首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human IgG comprises four subclasses with different biological functions. The IgG3 subclass has a unique character, exhibiting high effector function and Fab arm flexibility. However, it is not used as a therapeutic drug owing to an enhanced susceptibility to proteolysis. Antibody aggregation control is also important for therapeutic antibody development. To date, there have been few reports of IgG3 aggregation during protein expression and the low pH conditions needed for purification and virus inactivation. This study explored the potential of IgG3 antibody for therapeutics using anti‐CD20 IgG3 as a model to investigate aggregate formation. Initially, anti‐CD20 IgG3 antibody showed substantial aggregate formation during expression and low pH treatment. To circumvent this phenomenon, we systematically exchanged IgG3 constant domains with those of IgG1, a stable IgG. IgG3 antibody with the IgG1 CH3 domain exhibited reduced aggregate formation during expression. Differential scanning calorimetric analysis of individual amino acid substitutions revealed that two amino acid mutations in the CH3 domain, N392K and M397V, reduced aggregation and increased CH3 transition temperature. The engineered human IgG3 antibody was further improved by additional mutations of R435H to obtain IgG3KVH to achieve protein A binding and showed similar antigen binding as wild‐type IgG3. IgG3KVH also exhibited high binding activity for FcγRIIIa and C1q. In summary, we have successfully established an engineered human IgG3 antibody with reduced aggregation during bioprocessing, which will contribute to the better design of therapeutic antibodies with high effector function and Fab arm flexibility.  相似文献   

2.
For some antibodies intended for use as human therapeutics, reduced effector function is desired to avoid toxicities that might be associated with depletion of target cells. Since effector function(s), including antibody-dependent cell-mediated cytotoxicity (ADCC), require the Fc portion to be glycosylated, reduced ADCC activity antibodies can be obtained through aglycosylation of the human IgG1 isotype. An alternative is to switch to an IgG4 isotype in which the glycosylated antibody is known to have reduced effector function relative to glycosylated IgG1 antibody. ADCC activity of glycosylated IgG1 antibodies is sensitive to the fucosylation status of the Fc glycan, with both in vitro and in vivo ADCC activity increased upon fucose removal (“afucosylation”). The effect of afucosylation on activity of IgG4 antibodies is less well characterized, but it has been shown to increase the in vitro ADCC activity of an anti-CD20 antibody. Here, we show that both in vitro and in vivo activity of anti-CD20 IgG4 isotype antibodies is increased via afucosylation. Using blends of material made in Chinese hamster ovary (CHO) and Fut8KO-CHO cells, we show that ADCC activity of an IgG4 version of an anti-human CD20 antibody is directly proportional to the fucose content. In mice transgenic for human FcγRIIIa, afucosylation of an IgG4 anti-mouse CD20 antibody increases the B cell depletion activity to a level approaching that of the mIgG2a antibody.  相似文献   

3.
The pH dependence of the conformation of a mouse IgG2a, kappa monoclonal antibody (MN12) was investigated by several physical techniques, including fluorescence spectroscopy, near-ultraviolet and far-ultraviolet CD, and electric-field-induced transient birefringence measurements. The intensity of the intrinsic tryptophan fluorescence remained constant in the pH range from 3.5 to 10.0. A conformational alteration in the MN12 molecule was observed in the pH region between pH 3.5 and 2.5, as reflected by a substantial enhancement of the fluorescence quantum yield. This effect was more pronounced at high ionic strengths. The fluorescence emission was unaltered, indicating that the acid-induced conformational state is different from a completely unfolded state. This was confirmed by CD and fluorescence polarisation measurements. Iodide and acrylamide fluorescence quenching studies indicated a gradually increasing accessibility of MN12 tryptophan residues with decreasing pH. At low pH precipitation was observed in the presence of iodide. One rotational relaxation time (0.16-0.18 microseconds) was observed for MN12 by electric-field-induced transient birefringence measurements at low ionic strength. After exposure of MN12 to low pH for 1 h, the relaxation time was increased to 0.23 microseconds; a further increase to 0.30 microseconds was observed after 24 h. The combined results suggest an acid-induced expansion and enhanced flexibility of MN12, which eventually leads to irreversible aggregation.  相似文献   

