首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the retina of chimaeric mice of rd and wild-type genotypic combination, selective loss of rd/rd photoreceptor cells, after initial development, leads to a mosaic retina with variable amounts of normal photoreceptor cells present over the retinal surface. In some of the rod terminals of these retinas the synaptic complexes with the second order retinal neurons are seen to contain multiple synaptic ribbons and an increased number of profiles of the postsynaptic elements. These changes are observed only in the rod terminals and not in the cone pedicles. Computer aided three-dimensional reconstruction of the altered synapses shows that these changes result from an increase in the number of synaptic sites, characterized by multiplication of the synaptic ribbons and enlargement of the second order neuronal processes. A quantitative analysis of such synapses, based on serial electron micrographs, shows that these are most frequently located in the retinal regions of the chimaeric individuals that have suffered maximum photoreceptor cell loss. Thus synaptic growth appears to take place as a reaction to the reduction of afferent input to the postsynaptic components. These findings demonstrate persistent synaptic plasticity in the rod terminals of mammalian retina during the maturational phase of late postnatal development. Compensatory synaptic growth in the rod terminals, as recorded here, can have important implications for the maintenance of visual sensitivity in the diseased or ageing retina.  相似文献   

2.
Summary The differentiation of cells and synapses in explants of 9-day-old chick embryo retina has been studied by light and electron microscopy over a period of 35 days in vitro, and samples of retina from the 9-day chick foetus were directly fixed and prepared for study.At the time of explantation the retinae were poorly differentiated and no lamination was apparent. From day 14 onwards, (i) outer and inner nuclear layers (ONL, INL) separated by a layer of neuropil corresponding to the outer plexiform layer (OPL) and (ii) a layer of scattered large ganglion cells separated from the INL by a zone of neuropil resembling the inner plexiform layer (IPL) were apparent, and (iii) a well-differentiated outer limiting membrane was established close to the surface of the explants. In the oldest cultures some development of photoreceptor outer segments occurred but a distinct optic nerve fibre layer did not form.Although cell identification presented problems even in the oldest cultures, the major retinal cell types described in vivo could be identified. Photoreceptor cells developed pedicles in the OPL which became filled with synaptic vesicles and synaptic ribbons and established ribbon synapses (including triads) with and were commonly invaginated by processes from horizontal and bipolar cells. Processes of bipolar cells in the IPL formed simple and dyad synapses. At least two types of presynaptic amacrine cells were also identified in the INL, one of which contained large numbers of dense-core vesicles. The ganglion cells, though sparse, were large and well differentiated.These findings show that all the major neuronal types of the retina are capable of developing and differentiating in vitro, lagging behind the time-table of development and differentiation in vivo by approximately 7 days, but resulting in a histotypically organised retina with synaptic neuropil showing many similarities to the corresponding neuropil in vivo.  相似文献   

3.
In the first optic neuropile of the housefly Musca, photoreceptor terminals innervate fixed clusters of interneurons, one of which is the monopolar cell L2; L2's synapses in turn feed back upon the terminals. We examined the ultrastructure of these feedback synapses following degeneration of their normal targets, the receptor terminals; this was accomplished by photo-ablating the receptor cells after intraretinal injections of sulforhodamine. Even when all the terminals degenerated, their deafferentated target cells, including L2, remained structurally intact for at least 14 d. Despite this lack of obvious trans-synaptic degeneration, L2's synaptic connections did alter. Presynaptic organelles of the feedback synapses, synaptic ribbons and associated synaptic vesicles, soon appeared in L2's cytoplasm, separating from their site of attachment at the presynaptic membrane by invagination. Similar free-floating organelles and vesicles also occurred in another monopolar cell, L4. They were also occasionally encountered in L2, in normal, newly emerged flies at a time when a naturally occurring loss of feedback synapses is greatest. We interpret the process of internalization that forms these floating ribbons to be the first step in synaptic loss which occurs spontaneously, and that the rate is enhanced in L2 when its main synaptic targets, the receptor terminals, degenerate.  相似文献   

