首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mixed infections of Plasmodium falciparum and Plasmodium vivax is high (~30%) in some malaria hypoendemic areas where the patients present with P. falciparum malaria diagnosed by microscopy. Conventional treatment of P. falciparum with concurrent chloroquine and 14 days of primaquine for all falciparum malaria patients may be useful in areas where mixed falciparum and vivax infections are high and common and also with mild or moderate G6PD deficiency in the population even with or without subpatent vivax mixed infection. It will be possibly cost-effective to reduce subsequent vivax illness if the patients have mixed vivax infection. Further study to prove this hypothesis may be warranted.  相似文献   

2.

Background

Pregnancy is a known risk factor for malaria which is associated with increased maternal and infant mortality and morbidity in areas of moderate-high malaria transmission intensity where Plasmodium falciparum predominates. The nature and impact of malaria, however, is not well understood in pregnant women residing in areas of low, unstable malaria transmission where P. falciparum and P. vivax co-exist.

Methods

A large longitudinal active surveillance study of malaria was conducted in the Chittagong Hill Districts of Bangladesh. Over 32 months in 2010–2013, the period prevalence of asymptomatic P. falciparum infections was assessed by rapid diagnostic test and blood smear and compared among men, non-pregnant women and pregnant women. A subset of samples was tested for infection by PCR. Hemoglobin was assessed. Independent risk factors for malaria infection were determined using a multivariate logistic regression model.

Results

Total of 34 asymptomatic P. falciparum infections were detected by RDT/smear from 3,110 tests. The period prevalence of asymptomatic P. falciparum infection in pregnant women was 2.3%, compared to 0.5% in non-pregnant women and 0.9% in men. All RDT/smear positive samples that were tested by PCR were PCR-positive, and PCR detected additional 35 infections that were RDT/smear negative. In a multivariate logistic regression analysis, pregnant women had 5.4-fold higher odds of infection as compared to non-pregnant women. Malaria-positive pregnant women, though asymptomatic, had statistically lower hemoglobin than those without malaria or pregnancy. Asymptomatic malaria was found to be evenly distributed across space and time, in contrast to symptomatic infections which tend to cluster.

Conclusion

Pregnancy is a risk factor for asymptomatic P. falciparum infection in the Chittagong Hill Districts of Bangladesh, and pregnancy and malaria interact to heighten the effect of each on hemoglobin. The even distribution of asymptomatic malaria, without temporal and spatial clustering, may have critical implications for malaria elimination strategies.  相似文献   

3.
Plasmodium falciparum malaria is a major public health problem in Thailand due to the emergence of multidrug resistance. The understanding of genetic diversity of malaria parasites is essential for developing effective drugs and vaccines. The genetic diversity of the merozoite surface protein-1 (PfMSP-1) and merozoite surface protein-2 (PfMSP-2) genes was investigated in a total of 145 P. falciparum isolates collected from Mae Sot District, Tak Province, Thailand during 3 different periods (1997-1999, 2005-2007, and 2009-2010). Analysis of genetic polymorphisms was performed to track the evolution of genetic change of P. falciparum using PCR. Both individual genes and their combination patterns showed marked genetic diversity during the 3 study periods. The results strongly support that P. falciparum isolates in Thailand are markedly diverse and patterns changed with time. These 2 polymorphic genes could be used as molecular markers to detect multiple clone infections and differentiate recrudescence from reinfection in P. falciparum isolates in Thailand.  相似文献   

4.

Background

New frontier settlements across the Amazon Basin pose a major challenge for malaria elimination in Brazil. Here we describe the epidemiology of malaria during the early phases of occupation of farming settlements in Remansinho area, Brazilian Amazonia. We examine the relative contribution of low-density and asymptomatic parasitemias to the overall Plasmodium vivax burden over a period of declining transmission and discuss potential hurdles for malaria elimination in Remansinho and similar settings.

Methods

Eight community-wide cross-sectional surveys, involving 584 subjects, were carried out in Remansinho over 3 years and complemented by active and passive surveillance of febrile illnesses between the surveys. We used quantitative PCR to detect low-density asexual parasitemias and gametocytemias missed by conventional microscopy. Mixed-effects multiple logistic regression models were used to characterize independent risk factors for P. vivax infection and disease.

