首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Repetitive elements are distributed non-randomly in the human genome but, as reviewed in this paper, biological processes underlying the observed patterns appear to be complex and remain relatively obscure. Recent findings indicate that chromosomal distribution of Alu retroelements deposited in the past is different from the distribution of Alu elements that continue to be inserted in human population. These active elements from AluY sub(sub)families are the major focus of this paper. In particular, we analyzed chromosomal proportions of 19 AluY subfamilies, of which nine are reported for the first time in this paper. These 19 subfamilies contain over 80% of Alu elements that are polymorphic in the human genome. The chromosomal density of these most recent Alu insertions is around three times higher on chromosome Y than on chromosome X and over two times higher than the average density for all human autosomes. Based on this observation and other data we propose that active Alu elements are passed through paternal germlines. There is also some evidence that a small fraction of active Alu elements from less abundant subfamilies can be retroposed in female germlines or in the early embryos. Finally, we propose that the origin of Alu subfamilies in human populations may be related to evolution of chromosome Y.  相似文献   

4.
We have utilized computational biology to screen GenBank for the presence of recently integrated Ya5 and Yb8 Alu family members. Our analysis identified 2640 Ya5 Alu family members and 1852 Yb8 Alu family members from the draft sequence of the human genome. We selected a set of 475 of these elements for detailed analyses. Analysis of the DNA sequences from the individual Alu elements revealed a low level of random mutations within both subfamilies consistent with the recent origin of these elements within the human genome. Polymerase chain reaction assays were used to determine the phylogenetic distribution and human genomic variation associated with each Alu repeat. Over 99 % of the Ya5 and Yb8 Alu family members were restricted to the human genome and absent from orthologous positions within the genomes of several non-human primates, confirming the recent origin of these Alu subfamilies in the human genome. Approximately 1 % of the analyzed Ya5 and Yb8 Alu family members had integrated into previously undefined repeated regions of the human genome. Analysis of mosaic Yb8 elements suggests gene conversion played an important role in generating sequence diversity among these elements. Of the 475 evaluated elements, a total of 106 of the Ya5 and Yb8 Alu family members were polymorphic for insertion presence/absence within the genomes of a diverse array of human populations. The newly identified Alu insertion polymorphisms will be useful tools for the study of human genomic diversity.  相似文献   

5.
Gasior SL  Preston G  Hedges DJ  Gilbert N  Moran JV  Deininger PL 《Gene》2007,390(1-2):190-198
The human Long Interspersed Element-1 (LINE-1) and the Short Interspersed Element (SINE) Alu comprise 28% of the human genome. They share the same L1-encoded endonuclease for insertion, which recognizes an A+T-rich sequence. Under a simple model of insertion distribution, this nucleotide preference would lead to the prediction that the populations of both elements would be biased towards A+T-rich regions. Genomic L1 elements do show an A+T-rich bias. In contrast, Alu is biased towards G+C-rich regions when compared to the genome average. Several analyses have demonstrated that relatively recent insertions of both elements show less G+C content bias relative to older elements. We have analyzed the repetitive element and G+C composition of more than 100 pre-insertion loci derived from de novo L1 insertions in cultured human cancer cells, which should represent an evolutionarily unbiased set of insertions. An A+T-rich bias is observed in the 50 bp flanking the endonuclease target site, consistent with the known target site for the L1 endonuclease. The L1, Alu, and G+C content of 20 kb of the de novo pre-insertion loci shows a different set of biases than that observed for fixed L1s in the human genome. In contrast to the insertion sites of genomic L1s, the de novo L1 pre-insertion loci are relatively L1-poor, Alu-rich and G+C neutral. Finally, a statistically significant cluster of de novo L1 insertions was localized in the vicinity of the c-myc gene. These results suggest that the initial insertion preference of L1, while A+T-rich in the initial vicinity of the break site, can be influenced by the broader content of the flanking genomic region and have implications for understanding the dynamics of L1 and Alu distributions in the human genome.  相似文献   

