共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Dull AB Carlson DB Petrulis JR Perdew GH 《Archives of biochemistry and biophysics》2002,406(2):209-221
The cytosolic Ah receptor (AhR) heterocomplex consists of one molecule of the AhR, a 90-kDa heat shock protein (Hsp90) dimer, and one molecule of the hepatitis B virus X-associated protein 2 (XAP2). Serine residues 43,53,131-2, and 329 on XAP2-FLAG were identified as putative phosphorylation sites using site-directed mutagenesis followed by two-dimensional phosphopeptide mapping analysis. Protein kinase CK2 (CK2) was identified as the 45-kDa kinase from COS 1 cell or liver extracts that was responsible for phosphorylation of serine 43 in the XAP2 peptide 39-57. Loss of phosphorylation at any or all of the serine residues did not significantly affect the ability of XAP2-FLAG to bind to the murine AhR in rabbit reticulocyte lysate or Hsp90 in COS-1 cells. Furthermore, all of these serine mutants were able to sequester murine AhR-YFP into the cytoplasm as well as wild-type XAP2. YFP-XAP2 S53A was unable to enter the nucleus, indicating a potential role of phosphorylation in nuclear translocation of XAP2. 相似文献
4.
5.
6.
7.
Yáñez AJ Garcia-Rocha M Bertinat R Droppelmann C Concha II Guinovart JJ Slebe JC 《FEBS letters》2004,577(1-2):154-158
In primary cultured hepatocytes, fructose-1,6-bisphosphatase (FBPase) localization is modulated by glucose, dihydroxyacetone (DHA) and insulin. In the absence of these substrates, FBPase was present in the cytoplasm, but the addition of glucose or DHA induced its translocation to the nucleus. As expected, we observed the opposite effect of glucose on glucokinase localization. The addition of insulin in the absence of glucose largely increased the amount of nuclear FBPase. Moreover, at high concentrations of glucose or DHA, FBPase shifted from the cytosol to the cell periphery and co-localized with GS. Interestingly, the synthesis of Glu-6-P and glycogen induced by DHA was not inhibited by insulin. These results indicate that FBPase is involved in glycogen synthesis from gluconeogenic precursors. Overall, these findings show that translocation may be a new integrative mechanism for gluconeogenesis and glyconeogenesis. 相似文献
8.
9.
Subcellular localization and membrane topology of the Dengue virus type 2 Non-structural protein 4B 总被引:10,自引:0,他引:10
Dengue virus (DV) is a member of the family Flaviviridae. These positive strand RNA viruses encode a polyprotein that is processed in case of DV into 10 proteins. Although for most of these proteins distinct functions have been defined, this is less clear for the highly hydrophobic non-structural protein (NS) 4B. Despite its possible role as an antagonist of the interferon-induced antiviral response, this protein may play an additional more direct role for viral replication. In this study we determined the subcellular localization, membrane association, and membrane topology of DV NS4B. We found that NS4B resides primarily in cytoplasmic foci originating from the endoplasmic reticulum. NS4B colocalizes with NS3 and double-stranded RNA, an intermediate of viral replication, arguing that NS4B is part of the membrane-bound viral replication complex. Biochemical analysis revealed that NS4B is an integral membrane protein, and that its preceding 2K signal sequence is not required for this integration. We identified three membrane-spanning segments in the COOH-terminal part of NS4B that are sufficient to target a cytosolic marker protein to intracellular membranes. Furthermore, we established a membrane topology model of NS4B in which the NH2-terminal part of the protein is localized in the endoplasmic reticulum lumen, whereas the COOH-terminal part is composed of three trans-membrane domains with the COOH-terminal tail localized in the cytoplasm. This topology model provides a good starting point for a detailed investigation of the function of NS4B in the DV life cycle. 相似文献
10.
11.
