首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Lysophosphatidylcholine (LPC), a major phospholipid component of oxidized low‐density lipoprotein (ox‐LDL), is implicated in numerous inflammatory diseases, including atherosclerosis. Here, to clarify the relationship between bioactive endothelins (ETs) (which are considered to be potent proinflammatory mediators) and LPC/ox‐LDL, we investigated the interaction between ETs and LPC/ox‐LDL by fluorescence spectroscopy and western blotting. Tryptophan fluorescence measurements revealed ETs specifically interacted with LPC at concentrations that exceeded the critical micelle concentration (CMC). The tryptophan residue in ETs was not likely to be involved directly in the interaction between ETs and LPC micelles. Tryptophan fluorescence quenching revealed tryptophan residue in ETs where LPC concentrations were below the CMC may be buried deeply in the peptide or may interact with other amino acid residues, whereas tryptophan residue in ETs in the presence of LPC at concentrations exceeding the CMC was exposed outside of the peptide. Furthermore, ETs bind to ox‐LDL in a concentration‐dependent manner. These results strongly suggest that ox‐LDL contains micelle‐rich LPCs and that ETs specifically interact with the bioactive LPC micelles. Further study of the interaction between ETs and LPC micelles contained in ox‐LDL will provide important information on the development and progression of many inflammatory diseases, including atherosclerosis. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
The probes for detection of oxidized low‐density lipoprotein (ox‐LDL) in plasma and in atherosclerotic plaques are expected to facilitate the diagnosis, prevention, and treatment of atherosclerosis. Recently, we have reported that a heptapeptide (Lys‐Trp‐Tyr‐Lys‐Asp‐Gly‐Asp, KP6) coupled through the ε‐amino group of N‐terminal Lys to fluorescein isothiocyanate (FITC), (FITC)KP6, can be useful as a fluorescent probe for specific detection of ox‐LDL. In the present study, to develop a novel fluorescent peptide for specific detection of ox‐LDL, we investigated the interaction (with ox‐LDL) of an undecapeptide corresponding to positions 41 to 51 of a potent antimicrobial protein (royalisin, which consists of 51 residues; from royal jelly of honeybees), conjugated at the N‐terminus to FITC in the presence of 6‐amino‐n‐caproic acid (AC) linker, (FITC‐AC)‐royalisin P11, which contains both sequences, Phe‐Lys‐Asp and Asp‐Lys‐Tyr, similar to Tyr‐Lys‐Asp in (FITC)KP6. The (FITC‐AC)‐royalisin P11 bound with high specificity to ox‐LDL in a dose‐dependent manner, through the binding to major lipid components in ox‐LDL (lysophosphatidylcholine and oxidized phosphatidylcholine). In contrast, a (FITC‐AC)‐shuffled royalisin P11 peptide, in which sequences Phe‐Lys‐Asp and Asp‐Lys‐Tyr were modified to Lys‐Phe‐Asp and Asp‐Tyr‐Lys, respectively, hardly bound to LDL and ox‐LDL. These findings strongly suggest that (FITC‐AC)‐royalisin P11 may be an effective fluorescent probe for specific detection of ox‐LDL and that royalisin from the royal jelly of honeybees may play a role in the treatment of atherosclerosis through the specific binding of the region at positions 41 to 51 to ox‐LDL.  相似文献   

3.
Experimental studies on atherosclerosis are crucial for investigating its pathophysiology, defining new therapeutic targets, and developing new drugs and diagnostic tools. Thus, many imaging markers have been developed and introduced in experimental studies. The main advantage of these new tools is that they allow the noninvasive diagnosis of atherosclerotic vascular disease. Here, we describe the cloning, expression, purification, and stabilization of a chimeric protein specifically designed to probe cells and tissues for the presence of LDL(?), a relevant marker of atherosclerosis. The DNA sequence that encodes the anti‐LDL(?) scFv, previously obtained from a hybridoma secreting an anti‐LDL(?) monoclonal antibody, was inserted into the bacterial vector pET‐28a(+) in tandem with a DNA sequence encoding GFP. The recombinant protein was expressed in high yields in E. coli as inclusion bodies. The applicability of GFP‐scFv was assessed by ELISA, which determined its affinity for LDL(?) and confocal microscopy, that showed macrophage uptake of the protein along with LDL(?). In conclusion, our data suggest that the anti‐LDL(?) GFP‐scFv chimeric protein could be useful in studies on atherogenesis as well as for developing diagnostic tools for atherosclerosis. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1206–1213, 2014  相似文献   