Principal Findings/Conclusions

P. vivax prevalence decreased from 23.8% (March–April 2010) to 3.0% (April–May 2013), with no P. falciparum infections diagnosed after March–April 2011. Although migrants from malaria-free areas were at increased risk of malaria, their odds of having P. vivax infection and disease decreased by 2–3% with each year of residence in Amazonia. Several findings indicate that low-density and asymptomatic P. vivax parasitemias may complicate residual malaria elimination in Remansinho: (a) the proportion of subpatent infections (i.e. missed by microscopy) increased from 43.8% to 73.1% as P. vivax transmission declined; (b) most (56.6%) P. vivax infections were asymptomatic and 32.8% of them were both subpatent and asymptomatic; (c) asymptomatic parasite carriers accounted for 54.4% of the total P. vivax biomass in the host population; (d) over 90% subpatent and asymptomatic P. vivax had PCR-detectable gametocytemias; and (e) few (17.0%) asymptomatic and subpatent P. vivax infections that were left untreated progressed to clinical disease over 6 weeks of follow-up and became detectable by routine malaria surveillance.  相似文献   

5.
The majority of studies concerning malaria host genetics have focused on individual genes that confer protection against rather than susceptibility to malaria. Establishing the relative impact of genetic versus non-genetic factors on malaria infection and disease is essential to focus effort on key determinant factors. This relative contribution has rarely been evaluated for Plasmodium falciparum and almost never for Plasmodium vivax. We conducted a longitudinal cohort study in a Karen population of 3,484 individuals in a region of mesoendemic malaria, Thailand from 1998 to 2005. The number of P. falciparum and P. vivax clinical cases and the parasite density per person were determined. Statistical analyses were performed to account for the influence of environmental factors and the genetic heritability of the phenotypes was calculated using the pedigree-based variance components model. The genetic contribution to the number of clinical episodes resulting from P. falciparum and P. vivax were 10% and 19% respectively. There was also moderate genetic contribution to the maximum and overall parasite trophozoite density phenotypes for both P. falciparum (16%&16%) and P. vivax (15%&13%). These values, for P. falciparum, were similar to those previously observed in a region of much higher transmission intensity in Senegal, West Africa. Although environmental factors play an important role in acquiring an infection, genetics plays a determinant role in the outcome of an infection with either malaria parasite species prior to the development of immunity.  相似文献   

6.
Hemoglobinopathy and malaria are commonly found worldwide particularly in malaria endemic areas. Thalassemia, the alteration of globin chain synthesis, has been reported to confer resistance against malaria. The prevalence of thalassemia was investigated in 101 malaria patients with Plasmodium falciparum and Plasmodium vivax along the Thai-Myanmar border to examine protective effect of thalassemia against severe malaria. Hemoglobin typing was performed using low pressure liquid chromatography (LPLC) and α-thalassemia was confirmed by multiplex PCR. Five types of thalassemia were observed in malaria patients. The 2 major types of thalassemia were Hb E (18.8%) and α-thalassemia-2 (11.9%). There was no association between thalassemia hemoglobinopathy and malaria parasitemia, an indicator of malaria disease severity. Thalassemia had no significant association with P. vivax infection, but the parasitemia in patients with coexistence of P. vivax and thalassemia was about 2-3 times lower than those with coexistence of P. falciparum and thalassemia and malaria without thalassemia. Furthermore, the parasitemia of P. vivax in patients with coexistence of Hb E showed lower value than coexistence with other types of thalassemia and malaria without coexistence. Parasitemia, hemoglobin, and hematocrit values in patients with coexistence of thalassemia other than Hb E were significantly lower than those without coexistence of thalassemia. Furthermore, parasitemia with coexistence of Hb E were 2 times lower than those with coexistence of thalassemia other than Hb E. In conclusion, the results may, at least in part, support the protective effect of thalassemia on the development of hyperparasitemia and severe anemia in malaria patients.  相似文献   