6.
Characterization of pre-insertion loci of de novo L1 insertions   总被引:1,自引:0,他引:1  
The human Long Interspersed Element-1 (LINE-1) and the Short Interspersed Element (SINE) Alu comprise 28% of the human genome. They share the same L1-encoded endonuclease for insertion, which recognizes an A+T-rich sequence. Under a simple model of insertion distribution, this nucleotide preference would lead to the prediction that the populations of both elements would be biased towards A+T-rich regions. Genomic L1 elements do show an A+T-rich bias. In contrast, Alu is biased towards G+C-rich regions when compared to the genome average. Several analyses have demonstrated that relatively recent insertions of both elements show less G+C content bias relative to older elements. We have analyzed the repetitive element and G+C composition of more than 100 pre-insertion loci derived from de novo L1 insertions in cultured human cancer cells, which should represent an evolutionarily unbiased set of insertions. An A+T-rich bias is observed in the 50 bp flanking the endonuclease target site, consistent with the known target site for the L1 endonuclease. The L1, Alu, and G+C content of 20 kb of the de novo pre-insertion loci shows a different set of biases than that observed for fixed L1s in the human genome. In contrast to the insertion sites of genomic L1s, the de novo L1 pre-insertion loci are relatively L1-poor, Alu-rich and G+C neutral. Finally, a statistically significant cluster of de novo L1 insertions was localized in the vicinity of the c-myc gene. These results suggest that the initial insertion preference of L1, while A+T-rich in the initial vicinity of the break site, can be influenced by the broader content of the flanking genomic region and have implications for understanding the dynamics of L1 and Alu distributions in the human genome.  相似文献   

7.
8.
Grover D  Kannan K  Brahmachari SK  Mukerji M 《Genetica》2005,124(2-3):273-289
Elucidation of complete nucleotide sequence of the human has revealed that coding sequences that store the information needed to synthesize functional proteins, occupy only 2% of the genomic region. The remaining 98%, barring few regulatory sequences, has been referred to as non-functional or junk DNA and consists of many kinds of repeat elements. In fact, human genome is the most repeat rich genome sequenced so far, in which more than half of the region is occupied by such sequences. Determination of significance of these repeats in the human genome has become the focus of many studies all over the world, especially after genome sequencing did not reveal any significant difference in coding regions between lower eukaryotes and human. In this article, we have focused on Alu repeats that are primate specific elements with many interesting biological properties. Moreover, these are the repeats with highest copy number in the human genome. We have highlighted different facets of their interaction with the genome and changing paradigms regarding their role in genome organization.  相似文献   

9.

Background

The studies on CpG islands (CGI) and Alu elements functions, evolution, and distribution in the genome started since the discovery in nineteen eighties (1981, 1986, correspondingly). Their highly skewed genome wide distribution implies the non-random retrotransposition pattern. Besides CGIs in gene promoters, CGIs clusters were observed in the homeobox gene regions and in the macrosatellites, but the whole picture of their distribution specifics was not grasped. Attempts to identify any causative features upon their (genome wide) distribution, such as the DNA context mediated preferred insertion sites of Alu repeats, have been made to ascribe their clusters location.

Methods

Recent emergence of high resolution 3D map of human genome allowed segregating the genome into the large scale chromatin domains of naturally observable nuclear subcompartments, or Topologically Associated Domains (TADs), designated by spatial chromatin distribution. We utilized the chromatin map to elucidate relations between large scale chromatin state and CpG rich elements landscape.In the course of analysis it was confirmed that genes, Alu and CGI clusters maintain obvious, albeit different in strength, preference for open chromatin. For the first time it was clearly shown that the clusters density of the Alu and CGIs monotonically depend on the chromatin accessibility rate. In particular, the highest density of these elements is found in A1 euchromatin regions characterized by a high density of small length genes replicating in the early S-phase. It implies that these elements mediate (CGIs) or are a side element (Alus) of chromatin accessibility.

Results

We elucidated that both methylated and non-methylated CGIs display the affinity to chromatin accessibility. As a part of comparative genomics section, we elucidated that the dog’s genome non-canonical structure, outstanding in mammals for its high CGIs abundance compared to gene number, is explained by the presence of dense tandem CGI extended hotspots (500 kb on average) in subtelomeric and pericentromeric regions with highly skewed CG content, and not by CGIs global distribution pattern shift.

