首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective: Resting metabolic rate (RMR) is known to be proportional to body weight and to follow allometric scaling principles. We hypothesized that RMR can be predicted from an allometric formula with weight alone as an independent variable. Research Methods and Procedures: An allometric, power‐law scaling model was fit to RMR measurements obtained from a cohort of patients being treated for weight loss. This, as well as many of the commonly used RMR‐predicting formulas, was tested for RMR prediction ability against a large publicly available RMR database. Bland‐Altman analysis was used to determine the efficacy of the various RMR‐predicting formulas in obese and non‐obese subjects. Results: Power law modeling of the RMR—body weight relationship yielded the following RMR‐predicting equations: RMRWomen = 248 × Weight0.4356 ? (5.09 × Age) and RMRMen = 293 × Weight0.4330 ? (5.92 × Age). Partial correlation analysis revealed that age significantly contributed to RMR variance and was necessary to include in RMR prediction formulas. The James, allometric, and Harris‐Benedict formulas all yielded reasonable RMR predictions for normal sized and obese subjects. Discussion: A simple power formula relating RMR to body weight can be a reasonable RMR estimator for normal‐sized and obese individuals but still requires an age term and separate formulas for men and women for the best possible RMR estimates. The apparent performance of RMR‐predicting formulas is highly dependent on the methodology employed to compare the various formulas.  相似文献   

2.
Objective: A low resting metabolic rate for a given body size and composition, a low rate of fat oxidation, low levels of physical activity, and low plasma leptin concentrations are all risk factors for body weight gain. The aim of the present investigation was to compare resting metabolic rate (RMR), respiratory quotient (RQ), levels of physical activity, and plasma leptin concentrations in eight post‐obese adults (2 males and 6 females; 48.9 ± 12.2 years; body mass index [BMI]: 24.5 ± 1.0 kg/m2; body fat 33 ± 5%; mean ± SD) who lost 27.1 ± 21.3 kg (16 to 79 kg) and had maintained this weight loss for ≥2 months (2 to 9 months) to eight age‐ and BMI‐matched control never‐obese subjects (1 male and 7 females; 49.1 ± 5.2 years; BMI 24.4 ± 1.0 kg/m2; body fat 33 ± 7%). Research Methods and Procedures: Following 3 days of weight maintenance diet (50% carbohydrate and 30% fat), RMR and RQ were measured after a 10‐hour fast using indirect calorimetry and plasma leptin concentrations were measured using radioimmunoassay. Levels of physical activity were estimated using an accelerometer over a 48‐hour period in free living conditions. Results: After adjustment for fat mass and fat‐free mass, post‐obese subjects had, compared with controls, similar levels of physical activity (4185 ± 205 vs. 4295 ± 204 counts) and similar RMR (1383 ± 268 vs. 1430 ± 104 kcal/day) but higher RQ (0.86 ± 0.04 vs. 0.81 ± 0.03, p < 0.05). Leptin concentration correlated positively with percent body fat (r = 0.57, p < 0.05) and, after adjusting for fat mass and fat‐free mass, was lower in post‐obese than in control subjects (4.5 ± 2.1 vs. 11.6 ± 7.9 ng/mL, p < 0.05). Discussion: The low fat oxidation and low plasma leptin concentrations observed in post‐obese individuals may, in part, explain their propensity to relapse.  相似文献   

3.
Objective: SMA1 mice carry a missense mutation in the growth hormone gene that leads to semidominant dwarfism and obesity. In this study, the basic thermal and metabolic properties of SMA1 mice were examined to detect metabolic alterations that can support the accretion of excess fat. Research Methods and Procedures: Basal and resting metabolic rates (RMRs) in wild‐type and SMA1 (sma1/+ and sma1/sma1) mice were determined by indirect calorimetry. Body temperature (Tb) was recorded using intraperitoneally implanted temperature‐sensitive transmitters, and body composition was determined by DXA. Results: SMA1 mice have proportionally lower basal and resting metabolic rates, higher body mass (BM)‐specific RMRs, and a higher lower critical temperature, and display a decrease in Tb by 0.4 °C in sma1/+ and 0.9 °C in sma1/sma1. Discussion: The analysis of gene effects on BM and energy expenditure in mouse mutants must consider the appropriate allometric relationship between BM and metabolic rate. With the exception of Tb, all metabolic alterations observed in SMA1 reflect reduced size.  相似文献   