7.
Prompt and accurate diagnosis of malaria is the key to prevent disease morbidity and mortality. This study was carried out to evaluate diagnostic performance of 3 commercial rapid detection tests (RDTs), i.e., Malaria Antigen Pf/Pan™, Malaria Ag-Pf™, and Malaria Ag-Pv™ tests, in comparison with the microscopic and PCR methods. A total of 460 blood samples microscopically positive for Plasmodium falciparum (211 samples), P. vivax (218), mixed with P. falciparum and P. vivax (30), or P. ovale (1), and 124 samples of healthy subjects or patients with other fever-related infections, were collected. The sensitivities of Malaria Ag-Pf™ and Malaria Antigen Pf/Pan™ compared with the microscopic method for P. falciparum or P. vivax detection were 97.6% and 99.0%, or 98.6% and 99.0%, respectively. The specificities of Malaria Ag-Pf™, Malaria Ag-Pv™, and Malaria Antigen Pf/Pan™ were 93.3%, 98.8%, and 94.4%, respectively. The sensitivities of Malaria Ag-Pf™, Malaria Antigen Pf/Pan™, and microscopic method, when PCR was used as a reference method for P. falciparum or P. vivax detection were 91.8%, 100%, and 96.7%, or 91.9%, 92.6%, and 97.3%, respectively. The specificities of Malaria Ag-Pf™, Malaria Ag-Pv™, Malaria Antigen Pf/Pan™, and microscopic method were 66.2%, 92.7%, 73.9%, and 78.2%, respectively. Results indicated that the diagnostic performances of all the commercial RDTs are satisfactory for application to malaria diagnosis.  相似文献   

8.
Malaria is one of the most widespread infectious diseases of tropical countries with an estimated 207 million cases globally. In India, there are endemic pockets of this disease, including Aligarh. Hundreds of Plasmodium falciparum and P. vivax cases with severe pathological conditions are recorded every year in this district. The aim of this study is to find out changes in liver enzymes and kidney markers. Specific diagnosis for P. falciparum and P. vivax was made by microscopic examination of Giemsa stained slides. Clinical symptoms were observed in both of these infections. Liver enzymes, such as AST, ALT, and ALP, and kidney function markers, such as creatinine and urea, were estimated by standard biochemical techniques. In Aligarh district, P. vivax, P. falciparum, and mixed infections were 64%, 34%, and 2%, respectively. In case of P. falciparum infection, the incidences of anemia, splenomegaly, renal failure, jaundice, and neurological sequelae were higher compared to those in P. vivax infection. Recrudescence and relapse rates were 18% and 20% in P. falciparum and P. vivax infections, respectively. Liver dysfunctions and renal failures were more common in P. falciparum patients, particularly in elderly patients. Artesunate derivatives must, therefore, be introduced for the treatment of P. falciparum as they resist to chloroquine as well as sulfadoxine-pyrimethamine combinations.  相似文献   

9.

Background

There is a low incidence of malaria in Iquitos, Peru, suburbs detected by passive case-detection. This low incidence might be attributable to infections clustered in some households/regions and/or undetected asymptomatic infections.

Methods

Passive case-detection (PCD) during the malaria season (February-July) and an active case-detection (ACD) community-wide survey (March) surveyed 1,907 persons. Each month, April-July, 100-metre at-risk zones were defined by location of Plasmodium falciparum infections in the previous month. Longitudinal ACD and PCD (ACP+PCD) occurred within at-risk zones, where 137 houses (573 persons) were randomly selected as sentinels, each with one month of weekly active sampling. Entomological captures were conducted in the sentinel houses.

Results

The PCD incidence was 0.03 P. falciparum and 0.22 Plasmodium vivax infections/person/malaria-season. However, the ACD+PCD prevalence was 0.13 and 0.39, respectively. One explanation for this 4.33 and 1.77-fold increase, respectively, was infection clustering within at-risk zones and contiguous households. Clustering makes PCD, generalized to the entire population, artificially low. Another attributable-factor was that only 41% and 24% of the P. falciparum and P. vivax infections were associated with fever and 80% of the asymptomatic infections had low-density or absent parasitaemias the following week. After accounting for asymptomatic infections, a 2.6-fold increase in ACD+PCD versus PCD was attributable to clustered transmission in at-risk zones.