4.
Aggregation of human therapeutic antibodies represents a significant hurdle to product development. In a test across multiple antibodies, it was observed that IgG1 antibodies aggregated less, on average, than IgG2 antibodies under physiological pH and mildly elevated temperature. This phenomenon was also observed for IgG1 and IgG2 subclasses of anti‐streptavidin, which shared 95% sequence identity but varied in interchain disulfide connectivity. To investigate the structural and covalent changes associated with greater aggregation in IgG2 subclasses, soluble aggregates from the two forms of anti‐streptavidin were isolated and characterized. Sedimentation velocity analytical ultracentrifugation (SV‐AUC) measurements confirmed that the aggregates were present in solution, and revealed that the IgG1 aggregate was composed of a predominant species, whereas the IgG2 aggregate was heterogeneous. Tertiary structural changes accompanied antibody aggregation as evidenced by greater ANS (8‐Anilino‐1‐naphthalene sulfonic acid) binding to the aggregates over monomer, and differences in disulfide character and tryptophan environments between monomer, oligomer and aggregate species, as observed by near‐UV circular dichroism (CD). Differences between subclasses were observed in the secondary structural changes that accompanied aggregation, particularly in the intermolecular β‐sheet and turn structures between the monomer and aggregate species. Free thiol determination showed ~2.4‐fold lower quantity of free cysteines in the IgG1 subclass, consistent with the 2.4‐fold reduction in aggregation of the IgG1 form when compared with IgG2 under these conditions. These observations suggested an important role for disulfide bond formation, as well as secondary and tertiary structural transitions, during antibody aggregation. Such degradations may be minimized using appropriate formulation conditions.  相似文献   

5.
Glycosylation of the conserved asparagine residue in each heavy chain of IgG in the CH2 domain is known as N-glycosylation. It is one of the most common post-translational modifications and important critical quality attributes of monoclonal antibody (mAb) therapeutics. Various studies have demonstrated the effects of the Fc N-glycosylation on safety, Fc effector functions, and pharmacokinetics, both dependent and independent of neonatal Fc receptor (FcRn) pathway. However, separation of various glycoforms to investigate the biological and functional relevance of glycosylation is a major challenge, and existing studies often discuss the overall impact of N-glycans, without considering the individual contributions of each glycoform when evaluating mAbs with highly heterogeneous distributions. In this study, chemoenzymatic glycoengineering incorporating an endo-β-N-acetylglucosaminidase (ENGase) EndoS2 and its mutant with transglycosylation activity was used to generate mAb glycoforms with highly homogeneous and well-defined N-glycans to better understand and precisely evaluate the effect of each N-glycan structure on Fc effector functions and protein stability. We demonstrated that the core fucosylation, non-reducing terminal galactosylation, sialylation, and mannosylation of IgG1 mAb N-glycans impact not only on FcγRIIIa binding, antibody-dependent cell-mediated cytotoxicity, and C1q binding, but also FcRn binding, thermal stability and propensity for protein aggregation.  相似文献   

6.
N‐linked Fc glycosylation of IgG1 monoclonal antibody therapeutics can directly influence their mechanism of action by impacting IgG effector functions such as antibody‐dependent cell‐mediated cytotoxicity (ADCC) and complement‐dependent cytotoxicity (CDC). Therefore, identification and detailed characterization of Fc glycan critical quality attributes (CQAs) provides important information for process design and control. A two‐step approach was used to identify and characterize the Fc glycan CQAs for an IgG1 Mab with effector function. First, single factor experiments were performed to identify glycan critical quality attributes that influence ADCC and CDC activities. Next, a full‐factorial design of experiment (DOE) to characterize the possible interactions and relative effect of these three glycan species on ADCC, CDC, and FcγRIIIa binding was employed. Additionally, the DOE data were used to develop models to predict ADCC, CDC, and FcγRIIIa binding of a given configuration of the three glycan species for this IgG1 molecule. The results demonstrate that for ADCC, afuco mono/bi has the largest effect, followed by HM and β‐gal, while FcγRIIIa binding is affected by afuco mono/bi and β‐gal. CDC, in contrast, is affected by β‐gal only. This type of glycan characterization and modeling can provide valuable information for development, manufacturing support and process improvements for IgG products that require effector function for efficacy. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1181–1192, 2016  相似文献   