4.
The platelet-activating factor acetylhydrolases are enzymes that were initially characterized by their ability to hydrolyze platelet-activating factor (PAF). In human plasma, PAF acetylhydrolase (EC 3.1.1.47) circulates in a complex with low density lipoproteins (LDL) and high density lipoproteins (HDL). This association defines the physical state of PAF acetylhydrolase, confers a long half-life, and is a major determinant of its catalytic efficiency in vivo. The lipoprotein-associated enzyme accounts for all of the PAF hydrolysis in plasma but only two-thirds of the protein mass. To characterize the enzyme-lipoprotein interaction, we employed site-directed mutagenesis techniques. Two domains within the primary sequence of human PAF acetylhydrolase, tyrosine 205 and residues 115 and 116, were important for its binding to LDL. Mutation or deletion of those sequences prevented the association of the enzyme with lipoproteins. When residues 115 and 116 from human PAF acetylhydrolase were introduced into mouse PAF acetylhydrolase (which normally does not associate with LDL), the mutant mouse PAF acetylhydrolase associated with lipoproteins. To analyze the role of apolipoprotein (apo) B100 in the formation of the PAF acetylhydrolase-LDL complex, we tested the ability of PAF acetylhydrolase to bind to lipoproteins containing truncated forms of apoB. These studies indicated that the carboxyl terminus of apoB plays a key role in the association of PAF acetylhydrolase with LDL. These data on the molecular basis of the PAF acetylhydrolase-LDL association provide a new level of understanding regarding the pathway for the catabolism of PAF in human blood.  相似文献   

5.
Thiazolidinediones, the antidiabetic agents such as ciglitazone, has been proved to be effective in limiting atherosclerotic events. However, the underlying mechanism remains elucidative. Ox‐LDL receptor‐1 (LOX‐1) plays a central role in ox‐LDL‐mediated atherosclerosis via endothelial nitric oxide synthase (eNOS) uncoupling and nitric oxide reduction. Therefore, we tested the hypothesis that ciglitazone, the PPARγ agonist, protected endothelial cells against ox‐LDL through regulating eNOS activity and LOX‐1 signalling. In the present study, rat microvascular endothelial cells (RMVECs) were stimulated by ox‐LDL. The impact of ciglitazone on cell apoptosis and angiogenesis, eNOS expression and phosphorylation, nitric oxide synthesis and related AMPK, Akt and VEGF signalling pathway were observed. Our data showed that both eNOS and Akt phosphorylation, VEGF expression and nitric oxide production were significantly decreased, RMVECs ageing and apoptosis increased after ox‐LDL induction for 24 hrs, all of which were effectively reversed by ciglitazone pre‐treatment. Meanwhile, phosphorylation of AMP‐activated protein kinase (AMPK) was suppressed by ox‐LDL, which was also prevented by ciglitazone. Of interest, AMPK inhibition abolished ciglitazone‐mediated eNOS function, nitric oxide synthesis and angiogenesis, and increased RMVECs ageing and apoptosis. Further experiments showed that inhibition of PPARγ significantly suppressed AMPK phosphorylation, eNOS expression and nitric oxide production. Ciglitazone‐mediated angiogenesis and reduced cell ageing and apoptosis were reversed. Furthermore, LOX‐1 protein expression in RMVECs was suppressed by ciglitazone, but re‐enhanced by blocking PPARγ or AMPK. Ox‐LDL‐induced suppression of eNOS and nitric oxide synthesis were largely prevented by silencing LOX‐1. Collectively, these data demonstrate that ciglitazone‐mediated PPARγ activation suppresses LOX‐1 and moderates AMPK/eNOS pathway, which contributes to endothelial cell survival and function preservation.  相似文献   

