首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Vacuolar H+‐ATPase (V‐ATPase) is a large, multisubunit membrane protein complex responsible for the acidification of subcellular compartments and the extracellular space. V‐ATPase activity is regulated by reversible disassembly, resulting in cytosolic V1‐ATPase and membrane‐integral V0 proton channel sectors. Reversible disassembly is accompanied by transient interaction with cellular factors and assembly chaperones. Quantifying protein‐protein interactions involving membrane proteins, however, is challenging. Here we present a novel method to determine kinetic constants of membrane protein–protein interactions using biolayer interferometry (BLI). Yeast vacuoles are solubilized, vacuolar proteins are reconstituted into lipid nanodiscs with native vacuolar lipids and biotinylated membrane scaffold protein (MSP) followed by affinity purification of nanodisc‐reconstituted V‐ATPase (V1V0ND). We show that V1V0ND can be immobilized on streptavidin‐coated BLI sensors to quantitate binding of a pathogen derived inhibitor and to measure the kinetics of nucleotide dependent enzyme dissociation.  相似文献   

2.
Chemical shift perturbations (CSPs) in NMR spectra provide useful information about the interaction of a protein with its ligands. However, in a multiple‐ligand‐binding system, determining quantitative parameters such as a dissociation constant (Kd) is difficult. Here, we used a method we named CS‐PCA, a principal component analysis (PCA) of chemical shift (CS) data, to analyze the interaction between bovine β‐lactoglobulin (βLG) and 1‐anilinonaphthalene‐8‐sulfonate (ANS), which is a multiple‐ligand‐binding system. The CSP on the binding of ANS involved contributions from two distinct binding sites. PCA of the titration data successfully separated the CSP pattern into contributions from each site. Docking simulations based on the separated CSP patterns provided the structures of βLG–ANS complexes for each binding site. In addition, we determined the Kd values as 3.42 × 10−4M2 and 2.51 × 10−3M for Sites 1 and 2, respectively. In contrast, it was difficult to obtain reliable Kd values for respective sites from the isothermal titration calorimetry experiments. Two ANS molecules were found to bind at Site 1 simultaneously, suggesting that the binding occurs cooperatively with a partial unfolding of the βLG structure. On the other hand, the binding of ANS to Site 2 was a simple attachment without a significant conformational change. From the present results, CS‐PCA was confirmed to provide not only the positions and the Kd values of binding sites but also information about the binding mechanism. Thus, it is anticipated to be a general method to investigate protein–ligand interactions. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
4.
The repressor proteins of the LacI/GalR family exhibit significant similarity in their secondary and tertiary structures despite less than 35% identity in their primary sequences. Furthermore, the core domains of these oligomeric repressors, which mediate dimerization, are homologous with the monomeric periplasmic binding proteins, extending the issue of plasticity to quaternary structure. To elucidate the determinants of assembly, a structure-based alignment has been created for three repressors and four periplasmic binding proteins. Contact maps have also been constructed for the three repressor interfaces to distinguish any conserved interactions. These analyses show few strict requirements for assembly of the core N-subdomain interface. The interfaces of repressor core C-subdomains are well conserved at the structural level, and their primary sequences differ significantly from the monomeric periplasmic binding proteins at positions equivalent to LacI 281 and 282. However, previous biochemical and phenotypic analyses indicate that LacI tolerates many mutations at 281. Mutations at LacI 282 were shown to abrogate assembly, but for Y282D this could be compensated by a second-site mutation in the core N-subdomain at K84 to L or A. Using the link between LacI assembly and function, we have further identified 22 second-site mutations that compensate the Y282D dimerization defect in vivo. The sites of these mutations fall into several structural regions, each of which may influence assembly by a different mechanism. Thus, the 360-amino acid scaffold of LacI allows plasticity of its quaternary structure. The periplasmic binding proteins may require only minimal changes to facilitate oligomerization similar to the repressor proteins.  相似文献   