7.
The effector functions elicited by IgG antibodies strongly depend on the carbohydrate moiety linked to the Fc region of the protein. Therefore several approaches have been developed to rationally manipulate these glycans and improve the biological functions of the antibody. Overexpression of recombinant beta1,4-N-acetylglucosaminyltransferase III (GnT-III) in production cell lines leads to antibodies enriched in bisected oligosaccharides. Moreover, GnT-III overexpression leads to increases in non-fucosylated and hybrid oligosaccharides. Such antibody glycovariants have increased antibody-dependent cellular cytotoxicity (ADCC). To explore a further variable besides overexpression of GnT-III, we exchanged the localization domain of GnT-III with that of other Golgi-resident enzymes. Our results indicate that chimeric GnT-III can compete even more efficiently against the endogenous core alpha1,6-fucosyltransferase (alpha1,6-FucT) and Golgi alpha-mannosidase II (ManII) leading to higher proportions of bisected non-fucosylated hybrid glycans ("Glyco-1" antibody). The co-expression of GnT-III and ManII led to a similar degree of non-fucosylation as that obtained for Glyco-1, but the majority of the oligosaccharides linked to this antibody ("Glyco-2") are of the complex type. These glycovariants feature strongly increased ADCC activity compared to the unmodified antibody, while Glyco-1 (hybrid-rich) features reduced complement-dependent cytotoxicity (CDC) compared to Glyco-2 or unmodified antibody. We show that apart from GnT-III overexpression, engineering of GnT-III localization is a versatile tool to modulate the biological activities of antibodies relevant for their therapeutic application.  相似文献   

8.
 We reported previously that the blood clearance of injected mouse IgG2a was extremely rapid in many strains of nude and nu/+ mice. In an attempt to determine the cause of this phenomenon, the levels of endogenous IgG2a in the blood of these mice was assayed. It was found that the serum level of IgG2a was extremely low in many of these mice, below 50 μg/ml, which is 20–100 times lower than the expected normal value. Great heterogeneity between individual mice was observed in their blood level of IgG2a, and there was an excellent correlation between low blood IgG2a levels and rapid clearance of injected IgG2a. Thus, the blood IgG2a levels are so low that a novel, previously undescribed effect occurs, namely the rapid clearance of small amounts of injected IgG2a. The clearance is due primarily to binding sites in the spleen and liver. The low level of endogenous IgG2a is not due to the lack of a thymus, since it occurs in nu/+ as well as nude mice, but can probably be attributed to the very clean environment in which these mice are raised. In assays of sera from approximately 50 mouse strains, low IgG2a levels were found in all nude colonies and also in some normal mouse strains. Some nude mice displayed relatively normal IgG2a clearance rates despite having low levels of endogenous IgG2a. In repeated bleedings of individual mice, IgG2a levels were found to fluctuate greatly. A similar clearance effect was observed with a human IgG1 Ab injected into mice. This rapid clearance of injected IgG, of certain subclasses, represents a practical problem for many experiments in which antibodies are used for diagnosis or therapy, and several methods of circumventing the problem are discussed. Received: 15 August 1977 / Accepted: 14 October 1997  相似文献   

9.
乙脑病毒SA14-14-2株疫苗原液经β丙内酯灭活Sepharose 4FF纯化后作为包被抗原,制备阳性替代品,应用间接ELISA法检测人血清中乙脑病毒抗体。建立内部质量控制血清标准,比较蚀斑减少中和试验(PRNT)与ELISA的相关性。检测46份乙脑相关血清的结果与国内同类试剂进行比较,阳性符合率为93.1%,阴性符合率为89.5%。在咸安地区3万多名2~14岁人群中进行乙脑病毒IgG抗体水平普查,阳性率22.5%,与国内同类试剂的符合率为95.7%,使用效果很好。  相似文献   