6.
Plasminogen activator inhibitor-1 (PAI-1) is secreted from adipose tissue and is considered to be a risk factor for both atherosclerosis and insulin resistance. Here we report for the first time that PAI-1 expression is enhanced by oxidized low-density lipoprotein (OxLDL) and its lipid component lysophosphatidylcholine (LPC) in mouse 3T3-L1 adipocytes. In fully differentiated 3T3-L1 cells, OxLDL treatment increased the mRNA expression and protein secretion of PAI-1 in a dose- and time-dependent manner, whereas native LDL had no effect. The addition of an anti-CD36 antibody suppressed OxLDL-stimulated PAI-1 expression by 50%, suggesting that adipose-derived CD36 contributes to roughly half of the PAI-1 expression stimulated by OxLDL. In addition, pharmacological experiments showed that the OxLDL-stimulated enhancement in PAI-1 expression was mediated through the generation of reactive oxygen species (ROS) and phosphorylation of extracellular signal-regulated kinase 1/2. Furthermore, LPC, a major lipid component of OxLDL, was responsible for the enhanced expression of PAI-1 as phospholipase A(2)-treated acetyl LDL, which generates LPC, strongly stimulated PAI-1 expression, whereas acetyl LDL itself had no such activity. These data demonstrate that the uptake of OxLDL and, in particular, its lipid component LPC into adipocytes triggers aberrant ROS-mediated PAI-1 expression, which may be involved in the pathogenesis of metabolic syndrome.  相似文献   

7.
The carboxyl-specific amino acid modification reagent, Woodward's reagent K (WK), was utilized to characterize carboxyl residues (Asp and Glu) in the active site of human phenol sulfotransferase (SULT1A1). SULT1A1 was purified using the pMAL-c2 expression system in E. coli. WK inactivated SULT1A1 activity in a time- and concentration-dependent manner. The inactivation followed first-order kinetics relative to both SULT1A1 and WK. Both phenolic substrates and adenosine 3'-phosphate 5'-phosphosulfate (PAPS) protected against the inactivation, which suggests the carboxyl residue modification causing the inactivation took place within the active site of the enzyme. With partially inactivated SULT1A1, both V(max) and K(m) changed for PAPS, while for phenolic substrates, V(max) decreased and K(m) did not change significantly. A computer model of the three-dimensional structure of SULT1A1 was constructed based on the mouse estrogen sulfotransferase (mSULT1E1) X-ray crystal structure. According to the model, Glu83, Asp134, Glu246, and Asp263 are the residues likely responsible for the inactivation of SULT1A1 by WK. According to these results, five SULT1A1 mutants, E83A, D134A, E246A, D263A, and E151A, were generated (E151A as control mutant). Specific activity determination of the mutants demonstrated that E83A and D134A lost almost 100% of the catalytic activity. E246A and D263A also decreased SULT1A1 activity, while E151A did not change SULT1A1 catalytic activity significantly. This work demonstrates that carboxyl residues are present in the active site and are important for SULT1A1 catalytic activity. Glu83 and E134 are essential amino acids for SULT1A1 catalytic activity.  相似文献   

8.
The human monoamine-form phenol sulfotransferase (PST), SULT1A3, has a unique 3,4-dihydroxyphenylalanine (Dopa)/tyrosine-sulfating activity that is stereospecific for their d-form enantiomers and can be stimulated dramatically by Mn(2+). This activity is not present in the simple phenol-form PST, SULT1A1, which is otherwise >93% identical to SULT1A3 in amino acid sequence. The majority of the differences between these two proteins reside in two variable regions of their sequences. Through the characterization of chimeric PSTs where these two regions were exchanged between them, it was demonstrated that variable Region II of SULT1A3 is required for the stereospecificity of its Dopa/tyrosine-sulfating activity, whereas variable Region I of SULT1A3 is required for the stimulation by Mn(2+) of this activity. Further studies using point-mutated SULT1A3s mutated at amino acid residues in these two regions and deletional mutants missing residues 84-86 and 84-90 implicate residue Glu-146 (in variable Region II of SULT1A3), as well as the presence of residues 84-90 of variable Region I, in the stereospecificity in the absence of Mn(2+). Residue Asp-86 (in variable Region I of SULT1A3), on the other hand, is critical in the Mn(2+) stimulation of the Dopa/tyrosine-sulfating activity of SULT1A3. A model is proposed, with reference to the reported x-ray crystal structure of SULT1A3, to explain how the normal role of SULT1A3 in dopamine regulation may be subverted in the presence of Mn(2+). These studies could be relevant in understanding the stereoselective action of SULT1A3 on chiral drugs.  相似文献   