Conclusions

The study underlines the close association of CG-rich elements distribution with the newly introduced large scale chromatin state map, proposing a refined standpoint on interrelation of aforementioned genome elements and the chromatin state. To our expertise, the TAD-associated partition model employed in the study is likely the most substantial one regarding CpG rich clusters distribution among the whole genome chromatin/isochores maps available.
  相似文献   

10.
Two highly contrasted images depict genomes: at first sight, genes appear to be distributed randomly along the chromosome. In contrast, their organisation into operons (or pathogenicity islands) suggests that, at least locally, related functions are in physical proximity. Analysis of the codon usage bias in orthologous genes in the genome of bacteria which diverged a long time ago suggested that some physical (architectural) selection pressure organised the distribution of genes along the chromosome. The metabolism of highly reactive species such as sulphur-containing molecules must be compartmentalised to escape the deleterious actions of diffusible reagents such as gases or radicals. We analysed the distribution of sulphur metabolism genes in the genome of Escherichia coli and found a number of them to be clustered into statistically significant islands. Another interesting feature of these genes is that the proteins they encode are significantly deprived of cysteine and methionine residues, as compared to the bulk proteins. We speculate that this clustering is associated to the organisation of sulphur metabolism proteins into islands where the sensitive sulphur-containing molecules are protected from reacting with elements in the environment such as dioxygen, nitric oxide or radicals.  相似文献   

11.
Through the sequence analysis of 27 imprinted human genes and a set of 100 control genes we have developed a novel approach for identifying candidate imprinted genes based on the differences in sequence composition observed. The imprinted genes were found to be associated with significantly reduced numbers of short interspersed transposable element (SINE) Alus and mammalian-wide interspersed repeat (MIR) repeat elements, as previously reported. In addition, a significant association between imprinted genes and increased numbers of low-complexity repeats was also evident. Numbers of the Alu classes AluJ and AluS were found to be significantly depleted in some parts of the flanking regions of imprinted genes. A recent study has proposed that there is active selection against SINE elements in imprinted regions. Alternatively, there may be differences in the rates of insertion of Alu elements. Our study indicates that this difference extends both upstream and downstream of the coding region. This and other consistent differences between the sequence characteristics of imprinted and control genes has enabled us to develop discriminant analysis, which can be used to screen the genome for candidate imprinted genes. We have applied this function to a number of genes whose imprinting status is disputed or uncertain.  相似文献   

12.
Shigella flexneri, which causes shigellosis in humans, evolved from Escherichia coli. The sequencing of Shigella genomes has revealed that a large number of insertion sequence (IS) elements (over 200 elements) reside in the genome. Although the presence of these elements has been noted previously and summarized, more detailed analyses are required to understand their evolutionary significance. Here, the genome of S. flexneri strain 2457T is used to investigate the spatial distribution of IS copies around the chromosome and the location of elements with respect to genes. It is found that most IS isoforms occur essentially randomly around the genome. Two exceptions are IS91 and IS911, which appear to cluster due to local hopping. The location of IS elements with respect to genes is biased, however, revealing the action of natural selection. The non-coding regions of the genome (no more than 21%) carry disproportionally more IS elements (at least 28%) than the coding regions, implying that selection acts against insertion into genes. Of the genes disrupted by ISs, those involved in signal transduction, intracellular trafficking, and cell motility are most commonly targeted, suggesting selection against genes in these categories.  相似文献   

13.
14.
15.
Small repeat sequences in bacterial genomes, which represent non-autonomous mobile elements, have close similarities to archaeon and eukaryotic miniature inverted repeat transposable elements. These repeat elements are found in both intergenic and intragenic chromosomal regions, and contain an array of diverse motifs. These can include DNA sequences containing an integration host factor binding site and a proposed DNA methyltransferase recognition site, transcribed RNA secondary structural motifs, which are involved in mRNA regulation, and translated open reading frames found fused to other open reading frames. Some bacterial mobile element fusions are in evolutionarily conserved protein and RNA genes. Others might represent or lead to creation of new protein genes. Here we review the remarkable properties of these small bacterial mobile elements in the context of possible beneficial roles resulting from random insertions into the genome.  相似文献   

16.
17.
The human genome is a mosaic of isochores, which are long DNA segments (300 kbp) relatively homogeneous in G+C. Human isochores were first identified by density-gradient ultracentrifugation of bulk DNA, and differ in important features, e.g. genes are found predominantly in the GC-richest isochores. Here, we use a reliable segmentation method to partition the longest contigs in the human genome draft sequence into long homogeneous genome regions (LHGRs), thereby revealing the isochore structure of the human genome. The advantages of the isochore maps presented here are: (1) sequence heterogeneities at different scales are shown in the same plot; (2) pair-wise compositional differences between adjacent regions are all statistically significant; (3) isochore boundaries are accurately defined to single base pair resolution; and (4) both gradual and abrupt isochore boundaries are simultaneously revealed. Taking advantage of the wide sample of genome sequence analyzed, we investigate the correspondence between LHGRs and true human isochores revealed through DNA centrifugation. LHGRs show many of the typical isochore features, mainly size distribution, G+C range, and proportions of the isochore classes. The relative density of genes, Alu and long interspersed nuclear element repeats and the different types of single nucleotide polymorphisms on LHGRs also coincide with expectations in true isochores. Potential applications of isochore maps range from the improvement of gene-finding algorithms to the prediction of linkage disequilibrium levels in association studies between marker genes and complex traits. The coordinates for the LHGRs identified in all the contigs longer than 2 Mb in the human genome sequence are available at the online resource on isochore mapping: http://bioinfo2.ugr.es/isochores.  相似文献   