10.
Programmed cell death ligand-1 (PD-L1) is a type I transmembrane glycoprotein expressed on antigen-presenting cells and several tumor cells, including melanoma and lung cancer cells. A strong correlation has been reported between PD-L1 expression in tumor cells and negative prognosis in cancer patients. Previously, we established an anti-PD-L1 monoclonal antibody (mAb), L1Mab-13 (IgG1, kappa), by immunizing mice with PD-L1-overexpressing CHO-K1 cells. L1Mab-13 specifically reacts with endogenous PD-L1 in lung cancer cell lines in flow cytometry and Western blot applications, and stains a plasma membrane-like pattern in lung cancer tissues via immunohistochemical analysis. In this study, we investigated whether L1Mab-13 reacts with oral cancer cell lines and exerts antitumor activities. Because L1Mab-13 lacks antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC), we first converted the subclass of L1Mab-13 from IgG1 into IgG2a (13-mG2a), and further produced a defucosylated version (13-mG2a-f) using FUT8-deficient ExpiCHO-S (BINDS-09) cells. Defucosylation of 13-mG2a-f was confirmed using fucose-binding lectins, such as Aleuria aurantia and Pholiota squarrosa lectins. The dissociation constants (KD) for 13-mG2a-f in SAS and HSC-2 oral cancer cells were determined via flow cytometry to be 2.8 × 10?9 M and 4.8 × 10?9 M, respectively, indicating that 13-mG2a-f possesses extremely high binding affinity. In vitro analysis demonstrated that 13-mG2a-f showed moderate ADCC and CDC activities against SAS and HSC-2 oral cancer cells. In vivo analysis revealed that 13-mG2a-f significantly reduced tumor development in SAS and HSC-2 xenografts in comparison to control mouse IgG, even after injection seven days post-tumor inoculation. Taken together, these data demonstrate that treatment with 13-mG2a-f may represent a useful therapy for patients with PD-L1-expressing oral cancers.  相似文献   

11.
《MABS-AUSTIN》2013,5(8):1479-1491
ABSTRACT

Significant amounts of soluble product aggregates were observed during low-pH viral inactivation (VI) scale-up for an IgG4 monoclonal antibody (mAb IgG4-N1), while small-scale experiments in the same condition showed negligible aggregation. Poor mixing and product exposure to low pH were identified as the root cause. To gain a mechanistic understanding of the problem, protein aggregation properties were studied by varying critical parameters including pH, hold time and protein concentration. Comprehensive biophysical characterization of product monomers and aggregates was performed using fluorescence-size-exclusion chromatography, differential scanning fluorimetry, fluorescence spectroscopy, and dynamic light scattering. Results showed IgG4-N1 partially unfolds at about pH 3.3 where the product molecules still exist largely as monomers owing to strong inter-molecular repulsions and favorable colloidal stability. In the subsequent neutralization step, however, the conformationally changed monomers are prone to aggregation due to weaker inter-molecular repulsions following the pH transition from 3.3 to 5.5. Surface charge calculations using homology modeling suggested that intra-molecular repulsions, especially between CH2 domains, may contribute to the IgG4-N1 unfolding at ≤ pH 3.3. Computational fluid dynamics (CFD) modeling was employed to simulate the conditions of pH titration to reduce the risk of aggregate formation. The low-pH zones during acid addition were characterized using CFD modeling and correlated to the condition causing severe product aggregation. The CFD tool integrated with the mAb solution properties was used to optimize the VI operating parameters for successful scale-up demonstration. Our research revealed the governing aggregation mechanism for IgG4-N1 under acidic conditions by linking its molecular properties and various process-related parameters to macroscopic aggregation phenomena. This study also provides useful insights into the cause and mitigation of low-pH-induced IgG4 aggregation in downstream VI operation.  相似文献   

12.
Using an IgG1 antibody as a model system, we have studied the mechanisms by which multidomain proteins aggregate at physiological pH when incubated at temperatures just below their lowest thermal transition. In this temperature interval, only minor changes to the protein conformation are observed. Light scattering consistently showed two coupled phases: an initial fast phase followed by several hours of exponential growth of the scattered intensity. This is the exact opposite of the lag‐time behavior typically observed in protein fibrillation. Dynamic light scattering showed the rapid formation of an aggregate species with a hydrodynamic radius of about 25 nm, which then increased in size throughout the experiment. Theoretical analysis of our light scattering data showed that the aggregate number density goes through a maximum in time providing compelling evidence for a coagulation mechanism in which aggregates fuse together. Both the analysis as well as size‐exclusion chromatography of incubated samples showed the actual increase in aggregate mass to be linear and reach saturation long before all molecules had been converted to aggregates. The CH2 domain is the only domain partly unfolded in the temperature interval studied, suggesting a pivotal role of this least stable domain in the aggregation process. Our results show that for multidomain proteins at temperatures below their thermal denaturation, transient unfolding of a single domain can prime the molecule for aggregation, and that the formation of large aggregates is driven by coagulation.  相似文献   