4.
Abstract— Choline acetyltransferase (ChAc) activity was determined in retinal layers from 10 vertebrates. In all animals, the highest activity was in the inner plexiform layer, intermediate activity in the inner nuclear and ganglion cell layers, and very low activity in the photoreceptor and outer plexiform layers and optic nerve. The pattern of distribution of enzyme activity within the inner nuclear layer corresponds quantitatively to the distribution of amacrine cells within that layer. A species difference of almost 90-fold was found between the lowest and highest values for ChAc activity in inner plexiform layer. The variation in enzyme activity found among homeotherms in inner nuclear and inner plexiform layers is related to the number of amacrine cell synapses in the inner plexiform layer. But the differences in enzyme activity are generally greater than those which have been found in numbers of amacrine cell synapses between species. The data suggest that cholinergic neurons in retina are to be found predominantly among the amacrine cell types and that not all amacrine cells will be found to be cholinergic.  相似文献   

5.
The development of the retinal receptor cell in the young tadpoles (Bufo raddei Strauch), from the stage 20 to the stage 25, was studied by TEM and immunohistochemical method. The morphological differentiation of the photoreceptor cell may be described as follows. The time and the degree of differentiation of the cells in the tadpole retina is asynchronous between central (posterior pole) and peripheral parts of the tadpole retina, namely, they are earlier and higher in the central than in the peripheral. The cells of the outer nuclear layer are undifferentiated at the stage 20. The cells in the posterior part of the retina elongate at the beginning of the stage 21 (Plate I, Fig. 1). This is the first sign of differentiation in the photoreceptor cell. A small hillock-like process forms the inner segment at the scleral pole of the receptor cell. The inner segment is rich in mitochondria, rough-surfaced cytomembrane, free ribosomes, and vesicles. One or two large lipid droplets are also found in the inner segment (Plate I Fig. 2-3). Later on, the connecting structure develops at the tip of the inner segment. The newly formed filaments and the plasma membrane form the outer segment. Its membrane forms some evaginations oriented perpendicularly to the longitudinal axis of the receptor cell. In this way, disks of the outer segment are formed (Plate I Fig. 4-5). The length of the outer segment gradually increases with the number of disks increasing at the base. At the same time, an axon process of receptor cell, extending vitreal, develops synapses with dendrites of the bipolar cell in the outer plexiform layer. At the beginning (the stage 22), the synaptic structure is an immature form that lacks synaptic ribbons and vesicles (Plate II Fig. 8). Later on, ribbons and vesicles are observed in the further developed synaptic structure (Plate II Fig. 9). The toad rhodopsin was prepared by a method of Dewey et al. (1969) and Papermaster & Dreyer (1974) with slight modification. A specific immune serum against the toad rhodopsin was produced in rabbits. Using the indirect Coon's antibody technique, the localization of the rhodopsin antibody and the time when the antibody was seen in the retina of the early developing tadpoles was traced.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Summary Retinal bundles, connecting the retina of the octopus to the ipsilateral optic lobe, contain both retinal photoreceptor axons that terminate in the optic lobe and centrifugal axons whose cell bodies lie within the lobe. Staining axonal elements in proximal stubs of individual retinal bundles by cobalt diffusion and subsequent sulphide treatment reveals the topographic relationship between afferent terminals and centrifugal cell bodies. At the outer border of the plexiform layer, stained terminal bags (photoreceptor axon enlargements), an indicator of photoreceptor terminal spread within this layer, overlap stained centrifugal cell bodies located within the inner granule layer. The details of this overlap indicate a dorsoventral representation of each retinal bundle within the optic lobe cortex.  相似文献   

7.
Summary Retinae from two- and three-day-old rats were explanted in plasma clots and grown in vitro with the flying coverslip method. After seven to seventeen days in culture, the retinal tissue was fixed with aldehydes and osmium tetroxide and embedded for examination with the electron microscope. Study of cross sections (perpendicular to the coverslip) revealed a histotypic pattern of organization, especially in the thicker regions of the explants. Layering of cells quite similar to that in the intact retina was seen to develop from the relatively primitive, explanted retinal epithelium. However, each layer contained fewer cells than its counterpart in vivo. All major neuronal cell types were distinguished by their location and cytological characteristics. Development of the saccules of sensory cell outer segments was observed to occur in vitro by an infolding of the plasma membrane. Synaptic ribbon complexes developed to the mature form in the outer plexiform layers, while conventional synapses were numerous in the inner plexiform layers. Synaptic ribbons were also seen in bipolar cell axons in the inner plexiform layers. Amacrine and ganglion cells in these regions were relatively sparse. A survey of posterior regions of noncultured three-day-old rat retinae showed no synapses of any sort; therefore the synapses in the cultures formed in vitro. The retina is recommended for studies of synaptogenesis in tissue culture, for it offers several advantages over expiants from other areas of the neuraxis, including a clear layering pattern, many identifiable cell processes with characteristic synaptic relationships between them, and a well-defined sequence of developmental events.Dedicated to Professor Wolfgang Bargmann on the occasion of his 65th birthday.  相似文献   