9.
Alpha-1 acid glycoprotein (AGP, orosomucoid), a major acute phase protein in plasma, displays potent cytoprotective and anti-inflammatory activities whose molecular mechanisms are largely unknown. Because AGP binds various exogenous drugs, we have searched for endogenous ligands for AGP. We found that AGP binds lysophospholipids in a manner discernible from albumin in several ways. First, mass spectrometric analyses showed that AGP isolated from plasma and serum contained lysophosphatidylcholine (LPC) enriched in mono and polysaturated acyl chains, whereas albumin contained mostly saturated LPC. Second, AGP bound LPC in a 1:1 molar ratio and with a higher affinity than free fatty acids, whereas albumin bound LPC in a 3:1 ratio but with a lower affinity than that of free fatty acids. Consequently, free fatty acids displaced LPC more avidly from albumin than from AGP. Competitive ligand displacement indicated the highest affinity for AGP to LPC20:4, 18:3, 18:1, and 16:0 (150-180 nM), lysophosphatidylserine (Kd 190 nM), and platelet activating factor (PAF) (Kd 235 nM). The high affinity of AGP to LPC in equilibrium was verified by stopped-flow kinetics, which implicated slow dissociation after fast initial binding, being consistent with an induced-fit mechanism. AGP also bound pyrene-labeled phospholipids directly from vesicles and more efficiently than albumin. AGP prevented LPC-induced priming and PAF-induced activation of human granulocytes, thus indicating scavenging of the cellular effects of the lipid ligands. The results suggest that AGP complements albumin as a lysophospholipid scavenging protein, particularly in inflammatory conditions when the capacity of albumin to sequester LPC becomes impaired.  相似文献   

10.
In mammals, sulfonation as mediated by specific cytosolic sulfotransferases (SULTs) plays an important role in the homeostasis of dopamine and other catecholamines. To gain insight into the structural basis for dopamine recognition/binding, we determined the crystal structure of a mouse dopamine-sulfating SULT, mouse SULT1D1 (mSULT1D1). Data obtained indicated that mSULT1D1 comprises of a single α/β domain with a five-stranded parallel β-sheet. In contrast to the structure of the human SULT1A3 (hSULT1A3)-dopamine complex previously reported, molecular modeling and mutational analysis revealed that a water molecule plays a critical role in the recognition of the amine group of dopamine by mSULT1D1. These results imply differences in substrate binding between dopamine-sulfating SULTs from different species.  相似文献   

11.
The vascular endothelial dysfunction has been implicated in the pathogenesis of migraine. Oxidized low‐density lipoprotein (ox‐LDL) may impair endothelial function. Paraoxonase‐1 (PON‐1) prevents oxidative modification of LDL cholesterol (LDL‐C). So we investigated serum PON‐1 and arylesterase (ARE) activities, PON‐1 55 L/M and 192Q/R polymorphisms and the serum lipid profile in patients with migraine. Biochemical parameters and PON‐1 polymorphism analyses were assessed in 104 patients with migraine and 86 healthy subjects. Ox‐LDL was detected by ELISA, and polymorphisms were determined using PCR–restriction fragment length polymorphism analysis. Patients with migraine had lower PON‐1 and ARE activities (p < 0·001, for both) and higher ox‐LDL and LDL‐C levels (p < 0·001, for both) and ox‐LDL: LDL‐C ratio (p < 0·005) than the controls. The genotype distribution and the allele frequencies for PON‐1 55 L/M and 192Q/R polymorphisms were not different among the study populations. The results of our current study indicate that migrainous patients have decreased serum PON‐1 and ARE activities and increased serum ox‐LDL levels, which may have a clinical importance in the treatment of migraine. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Sphingosylphosphorylcholine (SPC) and lysophosphatidylcholine (LPC) are bioactive lipid molecules involved in numerous biological processes. We have recently identified ovarian cancer G protein-coupled receptor 1 (OGR1) as a specific and high affinity receptor for SPC, and G2A as a receptor with high affinity for LPC, but low affinity for SPC. Among G protein-coupled receptors, GPR4 shares highest sequence homology with OGR1 (51%). In this work, we have identified GPR4 as not only another high affinity receptor for SPC, but also a receptor for LPC, albeit of lower affinity. Both SPC and LPC induce increases in intracellular calcium concentration in GPR4-, but not vector-transfected MCF10A cells. These effects are insensitive to treatment with BN52021, WEB-2170, and WEB-2086 (specific platelet activating factor (PAF) receptor antagonists), suggesting that they are not mediated through an endogenous PAF receptor. SPC and LPC bind to GPR4 in GPR4-transfected CHO cells with K(d)/SPC = 36 nm, and K(d)/LPC = 159 nm, respectively. Competitive binding is elicited only by SPC and LPC. Both SPC and LPC activate GPR4-dependent activation of serum response element reporter and receptor internalization. Swiss 3T3 cells expressing GPR4 respond to both SPC and LPC, but not sphingosine 1-phosphate (S1P), PAF, psychosine (Psy), glucosyl-beta1'1-sphingosine (Glu-Sph), galactosyl-beta1'1-ceramide (Gal-Cer), or lactosyl-beta1'1-ceramide (Lac-Cer) to activate extracellular signal-regulated kinase mitogen-activated protein kinase in a concentration- and time-dependent manner. SPC and LPC stimulate DNA synthesis in GPR4-expressing Swiss 3T3 cells. Both extracellular signal-regulated kinase activation and DNA synthesis stimulated by SPC and LPC are pertussis toxin-sensitive, suggesting the involvement of a G(i)-heterotrimeric G protein. In addition, GPR4 expression confers chemotactic responses to both SPC and LPC in Swiss 3T3 cells. Taken together, our data indicate that GPR4 is a receptor with high affinity to SPC and low affinity to LPC, and that multiple cellular functions can be transduced via this receptor.  相似文献   

