首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanical manipulation at the single molecule level of proteins exhibiting mechanical stability poses a technical challenge that has been almost exclusively approached by atomic force microscopy (AFM) techniques. However, due to mechanical drift limitations, AFM techniques are restricted to experimental recordings that last less than a minute in the high-force regime. Here we demonstrate a novel combination of electromagnetic tweezers and evanescent nanometry that readily captures the forced unfolding trajectories of protein L at pulling forces as low as 10 ∼ 15 pN. Using this approach, we monitor unfolding and refolding cycles of the same polyprotein for a period of time longer than 30 min. From such long-lasting recordings, we obtain ensemble averages of unfolding step sizes and rates that are consistent with single-molecule AFM data obtained at higher stretching forces. The unfolding kinetics of protein L at low stretching forces confirms and extends the observations that the mechanical unfolding rate is exponentially dependent on the pulling force within a wide range of stretching forces spanning from 13 pN up to 120 pN. Our experiments demonstrate a novel approach for the mechanical manipulation of single proteins for extended periods of time in the low-force regime.  相似文献   

2.
Atomic force microscopy (AFM)-based dynamic force spectroscopy of single molecular interactions involves characterizing unbinding/unfolding force distributions over a range of pulling speeds. Owing to their size and stiffness, AFM cantilevers are adversely affected by hydrodynamic forces, especially at pulling speeds >10 μm/s, when the viscous drag becomes comparable to the unbinding/unfolding forces. To circumvent these adverse effects, we have fabricated polymer-based membranes capable of actuating commercial AFM cantilevers at speeds ≥100 μm/s with minimal viscous drag effects. We have used FLUENT®, a computational fluid dynamics (CFD) software, to simulate high-speed pulling and fast actuation of AFM cantilevers and membranes in different experimental configurations. The simulation results support the experimental findings on a variety of commercial AFM cantilevers and predict significant reduction in drag forces when membrane actuators are used. Unbinding force experiments involving human antibodies using these membranes demonstrate that it is possible to achieve bond loading rates ≥106 pN/s, an order of magnitude greater than that reported with commercial AFM cantilevers and systems.  相似文献   

3.
There is concern that shear could cause protein unfolding or aggregation during commercial biopharmaceutical production. In this work we exposed two concentrated immunoglobulin‐G1 (IgG1) monoclonal antibody (mAb, at >100 mg/mL) formulations to shear rates between 20,000 and 250,000 s?1 for between 5 min and 30 ms using a parallel‐plate and capillary rheometer, respectively. The maximum shear and force exposures were far in excess of those expected during normal processing operations (20,000 s?1 and 0.06 pN, respectively). We used multiple characterization techniques to determine if there was any detectable aggregation. We found that shear alone did not cause aggregation, but that prolonged exposure to shear in the stainless steel parallel‐plate rheometer caused a very minor reversible aggregation (<0.3%). Additionally, shear did not alter aggregate populations in formulations containing 17% preformed heat‐induced aggregates of a mAb. We calculate that the forces applied to a protein by production shear exposures (<0.06 pN) are small when compared with the 140 pN force expected at the air–water interface or the 20–150 pN forces required to mechanically unfold proteins described in the atomic force microscope (AFM) literature. Therefore, we suggest that in many cases, air‐bubble entrainment, adsorption to solid surfaces (with possible shear synergy), contamination by particulates, or pump cavitation stresses could be much more important causes of aggregation than shear exposure during production. Biotechnol. Bioeng. 2009;103: 936–943. © 2009 Wiley Periodicals, Inc.  相似文献   