5.
The interaction oflacoperator DNA withlacrepressor (LacI) is a classic example of a genetic regulatory switch. To dissect the role of stoichiometry, subunit association, and effects of DNA length in positioning this switch, we have determined binding isotherms for the interaction of LacI with a high affinity (Osym) operator on linearized plasmid (2500 bp) DNA over a wide range of macromolecular concentrations (10−14to 10−8M). Binding data were analyzed using a thermodynamic model involving four equilibria: dissociation of tetramers (T) into dimers (D), and binding of operator-containing plasmid DNA (O) to dimers and tetramers to form three distinct complexes, DO, TO, and TO2. Over the range of con- centrations of repressor, operator, and salt (0.075 M K+to 0.40 M K+) investigated, we find no evidence for any significant thermodynamic effect of LacI dimers. Instead, all isotherms can be interpreted in terms of just two equilibria, involving only T and the TO and TO2complexes. As a reference binding equilibrium, which we propose must approximate the DO binding interaction, we compare the plasmid Osymresults with our extensive studies of the binding of a 40 bp OsymDNA fragment to LacI. On this basis, we obtain a lower bound on the LacI dimer – tetramer equilibrium constant and values of the equilibrium constants for formation of TO and TO2complexes.At a salt concentration of 0.40 M, the Osymplasmid binding data are consistent with a model with two independent and identical binding sites for operator per LacI tetramer, in which the binding to a site on the tetramer is only slightly more favorable than the reference binding interaction. Increasingly large deviations from the independent-site model are observed as the salt concentration is reduced; binding of a second operator to form TO2becomes strongly disfavored relative to formation of TO at low salt concentrations (0.075 to 0.125 M). In addition, binding of both the first and second plasmid operator DNA molecules to the tetramer becomes increasingly more favorable than the reference binding interaction as [K+] is reduced from 0.40 M to 0.125 M. At 0.075 M K+, however, the strength of binding of the second plasmid operator DNA to the LacI tetramer is dramatically reduced; this interaction is much less favorable than binding the first plasmid operator DNA, and becomes much less favorable than the reference binding interaction. We propose that these differences arise from changes in the nature of the TO and TO2complexes with decreasing salt concentration. At low salt concentration, we suggest the hypothesis that flanking non-operator sequences bind non-specifically (coulombically) by local wrapping, and that distant regions of non-operator DNA occupy the second operator-binding site by looping. We propose that wrapping stabilizes both 1:1 and 2:1 complexes at low salt concentration, and that looping stabilizes the 1:1 complex but competitively destabilizes the 2:1 TO2complex at low salt concentration. These effects must play a role in adjusting the stability and structure of the LacI-lac operator repression complex as the cytoplasmic [K+] varies in response to changes in extracellular osmolarity.  相似文献   

6.
Quantitative analyses of LH-RH-like membrane receptors were performed in five tumors from the transplantable Dunning R3372H rat prostatic adenocarcinoma. The binding of D-Trp6-LH-RH, an agonist of LH-RH, was observed in all 5 tumors. The antagonist [Ac-Dp-Cl-Phe1,2,D-Trp3,D-Lys6,D-Ala10]-LH-RH was bound to 4 tumors. The apparent equilibrium dissociation constant (Kd) for D-Trp6-LH-RH receptor was from 2.6–3.9 × 10?10 M. The apparent equilibrium Bmax values (maximum number of binding sites) were from 17.2–86.0 fmol/mg membrane protein for D-Trp6-LH-RH receptor. The Kd for the antagonist was from 2.4–2.7 × 10?10 M and the Bmax values were from 35.5–66.0 fmol/mg membrane protein. Similar binding studies performed in 6 normal rat prostates showed no binding capacities.  相似文献   

7.
We report the structure of a novel tetrameric form of the lactose repressor (LacI) protein from Escherichia coli refined to 2.1 Å resolution. The tetramer is bound to 1.6‐hexanediol present in the crystallization solution and the final Rfree for the structure is 0.201. The structure confirms previously reported structures on the monomer level. However, the tetramer is much more densely packed. This adds a new level of complexity to the interpretation of mutational effects and challenges details in the current model for LacI function. Several amino acids, previously associated with changes in function but unexplained at the structural level, appear in a new structural context in this tetramer which provides new implications for their function. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