8.
Calmodulin-dependent protein phosphatase, previously called CaM-BP80 or calcineurin, is present in high concentrations in the central nervous system. The level of the phosphatase has been shown by radioimmunoassay to increase during development in the retinas of embryonic and hatching chicks (Tallant, E.A., and W.Y. Cheung, 1983, Biochemistry, 22:3630-3635). The aims of this study are to immunocytochemically localize the phosphatase in developing and mature retinas and to determine if the phosphatase is present in fractions of retinal synaptic membranes and synaptic junctions. Vibratome slices of fixed chick retina and Western blots of detergent-solubilized retinal fractions are both treated sequentially with rabbit primary antisera and goat anti-rabbit Fab fragments conjugated to peroxidase, and then reacted with hydrogen peroxide and diaminobenzidine. The tissue slices are further processed for electron microscopy. This paper demonstrates the presence of peroxidase reaction product in the retina just before synapse formation. In the outer plexiform layer the product is confined to photoreceptor synaptic terminals, whereas in the inner plexiform layer it is present in synaptic terminals of bipolar cells and in dendrites of ganglion cells. In this latter site the product is present postsynaptically at bipolar and amacrine synapses. The phosphatase is detected in Western blots of both synaptic plasma membrane and synaptic junction fractions.  相似文献   

9.
In the mammalian retina, bipolar cells and ganglion cells which stratify in sublamina a of the inner plexiform layer (IPL) show OFF responses to light stimuli while those that stratify in sublamina b show ON responses. This functional relationship between anatomy and physiology is a key principle of retinal organization. However, there are at least three types of retinal neurons, including intrinsically photosensitive retinal ganglion cells (ipRGCs) and dopaminergic amacrine cells, which violate this principle. These cell types have light-driven ON responses, but their dendrites mainly stratify in sublamina a of the IPL, the OFF sublayer. Recent anatomical studies suggested that certain ON cone bipolar cells make axonal or ectopic synapses as they descend through sublamina a, thus providing ON input to cells which stratify in the OFF sublayer. Using immunoelectron microscopy with 3-dimensional reconstruction, we have identified axonal synapses of ON cone bipolar cells in the rabbit retina. Ten calbindin ON cone bipolar axons made en passant ribbon synapses onto amacrine or ganglion dendrites in sublamina a of the IPL. Compared to the ribbon synapses made by bipolar terminals, these axonal ribbon synapses were characterized by a broad postsynaptic element that appeared as a monad and by the presence of multiple short synaptic ribbons. These findings confirm that certain ON cone bipolar cells can provide ON input to amacrine and ganglion cells whose dendrites stratify in the OFF sublayer via axonal synapses. The monadic synapse with multiple ribbons may be a diagnostic feature of the ON cone bipolar axonal synapse in sublamina a. The presence of multiple ribbons and a broad postsynaptic density suggest these structures may be very efficient synapses. We also identified axonal inputs to ipRGCs with the architecture described above.  相似文献   

10.
The structure of light- and dark-adapted retina of the black bass, Micropterus salmoides has been studied by light and electron microscopy. This retina lacks blood vessels at all levels. The optic fiber layer is divided into fascicles by the processes of Müller cells and the ganglion cell layer is represented by a single row of voluminous cells. The inner nuclear layer consists of two layers of horizontal cells and bipolar, amacrine and interplexiform cells. In the outer plexiform layer we observed the synaptic terminals of photoreceptor cells, rod spherules and cone pedicles and terminal processes of bipolar and horizontal cells. The spherules have a single synaptic ribbon and the pedicles possess multiple synaptic ribbons. Morphologically, we have identified three types of photoreceptors: rods, single cones and equal double cones which undergo retinomotor movements in response to changes in light conditions. The cones are arranged in a square mosaic whereas the rods are dispersed between the cones.  相似文献   

