recent analyses identify tropical ectotherms as the organisms most at risk from climate warming. Because metabolic rate in ectotherms increases exponentially with temperature, even a small rise in temperature poses a physiological threat to tropical ectotherms inhabiting an already hot environment. If correct, the metabolic theory of climate warming has profound implications for global biodiversity, since tropical insects and arachnids constitute the vast majority of animal species. Predicting how climate change will translate into fitness consequences for tropical arthropods requires an understanding of the effects of temperature increase on the entire life history of the species. Here, in a comprehensive case study of the fitness consequences of the projected temperature increase for the tropics, we conducted a split‐brood experiment on the neotropical pseudoscorpion, Cordylochernes scorpioides, in which 792 offspring from 33 females were randomly assigned at birth to control‐ and high‐temperature treatments for rearing through the adult stage. The diurnally varying, control treatment temperature was determined from long‐term, average daily temperature minima and maxima in the pseudoscorpion's native habitat. In the high temperature treatment, increasing temperature by the 3.5 °C predicted for the tropics significantly reduced survival and accelerated development at the cost of reduced adult size and a dramatic decrease in level of sexual dimorphism. The most striking effects, however, involved reproductive traits. Reared at high temperature, males produced 45% as many sperm as control males, and females failed to reproduce. Sequencing of the mitochondrial ND2 gene revealed two highly divergent haplogroups that differed substantially in developmental rate and survivorship but not in reproductive response to high temperature. Our findings suggest that reproduction may be the Achilles’ heel of tropical ectotherms, as climate warming subjects them to an increasingly adverse thermal environment.  相似文献   

11.
There is considerable interest in understanding how ectothermic animals may physiologically and behaviourally buffer the effects of climate warming. Much less consideration is being given to how organisms might adapt to non-climatic heat sources in ways that could confound predictions for responses of species and communities to climate warming. Although adaptation to non-climatic heat sources (solar and geothermal) seems likely in some marine species, climate warming predictions for marine ectotherms are largely based on adaptation to climatically relevant heat sources (air or surface sea water temperature). Here, we show that non-climatic solar heating underlies thermal resistance adaptation in a rocky–eulittoral-fringe snail. Comparisons of the maximum temperatures of the air, the snail''s body and the rock substratum with solar irradiance and physiological performance show that the highest body temperature is primarily controlled by solar heating and re-radiation, and that the snail''s upper lethal temperature exceeds the highest climatically relevant regional air temperature by approximately 22°C. Non-climatic thermal adaptation probably features widely among marine and terrestrial ectotherms and because it could enable species to tolerate climatic rises in air temperature, it deserves more consideration in general and for inclusion into climate warming models.  相似文献   

12.
The capacity of fishes to cope with environmental variation is considered to be a main determinant of their fitness and is partly determined by their stress physiology. By 2100, global ocean temperature is expected to rise by 1–4°C, with potential consequences for stress physiology. Global warming is affecting animal populations worldwide through chronic temperature increases and an increase in the frequency of extreme heatwave events. As ectotherms, fishes are expected to be particularly vulnerable to global warming. Although little information is available about the effects of global warming on stress physiology in nature, multiple studies describe the consequences of temperature increases on stress physiology in controlled laboratory conditions, providing insight into what can be expected in the wild. Chronic temperature increase constitutes a physiological load that can alter the ability of fishes to cope with additional stressors, which might compromise their fitness. In addition, rapid temperature increases are known to induce acute stress responses in fishes and might be of ecological relevance in particular situations. This review summarizes knowledge about effects of temperature increases on the stress physiology of fishes and discusses these in the context of global warming.  相似文献   

13.
The broad prediction that ectotherms will be more vulnerable to climate change in the tropics than in temperate regions includes assumptions about centre/edge population effects that can only be tested by within‐species comparisons across wide latitudinal gradients. Here, we investigated the thermal vulnerability of two mangrove crab species, comparing populations at the centre (Kenya) and edge (South Africa) of their distributions. At the same time, we investigated the role of respiratory mode (water‐ versus air‐breathing) in determining the thermal tolerance in amphibious organisms. To do this, we compared the vulnerability to acute temperature fluctuations of two sympatric species with two different lifestyle adaptations: the free living Perisesarma guttatum and the burrowing Uca urvillei, both pivotal to the ecosystem functioning of mangroves. The results revealed the air‐breathing U. urvillei to be a thermal generalist with much higher thermal tolerances than P. guttatum. Importantly, however, we found that, while U. urvillei showed little difference between edge and centre populations, P. guttatum showed adaptation to local conditions. Equatorial populations had elevated tolerances to acute heat stress and mechanisms of partial thermoregulation, which make them less vulnerable to global warming than temperate conspecifics. The results reveal both the importance of respiratory mode to thermal tolerance and the unexpected potential for low latitude populations/species to endure a warming climate. The results also contribute to a conceptual model on the latitudinal thermal tolerance of these key species. This highlights the need for an integrated population‐level approach to predict the consequences of climate change.  相似文献   