4.
Objective: The goal of this study was to determine whether differential induction of skeletal muscle uncoupling protein 3 (UCP3) contributes to the development of diet‐induced obesity (DIO) or resistance to the development of obesity (DR) when rats are placed on a moderate fat (31%) high energy (HE) diet. Research Methods and Procedures: Gastrocnemius muscle was obtained from Sprague‐Dawley rats that were identified as DIO‐prone (n = 5) or DR (n = 5) on the basis of urinary norepinephrine excretion while consuming a chow diet. Muscle was also obtained from animals in the top tertile of weight gain (DIOHE, n = 5) and the bottom tertile of weight gain (DRHE, n = 5) after 2 weeks on the HE diet. UCP3 and actin mRNA levels were measured in all muscle samples by Northern analysis. To distinguish the effect of dietary energy content from the effect of obesity itself, we studied additional DIO and DR animals that had been returned to a chow diet for 10 weeks after consuming a HE diet for 10 weeks. Results: The muscle UCP3/actin mRNA ratio in animals that resisted the development of obesity during 2 weeks on the HE diet was 3‐fold higher than in the other groups (DRHE = 3.24 ± 0.83, DIOHE = 0.91 ± 0.20, DIO‐prone = 0.72 ± 0.15, DR = 0.63 ± 0.15; p = 0.002). However, there was no difference in muscle UCP3/actin mRNA ratios between DIO animals and DR animals that had been fed the HE diet for 10 weeks and then returned to either an ad libitum chow diet for 10 weeks (DIO = 13.8 ± 3.53, DR = 11.1 ± 3.43, p = NS) or to a restricted chow diet for 10 weeks (DIO = 11.0 ± 2.85, DR = 10.6 ± 2.20, p = NS) despite significantly greater body weight of the DIO animals. Discussion: DR animals may initially resist weight gain when placed on a HE diet through a greater induction of muscle UCP3. This induction is transient and is related more closely to dietary fat content than to body fat stores. DIO animals show no initial induction of muscle UCP3, which may contribute to their increased metabolic efficiency soon after exposure to a HE diet.  相似文献   

5.
Identification of a rate‐limiting step in pathways is a key challenge in metabolic engineering. Although the prediction of rate‐limiting steps using a kinetic model is a powerful approach, there are several technical hurdles for developing a kinetic model. In this study, an in silico screening algorithm of key enzyme for metabolic engineering is developed to identify the possible rate‐limiting reactions for the growth‐coupled target production using a stoichiometric model without any experimental data and kinetic parameters. In this method, for each reaction, an upper‐bound flux constraint is imposed and the target production is predicted by linear programming. When the constraint decreases the target production at the optimal growth state, the reaction is thought to be a possible rate‐limiting step. For validation, this method is applied to the production of succinate or 1,4‐butanediol (1,4‐BDO) in Escherichia coli, in which the experimental engineering for eliminating rate‐limiting steps has been previously reported. In succinate production from glycerol, nine reactions including phosphoenolpyruvate carboxylase are predicted as the rate‐limiting steps. In 1,4‐BDO production from glucose, eight reactions including pyruvate dehydrogenase are predicted as the rate‐limiting steps. These predictions include experimentally identified rate‐limiting steps, which would contribute to metabolic engineering as a practical tool for screening candidates of rate‐limiting reactions.  相似文献   

6.
Residential mobility is a key aspect of hunter‐gatherer foraging economies and therefore is an issue of central importance in hunter‐gatherer studies. 1 - 7 Hunter‐gatherers vary widely in annual rates of residential mobility. Understanding the sources of this variation has long been of interest to anthropologists and archeologists. The vast majority of hunter‐gatherers who are dependent on terrestrial plants and animals move camp multiple times a year because local foraging patches become depleted and food, material, and social resources are heterogeneously distributed through time and space. In some environments, particularly along coasts, where resources are abundant and predictable, hunter‐gatherers often become effectively sedentary. But even in these special cases, a central question is how these societies have maintained viable foraging economies while reducing residential mobility to near zero.  相似文献   