Kang BH Xia F Pop R Dohi T Socolovsky M Altieri DC 《The Journal of biological chemistry》2011,286(19):16758-16767
Survivin is a multifunctional protein with essential roles in cell division and inhibition of apoptosis, but the molecular underpinnings of its cytoprotective properties are poorly understood. Here we show that homozygous deletion of the aryl hydrocarbon receptor-interacting protein (AIP), a survivin-associated immunophilin, causes embryonic lethality in mice by embryonic day 13.5-14, increased apoptosis of Ter119(-)/CD71(-) early erythropoietic progenitors, and loss of survivin expression in its cytosolic and mitochondrial compartments in vivo. In import assays using recombinant proteins, AIP directly mediated the import of survivin to mitochondria, thus enabling its anti-apoptotic function, whereas a survivin 1-141 mutant that does not bind AIP was not imported to mitochondria and failed to inhibit apoptosis. AIP-directed mitochondrial import of survivin did not affect cell division, was independent of the organelle transmembrane potential, did not require the chaperone Heat Shock Protein 90 (Hsp90), and was inhibited by cytosolic factor(s) present in normal cells. shRNA knockdown of the mitochondrial import receptor Tom20 abolished mitochondrial import of survivin and sensitized tumor cells to apoptosis, whereas silencing of Tom70 had no effect. Therefore, an AIP-Tom20 recognition contributes to cell survival in development and cancer by mediating the mitochondrial import of survivin. 相似文献
12.
Nucleolar localization of human hepatitis B virus capsid protein 总被引:8,自引:0,他引:8
Wild-type human hepatitis B virus (HBV) exhibits selective export of virions containing mature genomes. In contrast, changing an isoleucine to a leucine at amino acid 97 (I97L) of the HBV core antigen (HBcAg) causes it to release immature genomes. To elucidate the structure-function relationship of HBcAg at amino acid 97, we systematically replaced the isoleucine residue at this position with 18 other amino acids via mutagenesis. Twelve of the 18 mutants exhibited no significant phenotype, while five new mutants displayed strong phenotypes. The I97D mutant had a near lethal phenotype, the I97P mutant exhibited a significantly reduced level of virion secretion, and the I97G mutant lacked the full-length relaxed circular form of viral DNA. The tip of the spike of the capsid particle is known to contain a predominant B-cell epitope. However, the recognition of this exposed epitope by an anti-HBc antibody appeared to be affected by the I97E mutation or by histidine tagging at the C terminus of mutant HBcAg, which is presumably in the capsid interior. Surprisingly, the nuclear HBcAg of mutants I97E and I97W, produced from either a replicon or an expression vector, was found to be colocalized with nucleolin and B23 at a frequency of nearly 100% by confocal immunofluorescence microscopy. In contrast, this colocalization occurred with wild-type HBcAg only to a limited extent. We also noted that nucleolin-colocalizing cells were often binucleated or apoptotic, suggesting that the presence of HBcAg in the nucleolus may perturb cytokinesis. The mechanism of this phenomenon and its potential involvement in liver pathogenesis are discussed. To our knowledge, this is the first report of nucleolar HBcAg in culture. 相似文献
13.
In an effort to better understand the Ah receptor nuclear translocator (Arnt)-dependent signaling mechanisms, we employed a phage display system to identify Arnt-interacting peptides. Human liver cDNA library was utilized to screen for Arnt-interacting peptides using an Arnt construct fused to thioredoxin (TH-ArntCDelta418). Two clones, namely Ainp1 and Ainp2 (Arnt-interacting peptide), were identified and subsequently Ainp2 was further characterized. Ainp2 interacts with TH-ArntCDelta418 in the GST pull-down and mammalian two-hybrid assays. Northern blot results revealed that Ainp2 is predominantly expressed in human liver. The putative full-length Ainp2 cDNA sequence was subsequently cloned using RACE PCR. Endogenous expression of Ainp2 was found in Jurkat cells at the mRNA and protein levels. Results from the transient transfection studies using a DRE-driven reporter plasmid and the real-time QPCR experiments examining the endogenous CYP1A1 expression showed that Ainp2 enhances the 3-methylchloranthrene-induced activity in HepG2 cells, suggesting that Ainp2 plays a role in the Arnt-dependent function 相似文献
14.
