首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
We evaluated the population genetic structure of seven microsatellite loci for old growth and second growth populations of eastern white pine (Pinus strobus). From each population, located within Hartwick Pines State Park, Grayling, Michigan, USA, 120-122 contiguous trees were sampled for genetic analysis. Within each population, genetic diversity was high and inbreeding low. When comparing these populations, there is a significant, but small (less than 1%), genetic divergence between populations. Spatial distance between populations or timber harvest at the second growth site were reasonable explanations for the observed minor differences in allele frequencies between populations. Spatial autocorrelation analysis suggested that, for the old growth population, weak positive structuring at 15 m fits the isolation by distance model for a neighbourhood size of about 100 individuals. In comparison, genotypes were randomly distributed in the second growth population. Thus, logging may have decreased spatial structuring at the second growth site, suggesting that management practices may be used to alter natural spatial patterns. In addition, the amount of autocorrelation in the old growth population appears to be lower for some of the microsatellites, suggesting higher numbers of rare alleles and that higher mutation rates may have directly affected spatial statistics by reducing structure.  相似文献   

2.
Our objective was to assess the photosynthetic responses of loblolly pine trees (Pinus taeda L.) during the first full growth season (1997) at the Brookhaven National Lab/Duke University Free Air CO2 Enrichment (FACE) experiment. Gas exchange, fluorescence characteristics, and leaf biochemistry of ambient CO2 (control) needles and ambient + 20 Pa CO2 (elevated) needles were examined five times during the year. The enhancement of photosynthesis by elevated CO2 in mature loblolly pine trees varied across the season and was influenced by abiotic and biotic factors. Photosynthetic enhancement by elevated CO2 was strongly correlated with leaf temperature. The magnitude of photosynthetic enhancement was zero in March but was as great as 52% later in the season. In March, reduced sink demand and lower temperatures resulted in lower net photosynthesis, lower carboxylation rates and higher excess energy dissipation from the elevated CO2 needles than from control needles. The greatest photosynthetic enhancement by CO2 enrichment was observed in July during a period of high temperature and low precipitation, and in September during recovery from this period of low precipitation. In July, loblolly pine trees in the control rings exhibited lower net photosynthetic rates, lower maximum rates of photosynthesis at saturating CO2 and light, lower values of carboxylation and electron transport rates (modelled from A–Ci curves), lower total Rubisco activity, and lower photochemical quenching of fluorescence in comparison to other measurement periods. During this period of low precipitation trees in the elevated CO2 rings exhibited reduced net photosynthesis and photochemical quenching of fluorescence, but there was little effect on light- and CO2-saturated rates of photosynthesis, modelled rates of carboxylation or electron transport, or Rubisco activity. These first-year data will be used to compare with similar measurements from subsequent years of the FACE experiment in order to determine whether photosynthetic acclimation to CO2 occurs in these canopy loblolly pine trees growing in a forest ecosystem.  相似文献   

3.
Passive measurement of sun-induced chlorophyll fluorescence (F) represents the most promising tool to quantify changes in photosynthetic functioning on a large scale. However, the complex relationship between this signal and other photosynthesis-related processes restricts its interpretation under stress conditions. To address this issue, we conducted a field campaign by combining daily airborne and ground-based measurements of F (normalized to photosynthetically active radiation), reflectance and surface temperature and related the observed changes to stress-induced variations in photosynthesis. A lawn carpet was sprayed with different doses of the herbicide Dicuran. Canopy-level measurements of gross primary productivity indicated dosage-dependent inhibition of photosynthesis by the herbicide. Dosage-dependent changes in normalized F were also detected. After spraying, we first observed a rapid increase in normalized F and in the Photochemical Reflectance Index, possibly due to the blockage of electron transport by Dicuran and the resultant impairment of xanthophyll-mediated non-photochemical quenching. This initial increase was followed by a gradual decrease in both signals, which coincided with a decline in pigment-related reflectance indices. In parallel, we also detected a canopy temperature increase after the treatment. These results demonstrate the potential of using F coupled with relevant reflectance indices to estimate stress-induced changes in canopy photosynthesis.  相似文献   