13.
Low‐density lipoprotein receptor‐related protein 1 (LRP1) is an endocytic receptor, which binds and internalizes diverse ligands such as activated α2‐macroglobulin (α2M*). LRP1 promotes intracellular signaling, which downstream mediates cellular proliferation and migration of different types of cells, including macrophages. Unlike the LDL receptor, LRP1 expression is not sensitive to cellular cholesterol levels but appears to be responsive to insulin. It has been previously demonstrated that insulin increases the cell surface presentation of LRP1 in adipocytes and hepatocytes, which is mediated by the intracellular PI3K/Akt signaling activation. The LRP1 protein distribution is similar to other insulin‐regulated cell surface proteins, including transferring receptor (Tfr). However, in macrophages, the insulin effect on the LRP1 distribution and expression is not well characterized. Considering that macrophages play a central role in the pathogenesis of atherosclerosis, herein we evaluate the effect of insulin on the cellular expression of LRP1 in J774 macrophages‐derived cells using Western blot and immunofluorescence microscopy. Our data demonstrate that insulin induces a significant decrease in the LRP1 protein content, without changing the specific mRNA level of this receptor. Moreover, insulin specifically affected the protein expression of LRP1 but not Tfr. The insulin‐induced protein degradation of LRP1 in J774 cells was mediated by the activation of the PI3K/Akt pathway and proteasomal system by an enhanced ubiquitin–receptor conjugation. The decreased content of LRP1 induced by insulin affected the cellular internalization of α2M*. Thus, we propose that the protein degradation of LRP‐1 induced by insulin in macrophages could have important effects on the pathogenesis of atherosclerosis. J. Cell. Biochem. 106: 372–380, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

14.
Human plasma platelet-activating factor (PAF) acetylhydrolase hydrolyzes the sn-2 acetyl residue of PAF, but not phospholipids with long chain sn-2 residues. It is associated with low density lipoprotein (LDL) particles, and is the LDL-associated phospholipase A2 activity that specifically degrades oxidatively damaged phospholipids (Stremler, K. E., Stafforini, D. M., Prescott, S. M., Zimmerman, G. A., and McIntyre, T. M. (1989) J. Biol. Chem. 264, 5331-5334). To identify potential substrates, we synthesized phosphatidylcholines with sn-2 residues from two to nine carbon atoms long, and found the V/k ratio decreased as the sn-2 residue was lengthened: the C5 homolog was 50%, the C6 20%, while the C9 homolog was only 2% as efficient as PAF. However, the presence of an omega-oxo function radically affected hydrolysis: the half-life of the sn-2 9-aldehydic homolog was identical to that of PAF. We oxidized [2-arachidonoyl]phosphatidylcholine and isolated a number of more polar phosphatidylcholines. We treated these with phospholipase C, derivatized the resulting diglycerides for gas chromatographic/mass spectroscopic analysis, and found a number of diglycerides where the m/z ratio was consistent with a series of short to medium length sn-2 residues. We treated the polar phosphatidylcholines with acetylhydrolase and derivatized the products for analysis by gas chromatography/mass spectroscopy. The liberated residues were more polar than straight chain standards and had m/z ratios from 129 to 296, consistent with short to medium chain residues. Therefore, oxidation fragments the sn-2 residue of phospholipids, and the acetylhydrolase specifically degrades such oxidatively fragmented phospholipids.  相似文献   