7.
Objective: The purpose of this study was to evaluate available variables of a long‐term weight maintenance study to investigate possible factors predisposing to weight regain after a period of weight loss. Research Methods and Procedures: The Maastricht Weight Maintenance Study is an ongoing longitudinal study of healthy men and women (29 men and 62 women; 18 to 65 years of age; BMI = 30.2 ± 3.1 kg/m2). A variety of parameters were measured before and after a very‐low‐energy diet and after a follow‐up of at least 2 years. Results: Mean weight loss was 7.9 ± 3.6 kg, and percent weight regain was 113.8 ± 98.1%. Percent BMI regain was negatively associated with an increase in dietary restraint (r = ?0.47, p < 0.05). Percent weight regain was negatively correlated with baseline resting metabolic rate (r = ?0.38, p = 0.01) and baseline fat mass (r = ?0.24, p = 0.05) and positively correlated with the magnitude of change in body weight (BW) expressed as maximum amplitude of BW (r = 0.21, p < 0.05). In addition, amplitude of BW was positively correlated with the frequency of dieting (r = 0.57, p < 0.01). Discussion: The best predictors for weight maintenance after weight loss were an increase in dietary restraint during weight loss, a high baseline resting metabolic rate, a relatively high baseline fat mass favoring a fat‐free mass–sparing effect during weight loss, a rather stable BW, and a low frequency of dieting. Therefore, BW maintenance after BW loss seems to be a multifactorial issue, including mechanisms that regulate an individuals’ energy expenditure, body composition, and eating behavior in such a way that energy homeostasis is maintained.  相似文献   

8.
Energy metabolism has received much attention as a potential driver of repeatable among‐individual differences in behaviour (animal personality). Several factors have been hypothesized to mediate this relationship. We performed a systematic review with a meta‐analysis of >70 studies comprised of >8000 individuals reporting relationships between measures of maintenance metabolic rates (i.e. basal metabolic rate, resting metabolic rate, and standard metabolic rate) and behaviour. We evaluated support for three hypothesized mediators: (i) type of behaviour, (ii) opportunities for energy re‐allocation, and (iii) magnitude of energetic constraints. Relationships between measures of maintenance metabolic rate (MR) and behaviour are predicted to be strongest for behaviours with strong consequences for energy turnover (acquisition or expenditure). Consistent with this, we found that behaviours with known consequences for energy gain (e.g. foraging, dominance, boldness) or expenditure (e.g. maximum sprint speed, sustained running speed, maximum distance travelled, etc.) had strong positive correlations with MR, while behaviours with putatively weak and/or inconsistent associations with net energy gain or loss (e.g. exploration, activity, sociability) were not correlated with MR. Greater opportunities for energy reallocation are predicted to weaken relationships between MR and behaviour by creating alternative pathways to balance energy budgets. We tested this by contrasting relationships between MR and behaviour in ectotherms versus endotherms, as thermoregulation in endotherms creates additional opportunities for energy reallocation compared with ectotherms. As predicted, the relationship between behaviour and MR was stronger in ectotherms compared with endotherms. However, statistical analyses of heterogeneity among effect sizes from different species did not support energy re‐allocation as the main driver of these differences. Finally, we tested whether conditions where animals face greater constraints in meeting their energy budgets (e.g. field versus laboratory, breeding versus non‐breeding) increased the strength of the relationship between MR and behaviour. We found that the relationship between MR and behaviour was unaffected by either of these modifiers. This meta‐analysis provides two key insights. First, we observed positive relationships of similar magnitude between MR and behaviours that bring in net energy, and behaviours that cost net energy. This result is only consistent with a performance energy‐management model. Given that the studies included in our meta‐analysis represent a wide range of taxa, this suggests that the performance model may be the most common model in general. Second, we found that behaviours with putatively weak or inconsistent consequences for net energy gain or expenditure (exploration, activity, sociability) show no relationship with MR. The lack of relationship between MR and behavioural traits with weak and/or inconsistent consequences for energy turnover provides the first systematic demonstration of the central importance of the ecological function of traits in mediating relationships between MR and behaviour.  相似文献   