Conclusion

Even in low transmission, there are frequent highly-clustered asymptomatic infections, making PCD an inadequate measure of incidence. These findings support a strategy of concentrating ACD and insecticide campaigns in houses adjacent to houses were malaria was detected one month prior.  相似文献   

10.
Malaria is a parasitic infection caused by Plasmodium species. Most of the imported malaria in Korea are due to Plasmodium vivax and Plasmodium falciparum, and Plasmodium ovale infections are very rare. Here, we report a case of a 24-year-old American woman who acquired P. ovale while staying in Ghana, West Africa for 5 months in 2010. The patient was diagnosed with P. ovale malaria based on a Wright-Giemsa stained peripheral blood smear, Plasmodium genus-specific real-time PCR, Plasmodium species-specific nested PCR, and sequencing targeting 18S rRNA gene. The strain identified had a very long incubation period of 19-24 months. Blood donors who have malaria with a very long incubation period could be a potential danger for propagating malaria. Therefore, we should identify imported P. ovale infections not only by morphological findings but also by molecular methods for preventing propagation and appropriate treatment.  相似文献   

11.

Background

Rapid diagnosis and correct treatment of cases are the main objectives of control programs in malaria-endemic areas.

Methods and results

To evaluate these criteria and in a comparative study, blood specimens were collected from 120 volunteers seeking care at the Malaria Health Center in Chahbahar district. One hundred and seven out of 120 Giemsa-stained slides were positive for malaria parasites by microscopy. Eighty-four (70%) and 20 (16.7%) were identified as having only Plasmodium vivax and Plasmodium falciparum infections, respectively, while only 3 (2.5%) were interpreted as having mixed P. vivax-P. falciparum infections. The target DNA sequence of the 18S small sub-unit ribosomal RNA (ssrRNA) gene was amplified by Polymerase Chain Reaction (PCR) and used for the diagnosis of malaria in south-eastern Iran. One hundred twenty blood samples were submitted and the results were compared to those of routine microscopy. The sensitivity of PCR for detection of P. vivax and P. falciparum malaria was higher than that of microscopy: nested PCR detected 31 more mixed infections than microscopy and parasite positive reactions in 9 out of the 13 microscopically negative samples. The results also confirmed the presence of P. vivax and P. falciparum.

Conclusions

These results suggest that, in places where transmission of both P. vivax and P. falciparum occurs, nested PCR detection of malaria parasites can be a very useful complement to microscopical diagnosis.  相似文献   

12.

Background

Plasmodium vivax is the second most prevalent malaria parasite affecting more than 75 million people each year, mostly in South America and Asia. In addition to major morbidity this parasite is associated with relapses and a reduction in birthweight. The emergence and spread of drug resistance in Plasmodium falciparum is a major factor in the resurgence of this parasite. P. vivax resistance to drugs has more recently emerged and monitoring the situation would be helped, as for P. falciparum, by molecular methods that can be used to characterize parasites in field studies and drug efficacy trials.

Methods

Practical PCR genotyping protocols based on polymorphic loci present in two P. vivax genetic markers, Pvcs and Pvmsp1, were developed. The methodology was evaluated using 100 P. vivax isolates collected in Thailand.

Results and Discussion

Analysis revealed that P. vivax populations in Thailand are highly diverse genetically, with mixed genotype infections found in 26 % of the samples (average multiplicity of infection = 1.29). A large number of distinguishable alleles were found for the two markers, 23 for Pvcs and 36 for Pvmsp1. These were generally randomly distributed amongst the isolates. A total of 68 distinct genotypes could be enumerated in the 74 isolates with a multiplicity of infection of 1.