18.
Alu elements are a class of repetitive DNA sequences found throughout the human genome that are thought to be duplicated via an RNA intermediate in a process termed retroposition. Recently inserted Alu elements are closely related, suggesting that they are derived from a single source gene or closely related source genes. Analysis of the type III collagen gene (COL3A1) revealed a polymorphic Alu insertion in intron 8 of the gene. The Alu insertion in the COL3A1 gene had a high degree of nucleotide identity to the Sb family of Alu elements, a family of older Alu elements. The Alu sequence was less similar to the consensus sequence for the PV or Sb2 subfamilies, subfamilies of recently inserted Alu elements. These data support the observations that at least three source genes are active in the human genome, one of which is distinct from the PV and Sb2 subfamilies and predates either of these two subfamilies. Appearance of the Alu insertion in different ethnic populations suggests that the insertion may have occurred in the last 100,000 years. This Alu insert should be a useful marker for population studies and for marking COL3A1 alleles.  相似文献   

19.
The nucleotide sequence of the beta globin gene cluster of the prosimian Galago crassicaudatus has been determined. A total sequence spanning 41,101 bp contains and links together previously published sequences of the five galago beta-like globin genes (5'-epsilon-gamma-psi eta-delta-beta-3'). A computer-aided search for middle interspersed repetitive sequences identified 10 LINE (L1) elements, including a 5' truncated repeat that is orthologous to the full-length L1 element found in the human epsilon-gamma intergenic region. SINE elements that were identified included one Alu type I repeat, four Alu type II repeats, and two methionine tRNA-derived Monomer (type III) elements. Alu type II and Monomer sequences are unique to the galago genome. Structural analyses of the cluster sequence reveals that it is relatively A+T rich (about 62%) and regions with high G+C content are associated primarily with globin coding regions. Comparative analyses with the beta globin cluster sequences of human, rabbit, and mouse reveal extensive sequence homologies in their genic regions, but only human, galago, and rabbit sequences share extensive intergenic sequence homologies. Divergence analyses of aligned intergenic and flanking sequences from orthologous human, galago, and rabbit sequences show a gradation in the rate of nucleotide sequence evolution along the cluster where sequences 5' of the epsilon globin gene region show the least sequence divergence and sequences just 5' of the beta globin gene region show the greatest sequence divergence.  相似文献   

20.
Alu retrotransposons do not show a homogeneous distribution over the human genome but have a higher density in GC-rich (H) than in AT-rich (L) isochores. However, since they preferentially insert into the L isochores, the question arises: What is the evolutionary mechanism that shifts the Alu density maximum from L to H isochores? To disclose the role played by each of the potential mechanisms involved in such biased distribution, we carried out a genome-wide analysis of the density of the Alus as a function of their evolutionary age, isochore membership, and intron vs. intergene location. Since Alus depend on the retrotransposase encoded by the LINE1 elements, we also studied the distribution of LINE1 to provide a complete evolutionary scenario. We consecutively check, and discard, the contributions of the Alu/LINE1 competition for retrotransposase, compositional matching pressure, and Alu overrepresentation in introns. In analyzing the role played by unequal recombination, we scan the genome for Alu trimers, a direct product of Alu–Alu recombination. Through computer simulations, we show that such trimers are much more frequent than expected, the observed/expected ratio being higher in L than in H isochores. This result, together with the known higher selective disadvantage of recombination products in H isochores, points to Alu–Alu recombination as the main agent provoking the density shift of Alus toward the GC-rich parts of the genome. Two independent pieces of evidence—the lower evolutionary divergence shown by recently inserted Alu subfamilies and the higher frequency of old stand-alone Alus in L isochores—support such a conclusion. Other evolutionary factors, such as population bottlenecks during primate speciation, may have accelerated the fast accumulation of Alus in GC-rich isochores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号