The involvement of protein tyrosine kinases (PTKs) in aryl hydrocarbon receptor (AhR)-mediated signalling by omeprazole and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was investigated in hepatoma cells. Both omeprazole- and TCDD-dependent AhR signalling was attenuated by inhibition of c-src kinase, either by using pyrazolopyrimidine 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4 ]pyrimidine (PP1) and 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) inhibitors or by expression of dominant-negative c-src. These results indicate that the overall AhR function is modulated by c-src kinase activity. In contrast, a selective inhibition of omeprazole-mediated AhR signalling was revealed by tyrosine kinase inhibitors, tyrphostins AG17 and AG879. Furthermore, omeprazole-dependent AhR activation was abolished by mutation of Tyr320 to Phe, suggesting that this residue is a putative phosphorylation site. TCDD-dependent AhR signalling was neither affected by tyrphostins nor by this mutation. Our results are consistent with activation of the AhR by omeprazole in a ligand-independent manner, via a signal transduction pathway that involves protein tyrosine kinases, and are different from the mechanism exerted by high-affinity ligands. 相似文献
15.
16.
17.
18.
Subcellular localization of protein kinase CK2 总被引:17,自引:0,他引:17
More than 46 years ago, Burnett and Kennedy first described protein kinase CK2 (formerly known as casein kinase 2) in liver extracts. Since then, protein kinase CK2 has been investigated in many organisms from yeast to man. It is now well established that protein kinase CK2 is a pleiotropic and ubiquitous serine or threonine kinase, which is highly conserved during evolution. A great number of studies deal with substrates of CK2, but the fact that over 160 substrates exist is more confusing than elucidatory. The holoenzyme is composed of two regulatory beta-subunits and two catalytic alpha- or alpha'-subunits. There is now increasing evidence for individual functions of the subunits that are different from their functions in the holoenzyme. Furthermore, more and more studies describe interacting partners of the kinase that may be decisive in the regulation of this enzyme. A big step forward has been the determination of the crystal structure of the two subunits of protein kinase CK2. Now the interactions of the catalytic subunit of CK2 with ATP as well as GTP and the interaction between the regulatory subunits can be explained. However, cellular functions of protein kinase CK2 still remain unclear. In the present review we will focus our interest on the subcellular localization of protein kinase CK2. Protein kinase CK2 is found in many organisms and tissues and nearly every subcellular compartment. There is ample evidence that protein kinase CK2 has different functions in these compartments and that the subcellular localization of protein kinase CK2 is tightly regulated. Therefore studying the subcellular localization of protein kinase CK2 may be a key to its function. 相似文献
19.
Human populations are increasingly exposed to a number of environmental pollutants such as polycyclic aromatic hydrocarbons, polychlorinated biphenyls and dioxins. These compounds are activators of the aryl hydrocarbon receptor (AhR) that controls the expression of many genes including those for detoxification enzymes. The regulatory mechanisms of AhR are multi-factorial and include phosphorylation by various protein kinases. Significant progress in the research of mitogen-activated protein kinases (MAPKs) has been achieved in the last decade. Isolated reports have been published on the role of MAPKs in AhR functions and vice versa, with activation of MAPKs by AhR ligands. This mini-review summarizes current knowledge on the mutual interactions between MAPKs and AhR. The majority of studies has been done on cancer-derived cell lines that have impaired cell cycle regulation and lacks the complete detoxification apparatus. We emphasize the importance of the future studies that should be done on non-transformed cells to distinguish the role of MAPKs in cancer and normal cells. Primary cultures of human or rodent hepatocytes that are equipped with a fully functional biotransformation battery or xenobiotics-metabolizing extra-hepatic tissues should be the models of choice, as the results in our experiments confirm. 相似文献
20.
Hepatitis B virus (HBV) and hepatitis delta virus (HDV) are major sources of acute and chronic hepatitis. HDV requires the envelope proteins of HBV for the processes of assembly and infection of new cells. Both viruses are able to infect hepatocytes though previous studies have failed to determine the mechanism of entry into such cells. This study began with evidence that suramin, a symmetrical hexasulfated napthylurea, could block HDV entry into primary human hepatocytes (PHH) and was then extrapolated to incorporate findings of others that suramin is one of many compounds that can block activation of purinergic receptors. Thus other inhibitors, pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS) and brilliant blue G (BBG), both structurally unrelated to suramin, were tested and found to inhibit HDV and HBV infections of PHH. BBG, unlike suramin and PPADS, is known to be more specific for just one purinergic receptor, P2X7. These studies provide the first evidence that purinergic receptor functionality is necessary for virus entry. Furthermore, since P2X7 activation is known to be a major component of inflammatory responses, it is proposed that HDV and HBV attachment to susceptible cells, might also contribute to inflammation in the liver, that is, hepatitis. 相似文献