4.
Red blood cells are frequently deformed and their cytoskeletal proteins such as spectrin and ankyrin-R are repeatedly subjected to mechanical forces. While the mechanics of spectrin was thoroughly investigated in vitro and in vivo, little is known about the mechanical behavior of ankyrin-R. In this study, we combine coarse-grained steered molecular dynamics simulations and atomic force spectroscopy to examine the mechanical response of ankyrin repeats (ARs) in a model synthetic AR protein NI6C, and in the D34 fragment of native ankyrin-R when these proteins are subjected to various stretching geometry conditions. Our steered molecular dynamics results, supported by AFM measurements, reveal an unusual mechanical anisotropy of ARs: their mechanical stability is greater when their unfolding is forced to propagate from the N-terminus toward the C-terminus (repeats unfold at ~60 pN), as compared to the unfolding in the opposite direction (unfolding force ~ 30 pN). This anisotropy is also reflected in the complex refolding behavior of ARs. The origin of this unfolding and refolding anisotropy is in the various numbers of native contacts that are broken and formed at the interfaces between neighboring repeats depending on the unfolding/refolding propagation directions. Finally, we discuss how these complex mechanical properties of ARs in D34 may affect its behavior in vivo.  相似文献   

5.
Structural topology plays an important role in protein mechanical stability. Proteins with β-sandwich topology consisting of Greek key structural motifs, for example, I27 of muscle titin and 10FNIII of fibronectin, are mechanically resistant as shown by single-molecule force spectroscopy (SMFS). In proteins with β-sandwich topology, if the terminal strands are directly connected by backbone H-bonding then this geometry can serve as a “mechanical clamp”. Proteins with this geometry are shown to have very high unfolding forces. Here, we set out to explore the mechanical properties of a protein, M-crystallin, which belongs to β-sandwich topology consisting of Greek key motifs but its overall structure lacks the “mechanical clamp” geometry at the termini. M-crystallin is a Ca2+ binding protein from Methanosarcina acetivorans that is evolutionarily related to the vertebrate eye lens β and γ-crystallins. We constructed an octamer of crystallin, (M-crystallin)8, and using SMFS, we show that M-crystallin unfolds in a two-state manner with an unfolding force ∼90 pN (at a pulling speed of 1000 nm/sec), which is much lower than that of I27. Our study highlights that the β-sandwich topology proteins with a different strand-connectivity than that of I27 and 10FNIII, as well as lacking “mechanical clamp” geometry, can be mechanically resistant. Furthermore, Ca2+ binding not only stabilizes M-crystallin by 11.4 kcal/mol but also increases its unfolding force by ∼35 pN at the same pulling speed. The differences in the mechanical properties of apo and holo M-crystallins are further characterized using pulling speed dependent measurements and they show that Ca2+ binding reduces the unfolding potential width from 0.55 nm to 0.38 nm. These results are explained using a simple two-state unfolding energy landscape.  相似文献   

6.
Macromolecular crowding, a common phenomenon in the cellular environments, can significantly affect the thermodynamic and kinetic properties of proteins. A single-molecule method based on atomic force microscopy (AFM) was used to investigate the effects of macromolecular crowding on the forces required to unfold individual protein molecules. It was found that the mechanical stability of ubiquitin molecules was enhanced by macromolecular crowding from added dextran molecules. The average unfolding force increased from 210 pN in the absence of dextran to 234 pN in the presence of 300 g/L dextran at a pulling speed of 0.25 microm/sec. A theoretical model, accounting for the effects of macromolecular crowding on the native and transition states of the protein molecule by applying the scaled-particle theory, was used to quantitatively explain the crowding-induced increase in the unfolding force. The experimental results and interpretation presented could have wide implications for the many proteins that experience mechanical stresses and perform mechanical functions in the crowded environment of the cell.  相似文献   

7.
All-atom explicit-solvent molecular dynamics simulations are used to pull with extremely large constant force (750-3000 pN) on three small proteins. The introduction of a nondimensional timescale permits direct comparison of unfolding across all forces. A crossover force of approximately 1100 pN divides unfolding dynamics into two regimes. At higher forces, residues sequentially unfold from the pulling end while maintaining the remainder of the protein force-free. Measurements of hydrodynamic viscous stresses are made easy by the high speeds of unfolding. Using an exact low-Reynolds-number scaling, these measurements can be extrapolated to provide, for the first time, an estimate of the hydrodynamic force on low-force unfolding. Below 1100 pN, but surprisingly still at extremely large applied force, intermediate states and cooperative unfoldings as seen at much lower forces are observed. The force-insensitive persistence of these structures indicates that decomposition into unfolded fragments requires a large fluctuation. This finding suggests how proteins are constructed to resist transient high force. The progression of [Formula: see text] helix and [Formula: see text] sheet unfolding is also found to be insensitive to force. The force-insensitivity of key aspects of unfolding opens the possibility that numerical simulations can be accelerated by high applied force while still maintaining critical features of unfolding.  相似文献   