9.
A family of empirically based ecological ‘rules’, collectively known as temperature‐size rules, predicts larger body size in colder environments. This prediction is based on studies demonstrating that a wide range of ectotherms show increased body size, cell size or genome size in low‐temperature habitats, or that individuals raised at low temperature become larger than conspecifics raised at higher temperature. There is thus a potential for reduction in size with global warming, affecting all levels from cell volume to body size, community composition and food webs. Increased body size may be obtained either by increasing the size or number of cells. Processes leading to changed cell size are of great interest from an ecological, physiological and evolutionary perspective. Cell size scales with fundamental properties such as genome size, growth rate, protein synthesis rates and metabolic activity, although the causal directions of these correlations are not clear. Changes in genome size will thus, in many cases, not only affect cell or body size, but also life‐cycle strategies. Symmetrically, evolutionary drivers of life‐history strategies may impact growth rate and thus cell size, genome size and metabolic rates. Although this goes to the core of many ecological processes, it is hard to move from correlations to causations. To the extent that temperature‐driven changes in genome size result in significant differences among populations in body size, allometry or life‐cycle events such as mating season, it could serve as a fast route to speciation. We offer here a novel perspective on the temperature‐size rules from a ‘bottom‐up’ perspective: how temperature may induce changes in genome size, and thus implicitly in cell size and body size of metazoans. Alternatively: how temperature‐driven enlargement of cells also dictates genome‐size expansion to maintain the genome‐size to cell‐volume ratio. We then discuss the different evolutionary drivers in aquatic versus terrestrial systems, and whether it is possible to arrive at a unifying theory that also may serve as a predictive tool related to temperature changes. This, we believe, will offer an updated review of a basic concept in ecology, and novel perspectives on the basic biological responses to temperature changes from a genomic perspective.  相似文献   

10.
Basal metabolic rate (BMR) constitutes the minimal metabolic rate in the zone of thermo‐neutrality, where heat production is not elevated for temperature regulation. BMR thus constitutes the minimum metabolic rate that is required for maintenance. Interspecific variation in BMR in birds is correlated with food habits, climate, habitat, flight activity, torpor, altitude, and migration, although the selective forces involved in the evolution of these presumed adaptations are not always obvious. I suggest that BMR constitutes the minimum level required for maintenance, and that variation in this minimum level reflects the fitness costs and benefits in terms of ability to respond to selective agents like predators, implying that an elevated level of BMR is a cost of wariness towards predators. This hypothesis predicts a positive relationship between BMR and measures of risk taking such as flight initiation distance (FID) of individuals approached by a potential predator. Consistent with this suggestion, I show in a comparative analysis of 76 bird species that species with higher BMR for their body mass have longer FID when approached by a potential predator. This effect was independent of potentially confounding variables and similarity among species due to common phylogenetic descent. These results imply that BMR is positively related to risk‐taking behaviour, and that predation constitutes a neglected factor in the evolution of BMR.  相似文献   

11.
The observation that ectotherm size decreases with increasing temperature (temperature‐size rule; TSR) has been widely supported. This phenomenon intrigues researchers because neither its adaptive role nor the conditions under which it is realized are well defined. In light of recent theoretical and empirical studies, oxygen availability is an important candidate for understanding the adaptive role behind TSR. However, this hypothesis is still undervalued in TSR studies at the geographical level. We reanalyzed previously published data about the TSR pattern in diatoms sampled from Icelandic geothermal streams, which concluded that diatoms were an exception to the TSR. Our goal was to incorporate oxygen as a factor in the analysis and to examine whether this approach would change the results. Specifically, we expected that the strength of size response to cold temperatures would be different than the strength of response to hot temperatures, where the oxygen limitation is strongest. By conducting a regression analysis for size response at the community level, we found that diatoms from cold, well‐oxygenated streams showed no size‐to‐temperature response, those from intermediate temperature and oxygen conditions showed reverse TSR, and diatoms from warm, poorly oxygenated streams showed significant TSR. We also distinguished the roles of oxygen and nutrition in TSR. Oxygen is a driving factor, while nutrition is an important factor that should be controlled for. Our results show that if the geographical or global patterns of TSR are to be understood, oxygen should be included in the studies. This argument is important especially for predicting the size response of ectotherms facing climate warming.  相似文献   