14.
Ocean warming may lead to smaller body sizes of marine ectotherms, because metabolic rates increase exponentially with temperature while the capacity of the cardiorespiratory system to match enhanced oxygen demands is limited. Here, we explore the impact of rising sea water temperatures on Atlantic cod (Gadus morhua), an economically important fish species. We focus on changes in the temperature‐dependent growth potential by a transfer function model combining growth observations with climate model ensemble temperatures. Growth potential is expressed in terms of asymptotic body weight and depends on water temperature. We consider changes between the periods 1985–2004 and 2081–2100, assuming that future sea water temperatures will evolve according to climate projections for IPCC AR5 scenario RCP8.5. Our model projects a response of Atlantic cod to future warming, differentiated according to ocean regions, leading to increases of asymptotic weight in the Barents Sea, while weights are projected to decline at the southern margin of the biogeographic range. Southern spawning areas will disappear due to thermal limitation of spawning stages. These projections match the currently observed biogeographic shifts and the temperature‐ and oxygen‐dependent decline in routine aerobic scope at southern distribution limits.  相似文献   

15.
Understanding how and to what extent the influence of temperature on physiological performance scales up to interspecific interactions and process rate patterns remains a major scientific challenge faced by ecologists. Here, we combined approaches developed by two conceptual frameworks in ecology, the stress‐gradient hypothesis (SGH), and the biodiversity–ecosystem functioning relationship (B‐EF), to test the hypothesis that interspecific difference in thermal performance modulates multiple species interactions along a thermal stress (SGH) and the subsequent richness effects on process rates (B‐EF). We designed an experiment using three species of herbivorous agricultural pests with different thermal optima for which we determined how temperature influences the direction and the strength of interaction and subsequent richness effects on crop damage (7 species interaction treatments × 6 temperature treatments × 10 replicates). We showed that both biotic interactions and species richness effects drive variations in crop damages along a thermal stress gradient, and thus have the potential to drive agro‐system responses to climate change. To help explain and generalize underlying mechanisms of richness effects on process rates, we further proposed a conceptual model that views interaction outcomes as shifting between positive and negative along a thermal stress depending on species thermal optima. Overall, our study demonstrates that nonlinear effects of temperature on process rates must be a major concern in terms of prediction and management of the consequences of global warming.  相似文献   

16.
17.
Only model organisms live in a world of endless summer. Fitness at temperate latitudes reflects the ability of organisms in nature to exploit the favorable season, to mitigate the effects of the unfavorable season, and to make the timely switch from one life style to the other. Herein, we define fitness as Ry, the year-long cohort replacement rate across all four seasons, of the mosquito, Wyeomyia smithii, reared in its natural microhabitat in processor-controlled environment rooms. First, we exposed cohorts of W. smithii, from southern, midlatitude, and northern populations (30-50 degrees N) to southern and northern thermal years during which we factored out evolved differences in photoperiodic response. We found clear evidence of evolved differences in heat and cold tolerance among populations. Relative cold tolerance of northern populations became apparent when populations were stressed to the brink of extinction; relative heat tolerance of southern populations became apparent when the adverse effects of heat could accumulate over several generations. Second, we exposed southern, midlatitude, and northern populations to natural, midlatitude day lengths in a thermally benign midlatitude thermal year. We found that evolved differences in photoperiodic response (1) prevented the timely entry of southern populations into diapause resulting in a 74% decline in fitness, and (2) forced northern populations to endure a warm-season diapause resulting in an 88% decline in fitness. We argue that reciprocal transplants across latitudes in nature always confound the effects of the thermal and photic environment on fitness. Yet, to our knowledge, no one has previously held the thermal year constant while varying the photic year. This distinction is crucial in evaluating the potential impact of climate change. Because global warming in the Northern Hemisphere is proceeding faster at northern than at southern latitudes and because this change represents an amelioration of the thermal environment and a concomitant increase in the duration of the growing season, we conclude that there should be more rapid evolution of photoperiodic response than of thermal tolerance as a consequence of global warming among northern, temperate ectotherms.  相似文献   