4.
The present paper reports results of experiments to develop a system for studying adventitious root initiation in cuttings derived from seedlings. Hypocotyl cuttings of 2-week-old eastern white pine (Pinus strobus L.) seedlings were treated for 5 min with 0, 100, 200, 300, 400, 500 or 600 mg l?1 (0, 0.54, 1.07, 1.61, 2.15, 2.69 or 3.22 mM) 1-naphthaleneacetic acid (NAA) to determine the effect on root initiation. The number of root primordia per cutting was correlated with NAA concentration and the square of NAA concentration. Thus, the number increased from less than one per cutting in the 0 NAA treatment to approximately 40 per cutting at 300 mg l-1 NAA, above which no substantial further increase was observed. The larger number of root primordia formed in response to increasing concentrations of NAA was due to the formation of primordia over a larger proportion of the hypocotyls. Histological analysis of the timing of root primordium formation in hypocotyl cuttings revealed three discernible stages. Progression through these stages was relatively synchronous among NAA-treated hypocotyl cuttings and within a given cutting, but variation was observed in the portion of different cuttings undergoing root formation. Control-treated hypocotyl cuttings formed root primordia at lower frequencies and more slowly than NAA-treated cuttings, with fewer primordia per cutting. Epicotyl cuttings from 11-week-old seedlings also formed adventitious roots, but more slowly than hypocotyl cuttings. NAA treatment of epicotyl cuttings caused more rapid root initiation and also affected the origin of adventitious roots in comparison with nontreated cuttings. NAA-treated epicotyl cuttings formed roots in a manner analogous to that of the hypocotyl cuttings, directly from preformed vascular tissue, while control-treated epicotyl cuttings first formed a wound or callus tissue and subsequently differentiated root primordia within that tissue. This system of inducing adventitious roots in pine stem cuttings lends itself to studying the molecular and biochemical steps that occur during root initiation and development.  相似文献   

5.
Abstract:  The white pine cone beetle, Conophthorus coniperda (Schwarz), is a common and destructive pest of eastern white pine cones. The potential of mating disruption as a pest management tool against C. coniperda was tested during this experiment. The 5.5 ha white pine seed orchard used in this study was separated in three equal sections and different blocks were treated with pityol over 2-year experiments. Ten and 20 pityol dispensers (bubble caps) were hung per treated block in 2001 (east block) and 2002 (centre block), respectively, to evaluate their impact on cone protection. During both seasons, the percentage of damaged cones at permanent stations was evaluated at monthly intervals in the middle of the treated block and at different places in the control area. For both years, the mean reduction in cone damage was 63.7% in the pheromone-treated blocks. With this study, we have been able to demonstrate that mating disruption could be used as a biological pest management tool for the control of C. coniperda in white pine seed orchards.  相似文献   

6.
The objective of this study was to investigate the effect of pre-anthesis high-temperature acclimation on leaf physiology of winter wheat in response to post-anthesis heat stress. The results showed that both pre- and post-anthesis heat stresses significantly depressed flag leaf photosynthesis and enhanced cell membrane peroxidation, as exemplified by increased O2 production rate and reduction in activities of antioxiditave enzymes. However, under post-anthesis heat stress, plants with pre-anthesis high-temperature acclimation (HH) showed much higher photosynthetic rates than those without pre-anthesis high-temperature acclimation (CH). Leaves of HH plants exhibited a higher Chl a/b ratio and lower chlorophyll/carotenoid ratio and superoxide anion radical release rate compared with those of the CH plants. In addition, antioxidant enzyme activities in HH plants were significantly higher than in CH. Coincidently, expressions of photosythesis-responsive gene encoding Rubisco activase B (RcaB) and antioxidant enzyme-related genes encoding mitochondrial manganese superoxide dismutase (Mn-SOD), chloroplastic Cu/Zn superoxide dismutase (Cu/Zn-SOD), catalase (CAT) and cytosolic glutathione reductase (GR) were all up-regulated under HH, whereas a gene encoding a major chlorophyll a/b-binding protein (Cab) was up-regulated by post-anthesis heat stress at 10 DAA, but was down-regulated at 13 DAA. The changes in the expression levels of the HH plants were more pronounced than those for the CH. Collectively, the results indicated that pre-anthesis high-temperature acclimation could effectively alleviate the photosynthetic and oxidative damage caused by post-anthesis heat stress in wheat flag leaves, which was partially attributable to modifications in the expression of the photosythesis-responsive and antioxidant enzymes-related genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号