13.
Heat aggregation of human IgG has been studied by photon correlation spectroscopy, ultracentrifugation, circular dichroism, and differential scanning calorimetry. It is found that pooled human IgG can be separated into two fractions of molecules, one that easily aggregates and one that is stable upon heating. In a buffer atpH=7.6 and 0.2 M NaCl it is found that about half of the original monomeric molecules do not aggregate even after heating at 62°C for 24 h. No differences in the antigen binding capacity of the heat-stable fraction and normal IgG are observed. Heat-stable molecules can partially be transformed to heat-aggregating molecules by a rapid acid denaturation followed by neutralization. Differential scanning calorimetry shows that the major heat denaturation, which is a two-phase process atpH=7.6, starts at about 63°C. Only minor differences between the heat-stable and the heat-labile fractions are observed in the thermograms. No differences are observed in the far-UV region of the CD spectra, indicating that the secondary structure of the heat-stable IgG does not differ from the native IgG molecule. While the aggregation of normal human IgG can be described by Smoluchowski kinetics, the heat-stable fraction follows another kinetics, which includes an activation step.  相似文献   

14.
Rapid production of recombinant human IgG with improved antibody dependent cell‐mediated cytotoxicity (ADCC) effector function is presented. The technique employs transient expression of IgG in suspension growing HEK‐293F cells in the presence of the glycosidase inhibitor kifunensine. The procedure takes ~7 days, provided that expression plasmids encoding the IgG of interest are available. Kifunensine inhibits the N‐linked glycosylation pathway of HEK‐293F cells in the endoplasmatic reticulum, resulting in IgG with oligomannose type glycans lacking core‐fucose. IgG1 transiently produced in kifunensine‐ treated HEK‐293F cells has improved affinity for the FcγRIIIA molecule as measured in an ELISA based assay, and almost eightfold enhanced ADCC using primary peripheral blood mononuclear effector cells. Biotechnol. Bioeng. 2010; 105: 350–357. © 2009 Wiley Periodicals, Inc.  相似文献   

15.
Recombinant protein therapeutics have become increasingly useful in combating human diseases, such as cancer and those of genetic origin. One quality concern for protein therapeutics is the content and the structure of the aggregated proteins in the product, due to the potential immunogenicity of these aggregates. Collective efforts have led to a better understanding of some types of protein aggregates, and have revealed the diversity in the structure and cause of protein aggregation. In this work we used a broad range of analytical techniques to characterize the quinary structure (complexes in which each composing unit maintains native quaternary structure) of the stable non-covalent dimer and oligomers of a monoclonal IgG1λ antibody. The results supported a mechanism of intermolecular domain exchange involving the Fab domains of 2 or more IgG molecules. This mechanism can account for the native-like higher order (secondary, tertiary and disulfide bonding) structure, the stability of the non-covalent multimers, and the previously observed partial loss of the antigen-binding sites without changing the antigen-binding affinity and kinetics of the remaining sites (Luo et al., 2009, mAbs 1:491). Furthermore, the previously observed increase in the apparent affinity to various Fcγ receptors (ibid), which may potentially promote immunogenicity, was also explained by the quinary structure proposed here. Several lines of evidence indicated that the formation of multimers by the mechanism of intermolecular domain exchange took place mostly during expression, not in the purified materials. The findings in this work will advance our knowledge of the mechanisms for aggregation in therapeutic monoclonal antibodies.  相似文献   

16.
Bispecific antibodies (BsAbs) are designed to engage two antigens simultaneously, thus, effectively expanding the ability of antibody-based therapeutics to target multiple pathways within the same cell, engage two separate soluble antigens, bind the same antigen with distinct paratopes, or crosslink two different cell types. Many recombinant BsAb formats have emerged, however, expression and purification of such constructs can often be challenging. To this end, we have developed a chemical strategy for generating BsAbs using native IgG2 architecture. Full-length antibodies can be conjugated via disulfide bridging with linkers bearing orthogonal groups to produce BsAbs. We report that an αHER2/EGFR BsAb was successfully generated by this approach and retained the ability to bind both antigens with no significant loss of potency.  相似文献   