11.
Previous studies have analyzed photoreceptor development, some inner retina cell types, and specific neurotransmitters in the zebrafish retina. However, only minor attention has been paid to the morphology of the synaptic connection between photoreceptors and second order neurons even though it represents the transition from the light sensitive receptor to the neuronal network of the visual system. Here, we describe the appearance and differentiation of pre- and postsynaptic elements at cone synapses in the developing zebrafish retina together with the maturation of the directly connecting second order neurons and a dopaminergic third order feedback-neuron from the inner retina. Zebrafish larvae were examined at developmental stages from 2 to 7dpf (days postfertilization) and in the adult. Synaptic maturation at the photoreceptor terminals was examined with antibodies against synapse associated proteins. The appearance of synaptic plasticity at the so-called spinule-type synapses between cones and horizontal cells was assessed by electron microscopy, and the maturation of photoreceptor downstream connection was identified by immunocytochemistry for GluR4 (AMPA-type glutamate receptor subunit), protein kinase beta(1) (mixed rod-cone bipolar cells), and tyrosine hydroxylase (dopaminergic interplexiform cells). We found that developing zebrafish retinas possess first synaptic structures at the cone terminal as early as 3.5dpf. Morphological maturation of these synapses at 3.5-4dpf, together with the presence of synapse associated proteins at 2.5dpf and the maturation of second order neurons by 5dpf, indicate functional synaptic connectivity and plasticity between the cones and their second order neurons already at 5dpf. However, the mere number of spinules and ribbons at 7dpf still remains below the adult values, indicating that synaptic functionality of the zebrafish retina is not entirely completed at this stage of development.  相似文献   

12.
Pineal "synaptic" ribbons are a heterogeneous population of organelles. "Synaptic" ribbons (SR) sensu stricto, "synaptic" spherules (SS), and intermediate forms (IMF) are present. Their function and origin are unknown, and a knowledge of their prenatal development is lacking. Thus the pineal glands of prenatal, neonatal, and adult guinea pigs were prepared for electron microscopy. "Synaptic" ribbons were studied morphologically and quantitatively. The three categories of "synaptic" ribbons reported in adult pineal glands were also present in prenatal pineal glands. Their structural features, distribution, grouping, and composition patterns are similar to those in adults. "Synaptic" ribbons were first detected in pinealocytes of the distal region of a 42-day postcoitus (PC) pineal gland and were comparable with those in adults. They increased in number with age and reached a peak at 63 days PC, followed by a steep decline at 66 and 67 days PC. By day 69 PC, the numbers increased again and showed a dramatic increase after birth. Several true ribbon synapses were seen at day 63 PC between pinealocyte cell processes or between pinealocyte cell process and pinealocyte cell body. Since true ribbon synapses have not been found in adult guinea pig pinealocytes, their synaptic nature could have been lost during development. No precursors for the "synaptic" ribbons were found. The endoplasmic reticulum cisternae may be the origin for the ribbon vesicles because of their close association with the "synaptic" ribbons.  相似文献   

13.
Summary The ultrastructural localization of endogenous calcium in the retina of adult cichlid fishOreochromis mossambicus (Teleostei) was studied using the cytochemical osmiate-bichromate method of Probst (1986). The specificity of this method for calcium localization was proven by means of EGTA treatment of ultrathin sections and electronspectroscopic-imaging technique (ESI) with an energy-filtering transmission electron microscope (CEM 902, Zeiss). Large amounts of electron-dense calcium containing deposits were found in the outer segments of rods, in the synaptic vesicles of receptor terminals and bipolar cells, in the perinuclear space of photoreceptors and in the endoplasmic reticulum of different cell types, especially in the inner segment and fibres of photoreceptor cells. In the inner plexiform layer calcium was detected in the extracellular space with greater accumulations in the synaptic cleft. Principal differences in the localization of calcium between rods and cones and between several types of synapses and vesicles are shown. The possible role of calcium in the subcellular structures of retinal cells is discussed.  相似文献   