15.
Platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) activates neutrophils (polymorphonuclear leukocytes, PMN) through a receptor that specifically recognizes short sn-2 residues. We oxidized synthetic [2-arachidonoyl]phosphatidylcholine to fragment and shorten the sn-2 residue, and then examined the phospholipid products for the ability to stimulate PMN. 1-Palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine was fragmented by ozonolysis to 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine. This phospholipid activated human neutrophils at submicromolar concentrations, and is effects were inhibited by specific PAF receptor antagonists WEB2086, L659,989, and CV3988. 1-Palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine next was fragmented by an uncontrolled free radical-catalyzed reaction: it was treated with soybean lipoxygenase to form its sn-2 15-hydroperoxy derivative (which did not activate neutrophils) and then allowed to oxidize under air. The secondary oxidation resulted in the formation of numerous fragmented phospholipids (Stremler, K. E., Stafforini, D. M., Prescott, S. M., and McIntyre, T. M. (1991) J. Biol. Chem. 266, 11095-11103), some of which activated PMN. Hydrolysis of sn-2 residues with phospholipase A2 destroyed biologic activity, as did hydrolysis with PAF acetylhydrolase. PAF acetylhydrolase is specific for short or intermediate length sn-2 residues and does not hydrolyze the starting material (Stremler, K. E., Stafforini, D. M., Prescott, S. M., and McIntyre, T. M. (1991) J. Biol. Chem. 266, 11095-11103). Neutrophil activation was completely blocked by L659,989, a specific PAF receptor antagonist. We conclude that diacylphosphatidylcholines containing an sn-2 polyunsaturated fatty acyl residue can be oxidatively fragmented to species with sn-2 residues short enough to activate the PAF receptor of neutrophils. This suggests a new mechanism for the appearance of biologically active phospholipids, and shows that PAF receptor antagonists block the action of both PAF and these PAF-like lipids.  相似文献   

16.
Acting during phase II metabolism, sulfotransferases (SULTs) serve detoxification by transforming a broad spectrum of compounds from pharmaceutical, nutritional, or environmental sources into more easily excretable metabolites. However, SULT activity has also been shown to promote formation of reactive metabolites that may have genotoxic effects. SULT subtype 1E1 (SULT1E1) was identified as a key player in estrogen homeostasis, which is involved in many physiological processes and the pathogenesis of breast and endometrial cancer. The development of an in silico prediction model for SULT1E1 ligands would therefore support the development of metabolically inert drugs and help to assess health risks related to hormonal imbalances. Here, we report on a novel approach to develop a model that enables prediction of substrates and inhibitors of SULT1E1. Molecular dynamics simulations were performed to investigate enzyme flexibility and sample protein conformations. Pharmacophores were developed that served as a cornerstone of the model, and machine learning techniques were applied for prediction refinement. The prediction model was used to screen the DrugBank (a database of experimental and approved drugs): 28% of the predicted hits were reported in literature as ligands of SULT1E1. From the remaining hits, a selection of nine molecules was subjected to biochemical assay validation and experimental results were in accordance with the in silico prediction of SULT1E1 inhibitors and substrates, thus affirming our prediction hypotheses.  相似文献   