Conclusion

These results indicate that the genotyping protocols presented can be useful in the assessment of in vivo drug efficacy clinical trials conducted in endemic areas and for epidemiological studies of P. vivax infections.  相似文献   

13.
Vietnam achieved outstanding success against malaria in the last few decades. The mortality and morbidity of malaria in Vietnam have decreased remarkably in recent years, but malaria is still a major public health concern in the country, particularly in the Central Highlands region. In this study, molecular analyses of malaria parasites in the Central Highlands were performed to understand the population structure and genetic diversity of the parasites circulating in the region. Plasmodium falciparum (68.7%) and P. vivax (27.4%) along with mixed infections with P. falciparum/P. vivax (3.9%) were detected in 230 blood samples from patients with malaria. Allele-specific nested-polymerase chain reaction (PCR) or PCR-restriction fragment length polymorphism (PCR-RFLP) analyses of pfmsp-1, pfama-1, pvcsp, and pvmsp-1 revealed complex genetic makeup in P. falciparum and P. vivax populations of Vietnam. Substantial multiplicity of infection (MOI) was also identified, suggesting significant genetic diversity and polymorphism of P. falciparum and P. vivax populations in the Central Highlands of Vietnam. These results provide fundamental insight into the current patterns of dispersion and genetic nature of malaria parasites as well as for the development of malaria elimination strategies in the endemic region.  相似文献   

14.

Background

Most commonly used malaria diagnostic tests, including microscopy and antigen-detecting rapid tests, cannot reliably detect low-density infections which are frequent in low transmission settings. Molecular methods such as polymerase chain reaction (PCR) are highly sensitive but remain too laborious for field deployment. In this study, the applicability of a malaria diagnosis kit based on loop-mediated isothermal amplification (mLAMP) was assessed in malaria endemic areas of Colombia with Plasmodium vivax predominance.

Methodology/Principal Findings

First, a passive case detection (PCD) study on 278 febrile patients recruited in Tierralta (department of Cordoba) was conducted to assess the diagnostic performance of the mLAMP method. Second, an active case detection (ACD) study on 980 volunteers was conducted in 10 sentinel sites with different epidemiological profiles. Whole blood samples were processed for microscopic and mLAMP diagnosis. Additionally RT-PCR and nested RT-PCR were used as reference tests. In the PCD study, P. falciparum accounted for 23.9% and P. vivax for 76.1% of the infections and no cases of mixed-infections were identified. Microscopy sensitivity for P. falciparum and P. vivax were 100% and 86.1%, respectively. mLAMP sensitivity for P. falciparum and P. vivax was 100% and 91.4%, respectively. In the ACD study, mLAMP detected 65 times more cases than microscopy. A high proportion (98.0%) of the infections detected by mLAMP was from volunteers without symptoms.

Conclusions/Significance

mLAMP sensitivity and specificity were comparable to RT-PCR. LAMP was significantly superior to microscopy and in P. vivax low-endemicity settings and under minimum infrastructure conditions, it displayed sensitivity and specificity similar to that of single-well RT-PCR for detection of both P. falciparum and P. vivax infections. Here, the dramatically increased detection of asymptomatic malaria infections by mLAMP demonstrates the usefulness of this new tool for diagnosis, surveillance, and screening in elimination strategies.  相似文献   

15.
Erythrocytes deficient in glucose-6-phosphate dehydrogenase (G6PD) is more susceptible to oxidative damage from free radical derived compounds. The hemolysis triggered by oxidative agents such as primaquine (PQ) is used for the radical treatment of hypnozoites of P. vivax. Testing of G6PD screening before malaria treatment is not a common practice in Thailand, which poses patients at risk of hemolysis. This retrospective study aimed to investigate the prevalence of G6PD in malaria patients who live in Southern Thailand. Eight hundred eighty-one malaria patients were collected for 8-year from 2012 to 2019, including 785 (89.1%) of P. vivax, 61 (6.9%) of P. falciparum, 27 (3.1%) of P. knowlesi, and 8 (0.9%) of mixed infections. The DiaPlexC genotyping kit (Asian type) and PCR-RFLP were employed to determine the G6PD variants. The result showed that 5 different types of G6PD variants were identified in 26 cases (2.9%); 12/26 (46.2%) had Mahidol (487G>A) and 11/26 (42.3%) had Viangchan (871G>A) variants, while the rest had Kaiping (1388G>A), Union (1360C>T), and Mediterranean (563C>T) variants. G6PD Songklanagarind (196T>A) variant was not found in the study. Our result did not show a significant difference in the malaria parasite densities in patients between G6PD-deficient and G6PD-normal groups. According to our findings, testing G6PD deficiency and monitoring the potential PQ toxicity in patients who receive PQ are highly recommended.  相似文献   

16.