8.
Interactions between antibody and antigen molecules play essential roles in biological recognition processes as well as medical diagnosis. Therefore, an understanding of the underlying mechanism of antibody?Cantigen interactions at the single molecular level would be beneficial. In the present study, human immunoglobulin (IgG) tethered cantilevers and rat anti-human IgG functionalized gold surfaces were fabricated by using self-assembled monolayers method. Dynamic force spectroscopy was employed to characterize the interactions between human (IgG) and rat anti-human IgG at the single-molecule level. The unbinding forces were determined to be 44.6?±?0.8, 65.8?±?3.0, 108.1?±?4.1, 131.1?±?11.2, 149.5?±?4.7, 239.5?±?3.1 and 294.7?±?7.7?pN with ramping loading rates of 514, 1,127, 3,058, 7,215, 15,286, 31,974 and 50,468?pN?s-1, respectively. In addition, the unbinding forces were found to be increasing with the logarithm of apparent loading rates in a linear way. Fitting data group resulted in two distinct linear parts, suggesting there are two energy barriers. The corresponding distances in the bound and transition states (x ?? ) and the dissociation rates (K off ) were calculated to be 0.129?±?0.006?nm, 3.986?±?0.162?s?1 for the outer barrier and 0.034?±?0.001?nm, 36.754?±?0.084?s?1 for the inner barrier. Such findings hold promise of screening novel drugs and discerning different unbinding modes of biological molecules.  相似文献   

9.
The kinetic folding of β2-microglobulin from the acid-denatured state was investigated by interrupted-unfolding and interrupted-refolding experiments using stopped-flow double-jump techniques. In the interrupted unfolding, we first unfolded the protein by a pH jump from pH 7.5 to pH 2.0, and the kinetic refolding assay was carried out by the reverse pH jump by monitoring tryptophan fluorescence. Similarly, in the interrupted refolding, we first refolded the protein by a pH jump from pH 2.0 to pH 7.5 and used a guanidine hydrochloride (GdnHCl) concentration jump as well as the reverse pH jump as unfolding assays. Based on these experiments, the folding is represented by a parallel-pathway model, in which the molecule with the correct Pro32 cis isomer refolds rapidly with a rate constant of 5–6 s? 1, while the molecule with the Pro32 trans isomer refolds more slowly (pH 7.5 and 25 °C). At the last step of folding, the native-like trans conformer produced on the latter pathway isomerizes very slowly (0.001–0.002 s? 1) into the native cis conformer. In the GdnHCl-induced unfolding assays in the interrupted refolding, the native-like trans conformer unfolded remarkably faster than the native cis conformer, and the direct GdnHCl-induced unfolding was also biphasic, indicating that the native-like trans conformer is populated at a significant level under the native condition. The one-dimensional NMR and the real-time NMR experiments of refolding further indicated that the population of the trans conformer increases up to 7–9% under a more physiological condition (pH 7.5 and 37 °C).  相似文献   