17.
Human immunoglobulin G subclass 3 (IgG3) possesses a uniquely long hinge region that separates its Fab antigen-binding and Fc receptor-binding regions. Owing to this hinge length, the molecular structure of full-length IgG3 remains elusive, and the role of the two conserved Fc glycosylation sites are unknown. To address these issues, we subjected glycosylated and deglycosylated human myeloma IgG3 to multidisciplinary solution structure studies. Using analytical ultracentrifugation, the elongated structure of IgG3 was determined from the reduced sedimentation coefficients s020,w of 5.82 to 6.29 S for both glycosylated and deglycosylated IgG3. X-ray and neutron scattering showed that the Guinier RG values were 6.95 nm for glycosylated IgG3 and were unchanged after deglycosylation, again indicating an elongated structure. The distance distribution function P(r) showed a maximum length of 25 to 28 nm and three distinct maxima. The molecular structure of IgG3 was determined using atomistic modeling based on molecular dynamics simulations of the IgG3 hinge and Monte Carlo simulations to identify physically realistic arrangements of the Fab and Fc regions. This resulted in libraries containing 135,135 and 73,905 glycosylated and deglycosylated IgG3 structures, respectively. Comparisons with the X-ray and neutron scattering curves gave 100 best-fit models for each form of IgG3 that accounted for the experimental scattering curves. These models revealed the first molecular structures for full-length IgG3. The structures exhibited relatively restricted Fab and Fc conformations joined by an extended semirigid hinge, which explains the potent effector functions of IgG3 relative to the other subclasses IgG1, IgG2, and IgG4.  相似文献   

18.
Antibodies can undergo a variety of covalent and non-covalent degradation reactions that have adverse effects on efficacy, safety, manufacture and storage. We had identified an antibody to Angiopoietin 2 (Ang2 mAb) that neutralizes Ang2 binding to its receptor in vitro and inhibits tumor growth in vivo. Despite favorable pharmacological activity, the Ang2 mAb preparations were heterogeneous, aggregated rapidly and were poorly expressed. Here, we report the engineering of the antibody variable and constant domains to generate an antibody with reduced propensity to aggregate, enhanced homogeneity, 11°C elevated Tm, 26-fold improved level of expression and retained activity. The engineered molecule, MEDI-3617, is now compatible with the large scale material supply required for clinical trials and is currently being evaluated in Phase 1 in cancer patients. This is the first report to describe the stability engineering of a therapeutic antibody addressing non canonical cysteine residues and the design strategy reported here is generally applicable to other therapeutic antibodies and proteins.  相似文献   

19.
Susceptibility of methionine residues to oxidation is a significant issue of protein therapeutics. Methionine oxidation may limit the product's clinical efficacy or stability. We have studied kinetics of methionine oxidation in the Fc portion of the human IgG2 and its impact on the interaction with FcRn and Protein A. Our results confirm previously published observations for IgG1 that two analogous solvent‐exposed methionine residues in IgG2, Met 252 and Met 428, oxidize more readily than the other methionine residue, Met 358, which is buried inside the Fc. Met 397, which is not present in IgG1 but in IgG2, oxidizes at similar rate as Met 358. Oxidation of two labile methionines, Met 252 and Met 428, weakens the binding of the intact antibody with Protein A and FcRn, two natural protein binding partners. Both of these binding partners share the same binding site on the Fc. Additionally, our results shows that Protein A may serve as a convenient and inexpensive surrogate for FcRn binding measurements.  相似文献   

20.
Optimization of biophysical properties is a critical success factor for the developability of monoclonal antibodies with potential therapeutic applications. The inter-domain disulfide bond between light chain (Lc) and heavy chain (Hc) in human IgG1 lends structural support for antibody scaffold stability, optimal antigen binding, and normal Fc function. Recently, human IgG1λ has been suggested to exhibit significantly greater susceptibility to reduction of the inter Lc-Hc disulfide bond relative to the same disulfide bond in human IgG1κ. To understand the molecular basis for this observed difference in stability, the sequence and structure of human IgG1λ and human IgG1κ were compared. Based on this Lc comparison, three single mutations were made in the λ Lc proximal to the cysteine residue, which forms a disulfide bond with the Hc. We determined that deletion of S214 (dS) improved resistance of the association between Lc and Hc to thermal stress. In addition, deletion of this terminal serine from the Lc of IgG1λ provided further benefit, including an increase in stability at elevated pH, increased yield from transient transfection, and improved in vitro antibody dependent cell-mediated cytotoxicity (ADCC). These observations support the conclusion that the presence of the terminal serine of the λ Lc creates a weaker inter-chain disulfide bond between the Lc and Hc, leading to slightly reduced stability and a potential compromise in IgG1λ function. Our data from a human IgG1λ provide a basis for further investigation of the effects of deleting terminal serine from λLc on the stability and function of other human IgG1λ antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号