12.
Objective: To determine the role of total energy expenditure (TEE) and its components in the ability of collared lemmings to increase weight in response to a decrease in photoperiod. Research Methods and Procedures: Energy expenditure was measured by 24‐hour indirect calorimetry concurrent with food‐intake studies. TEE and resting and nonresting energy expenditure (REE and NREE, respectively) were adjusted for body weight by analysis of covariance (ANCOVA). Uncoupling protein 1 (Ucp1) mRNA levels from interscapular brown adipose tissue were determined by Northern blot. Results: TEE and REE of lemmings exposed to a short photoperiod for 10 days were significantly lower than that of lemmings exposed to a long photoperiod (p < 0.05), whereas NREE was not significantly different (p = 0.44). Ucp1 mRNA levels in interscapular brown adipose tissue were 50% lower in short‐ vs. long‐photoperiod lemmings (p < 0.01). Ucp1 mRNA levels were positively related to REE (r2 = 0.79, p < 0.01). After adjustment of REE for differences in Ucp1 mRNA levels, there was no longer a significant difference attributable to photoperiod treatment (p = 0.54). Discussion: The results of this study indicate that the increase in body mass that occurs when collared lemmings are exposed to a short photoperiod may be primarily fueled by a decrease in REE and is correlated with a decrease in Ucp1 mRNA levels.  相似文献   

13.
Glucocorticoids are often measured in wildlife to assess physiological responses to environmental or ecological stress. Hair, blood, saliva, or fecal samples are generally used depending on the timescale of the stress response being investigated and species‐specific considerations. Here, we report the first use of hair samples to measure long‐term corticosterone levels in the climate‐sensitive American pika (Ochotona princeps). We validated an immunoassay‐based measurement of corticosterone extracted from hair samples and compared corticosterone estimates obtained from plasma, hair, and fecal samples of nine pikas. To demonstrate an ecological application of this technique, we characterized physiological stress in 49 pikas sampled and released at eight sites along two elevational transects. Microclimate variation was measured at each site using both ambient and subsurface temperature sensors. We used an information theoretic approach to compare support for linear, mixed‐effects models relating corticosterone estimates to microclimate, body size, and sex. Corticosterone was measured accurately in pika hair samples after correcting for the influence of sample mass on corticosterone extraction efficiency. Hair‐ and plasma‐based estimates of corticosterone were weakly correlated. The best‐supported model suggested that corticosterone was lower in larger, male pikas, and at locations with higher ambient temperatures in summer. Our results are consistent with a general negative relationship between body mass and glucocorticoid concentration observed across mammalian species, attributed to the higher mass‐specific metabolic rates of smaller bodied animals. The higher corticosterone levels in female pikas likely reflected the physiological demands of reproduction, as observed in a wide array of mammalian species. Additionally, we establish the first direct physiological evidence for thermal stress in the American pika through nonlethal sampling of corticosterone. Interestingly, our data suggest evidence for cold stress likely induced during the summer molting period. This technique should provide a useful tool to researchers wishing to assess chronic stress in climate‐sensitive mammals.  相似文献   

14.
The human microbiota is a complex community of commensal, symbiotic, and pathogenic microbes that play a crucial role in maintaining the homeostasis of human health. Such a homeostasis is maintained through the collective functioning of enzymatic genes responsible for the production of metabolites, enabling the interaction and signaling within microbiota as well as between microbes and the human host. Understanding microbial genes, their associated chemistries and functions would be valuable for engineering systemic metabolic pathways within the microbiota to manage human health and diseases. Given that there are many unknown gene metabolic functions and interactions, increasing efforts have been made to gain insights into the underlying functions of microbiota metabolism. This can be achieved through culture‐independent metagenomic approaches and metabolic modeling to simulate the microenvironment of human microbiota. In this article, the recent advances in metagenome mining and functional profiling for the discovery of the genetic and biochemical links in human microbiota metabolism as well as metabolic modeling for simulation and prediction of metabolic fluxes in the human microbiota are reviewed. This review provides useful insights into the understanding, reconstruction, and modulation of the human microbiota guided by the knowledge acquired from the basic understanding of the human microbiota metabolism.  相似文献   

15.
Species with fast life‐histories typically prioritize current over future reproductive events, compared to species with slow life‐histories. These species therefore require greater energetic input into reproduction, and also likely have less time to realize their reproductive potential. Hence, behaviors that increase access to both resources and mating opportunities, at a cost of increased mortality risk, could coevolve with the pace of life‐history. However, whether this prediction holds across species, remains untested under standardized conditions. Here, we test how risky behaviors, which facilitate access to resources and mating opportunities (i.e., activity, boldness, and aggression), along with metabolic rate, coevolve with the pace of life‐history across 20 species of killifish that present remarkable divergences in the pace of life‐history. We found a positive association between the pace of life‐history and aggression, but interestingly not with other behavioral traits or metabolic rate. Aggression is linked to interference competition, and in killifishes is often employed to secure mates, while activity and boldness are more relevant for exploiting energetic resources. Our results suggest that the trade‐off between current and future reproduction plays a more prominent role in shaping mating behavior, while behaviors related to energy acquisition may be influenced by ecological factors.  相似文献   