10.
Phosphoinositides regulate the activities and localization of many cytoskeletal proteins involved in crucial biological processes, including membrane-cytoskeleton adhesion. Yet little is known about the mechanics of protein-phosphoinositide interactions, or about the membrane-attachment mechanics of any peripheral membrane proteins. Myosin-Ic (myo1c) is a molecular motor that links membranes to the cytoskeleton via phosphoinositide binding, so it is particularly important to understand the mechanics of its membrane attachment. We used optical tweezers to measure the strength and attachment lifetime of single myo1c molecules as they bind beads coated with a bilayer of 2% phosphatidylinositol 4,5-bisphosphate and 98% phosphatidylcholine. Adhesion forces measured under ramp-load ranged between 5.5 and 16 pN at loading rates between 250 and 1800 pN/s. Dissociation rates increased linearly with constant force (0.3-2.5 pN), with rates exceeding 360 s−1 at 2.5 pN. Attachment lifetimes calculated from adhesion force measurements were loading-rate-dependent, suggesting nonadiabatic behavior during pulling. The adhesion forces of myo1c with phosphoinositides are greater than the motors stall forces and are within twofold of the force required to extract a lipid molecule from the membrane. However, attachment durations are short-lived, suggesting that phosphoinositides alone do not provide the mechanical stability required to anchor myo1c to membranes during multiple ATPase cycles.  相似文献   

11.
Recent evidence suggests that polycystin-1 (PC1) acts as a mechanosensor, receiving signals from the primary cilia, neighboring cells, and extracellular matrix and transduces them into cellular responses that regulate proliferation, adhesion, and differentiation that are essential for the control of renal tubules and kidney morphogenesis. PC1 has an unusually long extracellular region ( approximately 3000 amino acids) with a multimodular structure. Proteins with a similar architecture have structural and mechanical roles. Based on the structural similarities between PC1 and other modular proteins that have elastic properties we hypothesized that PC1 functions mechanically by providing a flexible and elastic linkage between cells. Here we directly tested this hypothesis by analyzing the mechanical properties of the entire PC1 extracellular region by using single molecule force spectroscopy. We show that the PC1 extracellular region is highly extensible and that this extensibility is mainly caused by the unfolding of its Ig-like domains. Stretching the native PC1 extracellular region results in a sawtooth pattern with equally spaced force peaks that have a wide range of unfolding forces (50-200 pN). By combining single-molecule force spectroscopy and protein engineering techniques, we demonstrate that the sawtooth pattern in native PC1 extracellular region corresponds to the sequential unfolding of individual Ig-like domains. We found that Ig-like domains refold after mechanical unfolding. Hence, the PC1 extracellular region displays a dynamic extensibility whereby the resting length might be regulated through unfolding/refolding of its Ig-like domains. These force-driven reactions may be important for cell elasticity and the regulation of cell signaling events mediated by PC1.  相似文献   

12.
13.
We investigate the mechanical unfolding of the tenth type III domain from fibronectin (FnIII10) both at constant force and at constant pulling velocity, by all-atom Monte Carlo simulations. We observe both apparent two-state unfolding and several unfolding pathways involving one of three major, mutually exclusive intermediate states. All three major intermediates lack two of seven native β-strands, and share a quite similar extension. The unfolding behavior is found to depend strongly on the pulling conditions. In particular, we observe large variations in the relative frequencies of occurrence for the intermediates. At low constant force or low constant velocity, all three major intermediates occur with a significant frequency. At high constant force or high constant velocity, one of them, with the N- and C-terminal β-strands detached, dominates over the other two. Using the extended Jarzynski equality, we also estimate the equilibrium free-energy landscape, calculated as a function of chain extension. The application of a constant pulling force leads to a free-energy profile with three major local minima. Two of these correspond to the native and fully unfolded states, respectively, whereas the third one can be associated with the major unfolding intermediates.  相似文献   

14.
The ability of proteins and their complexes to withstand or respond to mechanical stimuli is vital for cells to maintain their structural organisation, to relay external signals and to facilitate unfolding and remodelling. Force spectroscopy using the atomic force microscope allows the behaviour of single protein molecules under an applied extension to be investigated and their mechanical strength to be quantified. protein L, a simple model protein, displays moderate mechanical strength and is thought to unfold by the shearing of two mechanical sub-domains. Here, we investigate the importance of side-chain packing for the mechanical strength of protein L by measuring the mechanical strength of a series of protein L variants containing single conservative hydrophobic volume deletion mutants. Of the five thermodynamically destabilised variants characterised, only one residue (I60V) close to the interface between two mechanical sub-domains was found to differ in mechanical properties to wild type (ΔFI60V-WT = − 36 pN at 447 nm s− 1, ΔxuI60V-WT = 0.2 nm). Φ-value analysis of the unfolding data revealed a highly native transition state. To test whether the number of hydrophobic contacts across the mechanical interface does affect the mechanical strength of protein L, we measured the mechanical properties of two further variants. protein L L10F, which increases core packing but does not enhance interfacial contacts, increased mechanical strength by 13 ± 11 pN at 447 nm s− 1. By contrast, protein L I60F, which increases both core and cross-interface contacts, increased mechanical strength by 72 ± 13 pN at 447 nm s− 1. These data suggest a method by which nature can evolve a varied mechanical response from a limited number of topologies and demonstrate a generic but facile method by which the mechanical strength of proteins can be rationally modified.  相似文献   