17.
Platelet‐activating factor (PAF) is an important mediator of anaphylaxis and is therefore an anti‐anaphylactic drug target. We recently reported that synthetic N‐terminally biotinylated peptides (BP4‐BP29) inhibit PAF by directly interacting with PAF and its metabolite/precursor lyso‐PAF. In this study, we investigated whether the biotinylated peptides can inhibit anaphylactic reactions in vivo. In mouse models of anaphylaxis, one of the peptides, BP21, markedly and dose‐dependently inhibited hypothermia with a maximum dose–response within 30 min after administration, even at doses 20 times lesser than doses of the known PAF antagonist CV‐3988. In contrast, the anti‐hypothermic effect of BGP21, in which the Tyr‐Lys‐Asp‐Gly sequence in BP21 was modified to a Gly‐Gly‐Gly‐Gly sequence, was less than that of BP21. The alanine scanning and shuffling the amino acid residues of BP4 (Tyr‐Lys‐Asp‐Gly) demonstrated that the Tyr‐Lys‐Asp‐Gly consensus sequence is important for the inhibitory effect of the peptide on hypothermia. BP21 also suppressed vascular permeability during anaphylaxis with a maximum dose–response within 30 min of administration. In a rat model of hind paw oedema, BP21 significantly inhibited the oedema induced by PAF but not that induced by the other pro‐inflammatory mediators, such as histamine, serotonin, and bradykinin. Tryptophan fluorescence measurements showed that BP21 interacted with PAF, but not with histamine, serotonin, or bradykinin. In contrast, BGP21 did not interact with PAF. These results suggest that biotinylated peptides, especially BP21, can specifically and markedly inhibit anaphylactic reactions in vivo and that this involves direct interaction of its Tyr‐Lys‐Asp‐Gly region with PAF. Therefore, a biotinylated peptide, BP21, can be used as novel potential anti‐anaphylactic drugs targeting PAF. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
汪浩川等研究表明一定量Ox-LDL能刺激培养人动脉SMC细胞的增殖[1],Dejager等采用交叉抑制实验证明兔SMC细胞膜上有能结合Ox-LDL的清道夫受体[2],因此Ox-LDL诱导培养人SMC细胞增殖可能是Ox-LDL作用于SMC膜清道夫受体后...  相似文献   

19.
The major complication of diabetes is accelerated atherosclerosis, the progression of which entails complex interactions between the modified low‐density lipoproteins (LDL) and the cells of the arterial wall. Advanced glycation end product‐modified‐LDL (AGE‐LDL) that occurs at high rate in diabetes contributes to diabetic atherosclerosis, but the underlying mechanisms are not fully understood. The aim of this study was to assess the direct effect of AGE‐LDL on human vascular smooth muscle cells (hSMC) dysfunction. Cultured hSMC incubated (24 hrs) with human AGE‐LDL, native LDL (nLDL) or oxidized LDL (oxLDL) were subjected to: (i) quantification of the expression of the receptors for modified LDL and AGE proteins (LRP1, CD36, RAGE) and estimation of lipid loading, (ii) determination of NADPH oxidase activity and reactive oxygen species (ROS) production and (iii) evaluation of the expression of monocyte chemoattractant protein‐1 (MCP‐1). The results show that exposure of hSMC to AGE‐LDL (compared to nLDL) induced: (a) increased NADPH oxidase activity (30%) and ROS production (28%) by up‐regulation of NOX1, NOX4, p22phox and p67phox expression, (b) accumulation of intracellular cholesteryl esters, (c) enhanced gene expression of LRP1 (160%) and CD36 (35%), and protein expression of LRP1, CD36 and RAGE, (d) increased MCP‐1 gene expression (160%) and protein secretion (300%) and (e) augmented cell proliferation (30%). In conclusion, AGE‐LDL activates hSMC (increasing CD36, LRP1, RAGE), inducing a pro‐oxidant state (activation of NADPHox), lipid accumulation and a pro‐inflammatory state (expression of MCP‐1). These results may partly explain the contribution of AGE‐LDL and hSMC to the accelerated atherosclerosis in diabetes.  相似文献   

20.
The human cytosolic sulfotransfases (hSULTs) comprise a family of 12 phase II enzymes involved in the metabolism of drugs and hormones, the bioactivation of carcinogens, and the detoxification of xenobiotics. Knowledge of the structural and mechanistic basis of substrate specificity and activity is crucial for understanding steroid and hormone metabolism, drug sensitivity, pharmacogenomics, and response to environmental toxins. We have determined the crystal structures of five hSULTs for which structural information was lacking, and screened nine of the 12 hSULTs for binding and activity toward a panel of potential substrates and inhibitors, revealing unique “chemical fingerprints” for each protein. The family-wide analysis of the screening and structural data provides a comprehensive, high-level view of the determinants of substrate binding, the mechanisms of inhibition by substrates and environmental toxins, and the functions of the orphan family members SULT1C3 and SULT4A1. Evidence is provided for structural “priming” of the enzyme active site by cofactor binding, which influences the spectrum of small molecules that can bind to each enzyme. The data help explain substrate promiscuity in this family and, at the same time, reveal new similarities between hSULT family members that were previously unrecognized by sequence or structure comparison alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号