Background

The mechanisms by which humans regulate pro- and anti-inflammatory responses on exposure to different malaria parasites remains unclear. Although Plasmodium vivax usually causes a relatively benign disease, this parasite has been suggested to elicit more host inflammation per parasitized red blood cell than P. falciparum.

Methodology/Principal Findings

We measured plasma concentrations of seven cytokines and two soluble tumor necrosis factor (TNF)-α receptors, and evaluated clinical and laboratory outcomes, in Brazilians with acute uncomplicated infections with P. vivax (n = 85), P. falciparum (n = 30), or both species (n = 12), and in 45 asymptomatic carriers of low-density P. vivax infection. Symptomatic vivax malaria patients, compared to those infected with P. falciparum or both species, had more intense paroxysms, but they had no clear association with a pro-inflammatory imbalance. To the contrary, these patients had higher levels of the regulatory cytokine interleukin (IL)-10, which correlated positively with parasite density, and elevated IL-10/TNF-α, IL-10/interferon (IFN)-γ, IL-10/IL-6 and sTNFRII/TNF-α ratios, compared to falciparum or mixed-species malaria patient groups. Vivax malaria patients had the highest levels of circulating soluble TNF-α receptor sTNFRII. Levels of regulatory cytokines returned to normal values 28 days after P. vivax clearance following chemotherapy. Finally, asymptomatic carriers of low P. vivax parasitemias had substantially lower levels of both inflammatory and regulatory cytokines than did patients with clinical malaria due to either species.

Conclusions

Controlling fast-multiplying P. falciparum blood stages requires a strong inflammatory response to prevent fulminant infections, while reducing inflammation-related tissue damage with early regulatory cytokine responses may be a more cost-effective strategy in infections with the less virulent P. vivax parasite. The early induction of regulatory cytokines may be a critical mechanism protecting vivax malaria patients from severe clinical complications.  相似文献   

17.

Background

Multiplicity of infection (MOI) refers to the average number of distinct parasite genotypes concurrently infecting a patient. Although several studies have reported on MOI and the frequency of multiclonal infections in Plasmodium falciparum, there is limited data on Plasmodium vivax. Here, MOI and the frequency of multiclonal infections were studied in areas from South America where P. vivax and P. falciparum can be compared.

Methodology/Principal Findings

As part of a passive surveillance study, 1,328 positive malaria patients were recruited between 2011 and 2013 in low transmission areas from Colombia. Of those, there were only 38 P. vivax and 24 P. falciparum clinically complicated cases scattered throughout the time of the study. Samples from uncomplicated cases were matched in time and location with the complicated cases in order to compare the circulating genotypes for these two categories. A total of 92 P. vivax and 57 P. falciparum uncomplicated cases were randomly subsampled. All samples were genotyped by using neutral microsatellites. Plasmodium vivax showed more multiclonal infections (47.7%) than P. falciparum (14.8%). Population genetics and haplotype network analyses did not detect differences in the circulating genotypes between complicated and uncomplicated cases in each parasite. However, a Fisher exact test yielded a significant association between having multiclonal P. vivax infections and complicated malaria. No association was found for P. falciparum infections.

Conclusion

The association between multiclonal infections and disease severity in P. vivax is consistent with previous observations made in rodent malaria. The contrasting pattern between P. vivax and P. falciparum could be explained, at least in part, by the fact that P. vivax infections have lineages that were more distantly related among them than in the case of the P. falciparum multiclonal infections. Future research should address the possible role that acquired immunity and exposure may have on multiclonal infections and their association with disease severity.  相似文献   

18.