8.
Single-chain repressor RRTRES is a derivative of bacteriophage 434 repressor, which contains covalently dimerized DNA-binding domains (amino acids 1-69) of the phage 434 repressor. In this single-chain molecule, the wild type domain R is connected to the mutant domain RTRES by a recombinant linker in a head-to-tail arrangement. The DNA-contacting amino acids of RTRES at the -1, 1,2, and 5 positions of the α3 helix are T, R, E, S respectively. By using a randomized DNA pool containing the central sequence -CATACAAGAAAGNNNNNTTT-. a cyclic, in vitro DNA-binding site selection was performed. The selected population was cloned and the individual members were characterized by determining their binding affinities to RRTRES. The results showed that the optimal operators contained the TTAC or TTCC sequences in the underlined positions as above, and that the Kd values were in the 1×10-12mol/L1×10-11mol/L concentration range. Since the affinity of the natural 434 repressor to its natural operator sites is in the  相似文献   

9.
The short 8–10 amino acid “hinge” sequence in lactose repressor (LacI), present in other LacI/GalR family members, links DNA and inducer‐binding domains. Structural studies of full‐length or truncated LacI‐operator DNA complexes demonstrate insertion of the dimeric helical “hinge” structure at the center of the operator sequence. This association bends the DNA ~40° and aligns flanking semi‐symmetric DNA sites for optimal contact by the N‐terminal helix‐turn‐helix (HtH) sequences within each dimer. In contrast, the hinge region remains unfolded when bound to nonspecific DNA sequences. To determine ability of the hinge helix alone to mediate DNA binding, we examined (i) binding of LacI variants with deletion of residues 1–50 to remove the HtH DNA binding domain or residues 1–58 to remove both HtH and hinge domains and (ii) binding of a synthetic peptide corresponding to the hinge sequence with a Val52Cys substitution that allows reversible dimer formation via a disulfide linkage. Binding affinity for DNA is orders of magnitude lower in the absence of the helix‐turn‐helix domain with its highly positive charge. LacI missing residues 1–50 binds to DNA with ~4‐fold greater affinity for operator than for nonspecific sequences with minimal impact of inducer presence; in contrast, LacI missing residues 1–58 exhibits no detectable affinity for DNA. In oxidized form, the dimeric hinge peptide alone binds to O1 and nonspecific DNA with similarly small difference in affinity; reduction to monomer diminished binding to both O1 and nonspecific targets. These results comport with recent reports regarding LacI hinge interaction with DNA sequences.  相似文献   

10.
11.
Tetrahydropalmatine (THP) is one of the active alkaloid ingredients of Rhizoma Corydalis. THP has a chiral center, and the stereoselective pharmacokinetics and tissue distribution have been reported. The aim of the present article is to study the stereoselective protein binding of THP using equilibrium dialysis followed by HPLC‐UV analysis. The results showed that THP stereoselectively binds to human serum albumin (HSA), α1‐acid glycoprotein (AGP), and proteins in human plasma. The fraction binding of (+)‐THP was significantly higher than that of (?)‐THP, whereas such stereoselectivity was not found in rat plasma. The affinity of HSA and AGP to (+)‐THP, expressed as nKA, were 9.0 × 103 M?1 and 2.34 × 105 M?1, respectively, which were notablely higher than to (?)‐THP, with the nKA of 3.4 × 103 M?1 and 1.44 × 105 M?1, respectively. The binding site of HSA for (?)‐THP was Site I, whereas for (+)‐THP was both Site I and Site II. The F1/S variants of AGP were proved to be the key variants (?)‐ and (+)‐THP binding to both. Finally, the AGP binding drugs, such as mifepristone, were demonstrated to reduce the fraction binding of (?)‐ and (+)‐THP with pure AGP (1 mg/ml) but did not affect the fraction binding of both (?)‐ and (+)‐THP with proteins in human plasma. It can be concluded that protein binding of THP is species dependent and stereoselective, both HSA and AGP contribute to the stereoselective binding to THP enatiomers, and AGP binding drugs may not cause the drug–drug interaction on THP in healthy human plasma. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
LS‐3‐134 is a substituted N‐phenylpiperazine derivative that has been reported to exhibit: (i) high‐affinity binding (Ki value 0.2 nM) at human D3 dopamine receptors, (ii) > 100‐fold D3 versus D2 dopamine receptor subtype binding selectivity, and (iii) low‐affinity binding (Ki > 5000 nM) at sigma 1 and sigma 2 receptors. Based upon a forskolin‐dependent activation of the adenylyl cyclase inhibition assay, LS‐3‐134 is a weak partial agonist at both D2 and D3 dopamine receptor subtypes (29% and 35% of full agonist activity, respectively). In this study, [3H]‐labeled LS‐3‐134 was prepared and evaluated to further characterize its use as a D3 dopamine receptor selective radioligand. Kinetic and equilibrium radioligand binding studies were performed. This radioligand rapidly reaches equilibrium (10–15 min at 37°C) and binds with high affinity to both human (Kd = 0.06 ± 0.01 nM) and rat (Kd = 0.2 ± 0.02 nM) D3 receptors expressed in HEK293 cells. Direct and competitive radioligand binding studies using rat caudate and nucleus accumbens tissue indicate that [3H]LS‐3‐134 selectively binds a homogeneous population of binding sites with a dopamine D3 receptor pharmacological profile. Based upon these studies, we propose that [3H]LS‐3‐134 represents a novel D3 dopamine receptor selective radioligand that can be used for studying the expression and regulation of the D3 dopamine receptor subtype.  相似文献   