15.
Cardiac myosin binding protein-C (cMyBP-C) is a member of the immunoglobulin (Ig) superfamily of proteins and consists of 8 Ig- and 3 fibronectin III (FNIII)-like domains along with a unique regulatory sequence referred to as the MyBP-C motif or M-domain. We previously used atomic force microscopy to investigate the mechanical properties of murine cMyBP-C expressed using a baculovirus/insect cell expression system. Here, we investigate whether the mechanical properties of cMyBP-C are conserved across species by using atomic force microscopy to manipulate recombinant human cMyBP-C and native cMyBP-C purified from bovine heart. Force versus extension data obtained in velocity-clamp experiments showed that the mechanical response of the human recombinant protein was remarkably similar to that of the bovine native cMyBP-C. Ig/Fn-like domain unfolding events occurred in a hierarchical fashion across a threefold range of forces starting at relatively low forces of ∼50 pN and ending with the unfolding of the highest stability domains at ∼180 pN. Force-extension traces were also frequently marked by the appearance of anomalous force drops suggestive of additional mechanical complexity such as structural coupling among domains. Both recombinant and native cMyBP-C exhibited a prominent segment ∼100 nm-long that could be stretched by forces <50 pN before the unfolding of Ig- and FN-like domains. Combined with our previous observations of mouse cMyBP-C, these results establish that although the response of cMyBP-C to mechanical load displays a complex pattern, it is highly conserved across species.  相似文献   

16.
The regulated ability of integrin αIIbβ3 to bind fibrinogen plays a crucial role in platelet aggregation, adhesion, and hemostasis. Employing an optical-trap-based electronic force clamp, we studied the thermodynamics and kinetics of αIIbβ3-fibrinogen bond formation and dissociation under constant unbinding forces, mimicking the forces of physiologic blood shear on a thrombus. The distribution of bond lifetimes was bimodal, indicating that the αIIbβ3-fibrinogen complex exists in two bound states with different mechanical stability. The αIIbβ3 antagonist, abciximab, inhibited binding without affecting the unbinding kinetics, whereas Mn2+ biased the αIIbβ3-fibrinogen complex to the strong bound state with reduced off-rate. The average bond lifetimes decreased exponentially with increasing pulling force from ∼5 pN to 50 pN, suggesting that in this force range the αIIbβ3-fibrinogen interactions are classical slip bonds. We found no evidence for catch bonds, which is consistent with the known lack of shear-enhanced platelet adhesion on fibrinogen-coated surfaces. Taken together, these data provide important quantitative and qualitative characteristics of αIIbβ3-fibrinogen binding and unbinding that underlie the dynamics of platelet adhesion and aggregation in blood flow.  相似文献   

17.
Low pulling forces applied locally to cell surface membranes produce viscoelastic cell surface protrusions. As the force increases, the membrane can locally separate from the cytoskeleton and a tether forms. Tethers can grow to great lengths exceeding the cell diameter. The protrusion-to-tether transition is known as the crossover. Here we propose a unified approach to protrusions and tethers providing, to our knowledge, new insights into their biomechanics. We derive a necessary and sufficient condition for a crossover to occur, a formula for predicting the crossover time, conditions for a tether to establish a dynamic equilibrium (characterized by constant nonzero pulling force and tether extension rate), a general formula for the tether material after crossover, and a general modeling method for tether pulling experiments. We introduce two general protrusion parameters, the spring constant and effective viscosity, valid before and after crossover. Their first estimates for neutrophils are 50 pN μm−1 and 9 pN s μm−1, respectively. The tether elongation after crossover is described as elongation of a viscoelastic-like material with a nonlinearly decaying spring (NLDs-viscoelastic material). Our model correctly describes the results of the published protrusion and tether pulling experiments, suggesting that it is universally applicable to such experiments.  相似文献   