18.
Marine ectotherms, including oysters are exposed to variable environmental conditions in coastal shallow waters and estuaries. In the light of global climate change, additional stressors like pollution might pose higher risk to populations. On the basis of the concept of oxygen- and capacity-limited thermal tolerance in aquatic ectotherms (40), we show that a persistent pollutant, cadmium, can have detrimental effects on oysters (Crassostrea virginica). During acute warming from 20 to 28 degrees C (4 degrees C/48 h) standard metabolic rate (SMR) rose in control and cadmium-exposed (50 microg Cd2+/l) animals, with a consistently higher SMR in Cd-exposed oysters. Additionally, Cd-exposed oysters showed a stronger temperature-dependent decrease in hemolymph oxygen partial pressures. This observation indicates that the effect of temperature on aerobic metabolism was exacerbated due to the additional Cd stress. The oxygen delivery systems could not provide enough oxygen to cover Cd-induced elevated metabolic demands at high temperatures. Interestingly, cardiac performance (measured as the heart rate and hemolymph supply to tissues) rose to a similar extent in control and Cd-exposed oysters with warming indicating that cardiac output was unable to compensate for elevated energy demand in Cd-exposed oysters. Together with the literature data on metal-induced reduction of ventilatory capacity, these findings suggest that synergistic effects of elevated temperatures and cadmium exposure led to oxygen limitation by impaired performance in oxygen supply through ventilation and circulation. Overall, cadmium exposure resulted in progressive hypoxemia in oysters at high temperatures, suggesting that the thermal tolerance window is narrowed in marine ectotherms inhabiting polluted areas compared with pristine environments.  相似文献   

19.
Thermal tolerance is an important factor influencing the distribution of ectotherms, but our understanding of the ability of species to evolve different thermal limits is limited. Based on univariate measures of adaptive capacity, it has recently been suggested that species may have limited evolutionary potential to extend their upper thermal limits under ramping temperature conditions that better reflect heat stress in nature. To test these findings more broadly, we used a paternal half‐sibling breeding design to estimate the multivariate evolutionary potential for upper thermal limits in Drosophila simulans. We assessed heat tolerance using static (basal and hardened) and ramping assays. Our analyses revealed significant evolutionary potential for all three measures of heat tolerance. Additive genetic variances were significantly different from zero for all three traits. Our G matrix analysis revealed that all three traits would contribute to a response to selection for increased heat tolerance. Significant additive genetic covariances and additive genetic correlations between static basal and hardened heat‐knockdown time, marginally nonsignificant between static basal and ramping heat‐knockdown time, indicate that direct and correlated responses to selection for increased upper thermal limits are possible. Thus, combinations of all three traits will contribute to the evolution of upper thermal limits in response to selection imposed by a warming climate. Reliance on univariate estimates of evolutionary potential may not provide accurate insight into the ability of organisms to evolve upper thermal limits in nature.  相似文献   

20.
Evidence suggests that global maize yield declines with a warming climate, particularly with extreme heat events. However, the degree to which important maize processes such as biomass growth rate, growing season length (GSL) and grain formation are impacted by an increase in temperature is uncertain. Such knowledge is necessary to understand yield responses and develop crop adaptation strategies under warmer climate. Here crop models, satellite observations, survey, and field data were integrated to investigate how high temperature stress influences maize yield in the U.S. Midwest. We showed that both observational evidence and crop model ensemble mean (MEM) suggests the nonlinear sensitivity in yield was driven by the intensified sensitivity of harvest index (HI), but MEM underestimated the warming effects through HI and overstated the effects through GSL. Further analysis showed that the intensified sensitivity in HI mainly results from a greater sensitivity of yield to high temperature stress during the grain filling period, which explained more than half of the yield reduction. When warming effects were decomposed into direct heat stress and indirect water stress (WS), observational data suggest that yield is more reduced by direct heat stress (?4.6 ± 1.0%/°C) than by WS (?1.7 ± 0.65%/°C), whereas MEM gives opposite results. This discrepancy implies that yield reduction by heat stress is underestimated, whereas the yield benefit of increasing atmospheric CO2 might be overestimated in crop models, because elevated CO2 brings yield benefit through water conservation effect but produces limited benefit over heat stress. Our analysis through integrating data and crop models suggests that future adaptation strategies should be targeted at the heat stress during grain formation and changes in agricultural management need to be better accounted for to adequately estimate the effects of heat stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号