13.
The objective of this study was to evaluate the effects of inserting peptide nucleic acid (PNA) sequences into the protein‐binding surface of an immobilized four‐way junction (4WJ). Here we compare the classic immobile DNA junction, J1, with two PNA containing hybrid junctions (4WJ‐PNA1 and 4WJ‐PNA3). The protein interactions of each 4WJ were evaluated using recombinant high mobility group proteins from rat (HMGB1b and HMGB1b/R26A) and human histone H1. In vitro studies show that both HMG and H1 proteins display high binding affinity toward 4WJ's. A 4WJ can access different conformations depending on ionic environment, most simply interpreted by a two‐state equilibrium between: (i) an open‐x state favored by absence of Mg2+, low salt, and protein binding, and (ii) a compact stacked‐x state favored by Mg2+. 4WJ‐PNA3, like J1, shifts readily from an open to stacked conformation in the presence of Mg+2, while 4WJ‐PNA1 does not. Circular dichroism spectra indicate that HMGB1b recognizes each of the hybrid junctions. H1, however, displays a strong preference for J1 relative to the hybrids. More extensive binding analysis revealed that HMGB1b binds J1 and 4WJ‐PNA3 with nearly identical affinity (KDs) and 4WJ‐PNA1 with two‐fold lower affinity. Thus both the sequence/location of the PNA sequence and the protein determine the structural and protein recognition properties of 4WJs.  相似文献   

14.
Lac repressor protein was purified from E. coli BMH8117 harboring plasmid pWB1000 and E. coli K12BMH 71-18 strains. Displacement of the protein with poly(ethyleneimine) (PEI) from phosphocellulose cation exchange column was shown to be an effective elution strategy. It resulted in better recoveries and sharper elution profiles than traditional salt elution without effecting the purity of the protein. The elution is assumed to proceed via displacement of bound protein by PEI when the polymer binds to the ion exchanger. The minor impurities in the protein solution were finally removed by chromatography on immobilized metal affinity column. The repressor protein undergoes distinct conformational changes upon addition of specific inducer isopropyl--D-thiogalactoside (IPTG), which is evidenced by changes in ultraviolet absorption spectrum. The protein was immobilized covalently to the Sepharose matrix. The intact biological activity of the protein after immobilization was shown by binding of genomic DNA and lac operator plasmid DNA from E. coli to the immobilized lac repressor.  相似文献   

15.
Binding constants and binding site sizes for the interactions of the polyamines spermine (+4), spermidine (+3), and putrecine (+2) with helical DNA have been determined as a function of ionic conditions and temperature by equilibrium dialysis using 14C-labeled polyamines. In addition, competition equilibrium dialysis has been used to determine binding parameters for the divalent cations putrescine and Mg2+ from the competitive effect of these ions on the binding of spermine or spermidine. In all cases, the logarithm of the binding constant (log Kobs) varies linearly with the logarithm of the monovalent salt concentration; the slopes d log Kobs/d log[NaCl] are proportional to the valence of the ligand, and values of the extrapolated binding constants at 1M NaCl obtained from the intercepts are small (of order 1–10M?1). In those cases examined, Kobs is insensitive to temperature; the free energy of binding is predominantly entropic. Consequently, polymines as DNA-binding ligands behave analogously to the oligolysìnes investigated previously [cf. Record, Lohman & de Haseth (1976) J. Mol. Biol. 107 , 145–158; Lohman, de Haseth & Record (1980) Biochemistry 19 , 3522–3530]. The interactions of these oligocations with DNA are predominantly electrostatic and are driven by the release of thermodynamically bound electrolyte ions from the vicinity of the DNA. The extent to which these oligocations are localized at individual phosphate binding sites or delocalized on the DNA molecule is currently not known.  相似文献   