18.
Spontaneous mutations at numerous sites distant from the active site of human immunodeficiency virus type 1 protease enable resistance to inhibitors while retaining enzymatic activity. As a benchmark for probing the effects of these mutations on the conformational adaptability of this dimeric β-barrel protein, the folding free-energy surface of a pseudo-wild-type variant, HIV-PR?, was determined by a combination of equilibrium and kinetic experiments on the urea-induced unfolding/refolding reactions. The equilibrium unfolding reaction was well described by a two-state model involving only the native dimeric form and the unfolded monomer. The global analysis of the kinetic folding mechanism reveals the presence of a fully folded monomeric intermediate that associates to form the native dimeric structure. Independent analysis of a stable monomeric version of the protease demonstrated that a small-amplitude fluorescence phase in refolding and unfolding, not included in the global analysis of the dimeric protein, reflects the presence of a transient intermediate in the monomer folding reaction. The partially folded and fully folded monomers are only marginally stable with respect to the unfolded state, and the dimerization reaction provides a modest driving force at micromolar concentrations of protein. The thermodynamic properties of this system are such that mutations can readily shift the equilibrium from the dimeric native state towards weakly folded states that have a lower affinity for inhibitors but that could be induced to bind to their target proteolytic sites. Presumably, subsequent secondary mutations increase the stability of the native dimeric state in these variants and, thereby, optimize the catalytic properties of the resistant human immunodeficiency virus type 1 protease.  相似文献   

19.
Proteins with β-sandwich and β-grasp topologies are resistant to mechanical unfolding as shown by single-molecule force spectroscopy studies. Their high mechanical stability has generally been associated with the mechanical clamp geometry present at the termini. However, there is also evidence for the importance of interactions other than the mechanical clamp in providing mechanical stability, which needs to be tested thoroughly. Here, we report the mechanical unfolding properties of ubiquitin-like proteins (SUMO1 and SUMO2) and their comparison with those of ubiquitin. Although ubiquitin and SUMOs have similar size and structural topology, they differ in their sequences and structural contacts, making them ideal candidates to understand the variations in the mechanical stability of a given protein topology. We observe a two-state unfolding pathway for SUMO1 and SUMO2, similar to that of ubiquitin. Nevertheless, the unfolding forces of SUMO1 (∼130 pN) and SUMO2 (∼120 pN) are lower than that of ubiquitin (∼190 pN) at a pulling speed of 400 nm/s, indicating their lower mechanical stability. The mechanical stabilities of SUMO proteins and ubiquitin are well correlated with the number of interresidue contacts present in their structures. From pulling speed-dependent mechanical unfolding experiments and Monte Carlo simulations, we find that the unfolding potential widths of SUMO1 (∼0.51 nm) and SUMO2 (∼0.33 nm) are much larger than that of ubiquitin (∼0.19 nm), indicating that SUMO1 is six times and SUMO2 is three times mechanically more flexible than ubiquitin. These findings might also be important in understanding the functional differences between ubiquitin and SUMOs.  相似文献   

20.
As opposed to strong light signals (>108 photons mm?2 s?1), the construction of images from object sources with low level signals (<102 photons mm?2 s?1) involves a probabilistic transfer- or point-spread function. The resulting images carry considerable uncertainty or spread, restricting resolution and quantification. In this paper we propose various strategies how to recontruct object characteristics from very low light emissions by unfolding the imaging equation. Further, calibration techniques which help to associate light emissions with the decomposition of luminogenic substrates in a spatially selective way will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号