16.
Thermoregulatory responses of heat production and heat loss were measured in seven adult volunteers (four women and three men, aged 21–57 yr) during 45-min dorsal exposures of the whole body to 450 MHz continuous wave radio frequency (RF) fields. Two power densities (PD) (local peak PD = 18 and 24 mW/cm2; local peak specific absorption rate = 0.320 [W/kg]/[mW/cm2]) were tested in each of three ambient temperatures (Ta = 24, 28, and 31 °C) plus Ta controls (no RF). No changes in metabolic heat production occurred under any exposure conditions. Vigorous increases in sweating rate on back and chest, directly related to both Ta and PD, cooled the skin and ensured efficient regulation of the deep body (esophageal) temperature to within 0.1 °C of the normal level. Category judgments of thermal sensation, comfort, sweating, and thermal preference usually matched the measured changes in physiological responses. Some subtle effects related to gender were noted that confirm classic physiological data. Our results indicate that dorsal exposures of humans to a supra-resonant frequency of 450 MHz at local peak specific absorption rates up to 7.68 W/kg are mildly thermogenic and are counteracted efficiently by normal thermophysiologic heat loss mechanisms, principally sweating. Bioelectromagnetics 19:232–245, 1998. Published 1998 Wiley-Liss, Inc.  相似文献   

17.
18.
In order to release host cells from plasmid‐mediated increases in metabolic load and high gene dosages, we developed a plasmid‐free, T7‐based E. coli expression system in which the target gene is site‐specifically integrated into the genome of the host. With this system, plasmid‐loss, a source of instability for conventional expression systems, was eliminated. At the same time, system leakiness, a challenging problem with recombinant systems, was minimized. The efficiency of the T7 RNA polymerase compensates for low gene dosage and provides high rates of recombinant gene expression without fatal consequences to host metabolism. Relative to conventional pET systems, this system permits improved process stability and increases the host cell's capacity for recombinant gene expression, resulting in higher product yields. The stability of the plasmid‐free system was proven in chemostat cultivation for 40 generations in a non‐induced and for 10 generations in a fully induced state. For this reason plasmid‐free systems benefit the development of continuous production processes with E. coli. However, time and effort of the more complex cloning procedure have to be considered in relation to the advantages of plasmid‐free systems in upstream‐processing. Biotechnol. Bioeng. 2010. 105: 786–794. © 2009 Wiley Periodicals, Inc.  相似文献   

19.
Objective: To investigate the ability of a newly developed triaxial accelerometer to predict total energy expenditure (EE) (TEE) and activity‐related EE (AEE) in free‐living conditions. Research Methods and Procedures: Subjects were 29 healthy subjects between the ages of 18 and 40. The Triaxial Accelerometer for Movement Registration (Tracmor) was worn for 15 consecutive days. Tracmor output was defined as activity counts per day (ACD) for the sum of all three axes or each axis separately (ACD‐X, ACD‐Y, ACD‐Z). TEE was measured with the doubly labeled water technique. Sleeping metabolic rate (SMR) was measured during an overnight stay in a respiration chamber. The physical activity level was calculated as TEE × SMR?1, and AEE was calculated as [(0.9 × TEE) ? SMR]. Body composition was calculated from body weight, body volume, and total body water using Siri's three‐compartment model. Results: Age, height, body mass, and ACD explained 83% of the variation in TEE [standard error of estimate (SEE) = 1.00 MJ/d] and 81% of the variation in AEE (SEE = 0.70 MJ/d). The partial correlations for ACD were 0.73 (p < 0.001) and 0.79 (p < 0.001) with TEE and AEE, respectively. When data on SMR or body composition were used with ACD, the explained variation in TEE was 90% (SEE = 0.74 and 0.77 MJ/d, respectively). The increase in the explained variation using three axes instead of one axis (vertical) was 5% (p < 0.05). Discussion: The correlations between Tracmor output and EE measures are the highest reported so far. To measure daily life activities, the use of triaxial accelerometry seems beneficial to uniaxial.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号