16.
17.
18.
Immobilization of a thermostable D ‐xylose isomerase (EC 5.3.1.5) from Thermotoga neapolitana 5068 (TNXI) on chitin beads was accomplished via a N‐terminal fusion with a chitin‐binding domain (CBD) from a hyperthermophilic chitinase produced by Pyrococcus furiosus (PF1233) to create a fusion protein (CBD‐TNXI). The turnover numbers for glucose to fructose conversion for both unbound and immobilized CBD‐TNXI were greater than the wild‐type enzyme: kcat (min?1) was ~1,000, 3,800, and 5,800 at 80°C compared to 1,140, 10,350, and 7,000 at 90°C, for the wild‐type, unbound, and immobilized enzymes, respectively. These kcat values for the glucose to fructose isomerization measured are the highest reported to date for any XI at any temperature. Enzyme kinetic inactivation at 100°C, as determined from a bi‐phasic inactivation model, showed that the CBD‐TNXI bound to chitin had a half‐life approximately three times longer than the soluble wild‐type TNXI (19.9 hours vs. 6.8 hours, respectively). Surprisingly, the unbound soluble CBD‐TNXI had a significantly longer half‐life (56.5 hours) than the immobilized enzyme. Molecular modeling results suggest that the N‐terminal fusion impacted subunit interactions, thereby contributing to the enhanced thermostability of both the unbound and immobilized CBD‐TNXI. These interactions likely also played a role in modifying active site structure, thereby diminishing substrate‐binding affinities and generating higher turnover rates in the unbound fusion protein. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

19.
In addition to the well‐known Ca2+ sensor calmodulin, plants possess many calmodulin‐like proteins (CMLs) that are predicted to have specific roles in the cell. Herein, we described the biochemical and biophysical characterization of recombinant Arabidopsis thaliana CML14. We applied isothermal titration calorimetry to analyze the energetics of Ca2+ and Mg2+ binding to CML14, and nuclear magnetic resonance spectroscopy, together with intrinsic and ANS‐based fluorescence, to evaluate the structural effects of metal binding and metal‐induced conformational changes. Furthermore, differential scanning calorimetry and limited proteolysis were used to characterize protein thermal and local stability. Our data demonstrate that CML14 binds one Ca2+ ion with micromolar affinity (Kd ~ 12 µM) and the presence of 10 mM Mg2+ decreases the Ca2+ affinity by ~5‐fold. Although binding of Ca2+ to CML14 increases protein stability, it does not result in a more hydrophobic protein surface and does not induce the large conformational rearrangement typical of Ca2+ sensors, but causes only localized structural changes in the unique functional EF‐hand. Our data, together with a molecular modelling prediction, provide interesting insights into the biochemical properties of Arabidopsis CML14 and may be useful to direct additional studies aimed at understanding its physiological role.  相似文献   

20.
The present study aims to elucidate aspects of the protein binding ability of erythrosine B (ErB), a poly‐iodinated xanthene dye and an FDA‐approved food colorant (FD&C Red No. 3), which we have identified recently as a promiscuous inhibitor of protein–protein interactions (PPIs) with a remarkably consistent median inhibitory concentration (IC50) in the 5‐ to 30‐μM range. Because ErB exhibits metachromasy, that is, color change upon binding to several proteins, we exploited this property to quantify its binding to proteins such as bovine serum albumin (BSA) and CD40L (CD154) and to determine the corresponding binding constants (Kd) and stoichiometry (nb) using spectrophotometric methods. Binding was reversible, and the estimated affinities for both protein targets obtained here (Kd values of 14 and 20 μM for BSA and CD40L, respectively) were in good agreement with that expected from the PPI inhibitory activity of ErB. A stoichiometry greater than one was observed both for CD40L and BSA binding (nb of 5–6 and 8–9 for BSA and CD40L, respectively), indicating the possibility of nonspecific binding of the flat and rigid ErB molecule at multiple sites, which could explain the promiscuous PPI inhibitory activity if some of these overlap with the binding site of the protein partner and interfere with the binding. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号