Background

Sub-microscopic (SM) Plasmodium infections represent transmission reservoirs that could jeopardise malaria elimination goals. A better understanding of the epidemiology of these infections and factors contributing to their occurrence will inform effective elimination strategies. While the epidemiology of SM P. falciparum infections has been documented, that of SM P. vivax infections has not been summarised. The objective of this study is to address this deficiency.

Methodology/Principal Findings

A systematic search of PubMed was conducted, and results of both light microscopy (LM) and polymerase chain reaction (PCR)-based diagnostic tests for P. vivax from 44 cross-sectional surveys or screening studies of clinical malaria suspects were analysed. Analysis revealed that SM P. vivax is prevalent across different geographic areas with varying transmission intensities. On average, the prevalence of SM P. vivax in cross-sectional surveys was 10.9%, constituting 67.0% of all P. vivax infections detected by PCR. The relative proportion of SM P. vivax is significantly higher than that of the sympatric P. falciparum in these settings. A positive relationship exists between PCR and LM P. vivax prevalence, while there is a negative relationship between the proportion of SM P. vivax and the LM prevalence for P. vivax. Amongst clinical malaria suspects, however, SM P. vivax was not identified.

Conclusions/Significance

SM P. vivax is prevalent across different geographic areas, particularly areas with relatively low transmission intensity. Diagnostic tools with sensitivity greater than that of LM are required for detecting these infection reservoirs. In contrast, SM P. vivax is not prevalent in clinical malaria suspects, supporting the recommended use of quality LM and rapid diagnostic tests in clinical case management. These findings enable malaria control and elimination programs to estimate the prevalence and proportion of SM P. vivax infections in their settings, and develop appropriate elimination strategies to tackle SM P. vivax to interrupt transmission.  相似文献   

19.
Total and differential white blood cell (WBC) counts are basic and essential indicators in any type of illness resulting from infection. In malaria, WBC counts are generally characterized as low to normal during treatment. WBC-counts data, before and during treatment with artemisinin derivatives, was gathered for patients with either Plasmodium falciparum or Plasmodium vivax infection (at 28-day follow-up), to investigate dynamic changes in WBC count. We analyzed and compared the WBC counts of 1310 inpatients presenting with uncomplicated P. falciparum and P. vivax malaria at the Hospital for Tropical Diseases, in Bangkok, Thailand. Before-treatment, a statistically significant negative correlation was found between initial WBC count and highest temperature on admission. Before and during treatment, WBC counts were significantly lower in P. falciparum than P. vivax infection on days 0 and 7, but the numerical difference was small. We also found clinically significantly low WBC counts during the acute stages of both types of malaria, which subsequently normalized by day 28 follow-up. This finding has important clinical implications for the conventional method of estimating parasitemia using an assumed WBC count of 8000 cells/μL. The most significant finding in our analysis is that WBC counts in acute P. falciparum and P. vivax malaria are significantly lower than previously assumed for estimating malaria-parasite density. However, these abnormalities returned to normal within several weeks after artemisinin-derivative-based treatment.  相似文献   

20.
Two duplex real-time PCR assays were developed to diagnose three human parasites: Plasmodium falciparum, Plasmodium vivax and Plasmodium malariae. TaqMan duplex real-time PCR was evaluated in 263 blood samples of suspected malaria patients by comparing results against those obtained with microscopy and nested PCR. Compared with nested PCR, duplex real-time PCR assays showed 100% sensitivity and specificity. Duplex real-time PCR detected all mixtures of P. falciparum and P. vivax DNA, except at threshold detection limits for both parasites in which P. vivax was not amplified. Threshold detection limits of real-time PCR were 3.1, 0.3 and 0.8 parasites per microlitre of blood for P. falciparum, P. vivax and P. malariae, respectively. Duplex real-time PCR allows the detection of malarial cases, including mixed species infection, it simplifies analysis and reduces cost. Thus, this protocol may prove invaluable for use in the diagnosis of human infection, trial treatments and epidemiologic studies in which high-throughput analyses are often required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号