14.
The organization, morphological characteristics, and synaptic structure of photoreceptors in the adult zebrafish retina were studied using light and electron microscopy. Adult photoreceptors show a typical ordered tier arrangement with rods easily distinguished from cones based on outer segment (OS) morphology. Both rods and cones contain mitochondria within the inner segments (IS), including the large, electron-dense megamitochondria previously described (Kim et al.) Four major ultrastructural differences were observed between zebrafish rods and cones: (1) the membranes of cone lamellar disks showed a wider variety of relationships to the plasma membrane than those of rods, (2) cone pedicles typically had multiple synaptic ribbons, while rod spherules had 1-2 ribbons, (3) synaptic ribbons in rod spherules were ∼2 times longer than ribbons in cone pedicles, and (4) rod spherules had a more electron-dense cytoplasm than cone pedicles. Examination of photoreceptor terminals identified four synaptic relationships at cone pedicles: (1) invaginating contacts postsynaptic to cone ribbons forming dyad, triad, and quadrad synapses, (2) presumed gap junctions connecting adjacent postsynaptic processes invaginating into cone terminals, (3) basal junctions away from synaptic ribbons, and (4) gap junctions between adjacent photoreceptor terminals. More vitread and slightly farther removed from photoreceptor terminals, extracellular microtubule-like structures were identified in association with presumed horizontal cell processes in the OPL. These findings, the first to document the ultrastructure of the distal retina in adult zebrafish, indicate that zebrafish photoreceptors have many characteristics similar to other species, further supporting the use of zebrafish as a model for the vertebrate visual system.  相似文献   

15.
Guanylate cyclase activating proteins are EF-hand containing proteins that confer calcium sensitivity to retinal guanylate cyclase at the outer segment discs of photoreceptor cells. By making the rate of cGMP synthesis dependent on the free intracellular calcium levels set by illumination, GCAPs play a fundamental role in the recovery of the light response and light adaptation. The main isoforms GCAP1 and GCAP2 also localize to the synaptic terminal, where their function is not known. Based on the reported interaction of GCAP2 with Ribeye, the major component of synaptic ribbons, it was proposed that GCAP2 could mediate the synaptic ribbon dynamic changes that happen in response to light. We here present a thorough ultrastructural analysis of rod synaptic terminals in loss-of-function (GCAP1/GCAP2 double knockout) and gain-of-function (transgenic overexpression) mouse models of GCAP2. Rod synaptic ribbons in GCAPs-/- mice did not differ from wildtype ribbons when mice were raised in constant darkness, indicating that GCAPs are not required for ribbon early assembly or maturation. Transgenic overexpression of GCAP2 in rods led to a shortening of synaptic ribbons, and to a higher than normal percentage of club-shaped and spherical ribbon morphologies. Restoration of GCAP2 expression in the GCAPs-/- background (GCAP2 expression in the absence of endogenous GCAP1) had the striking result of shortening ribbon length to a much higher degree than overexpression of GCAP2 in the wildtype background, as well as reducing the thickness of the outer plexiform layer without affecting the number of rod photoreceptor cells. These results indicate that preservation of the GCAP1 to GCAP2 relative levels is relevant for maintaining the integrity of the synaptic terminal. Our demonstration of GCAP2 immunolocalization at synaptic ribbons at the ultrastructural level would support a role of GCAPs at mediating the effect of light on morphological remodeling changes of synaptic ribbons.  相似文献   

16.
Stratospheroids are three-dimensional cellular spheres which develop in vitro through the proliferation and differentiation of retinal neuroepithelial precursor cells. We investigated synapse formation in stratospheroids by analyzing the development of aggregates of synapse-associated molecules and of electron microscopically identifiable synaptic specializations. Our results show that the first aggregates of the GABA(A) receptor, the glycine receptor, and gephyrin appear in the inner plexiform layer after 8 days in culture simultaneously with the development of the first active zones and postsynaptic densities. In contrast, presynaptic molecules including synaptophysin could be detected in the inner plexiform layer before synaptogenesis, suggesting functions for these molecules in addition to neurotransmitter exocytosis at mature synapses. Similar to the retina in vivo, synapses were not found in the nuclear layers of stratospheroids. We also analyzed the isoform pattern, expression, and distribution of the extracellular matrix molecule agrin, a key regulator during formation, maintenance, and regeneration of the neuromuscular junction. In stratospheroids, several agrin isoforms were expressed as highly glycosylated proteins with an apparent molecular weight of approximately 400 kDa, similar to the molecular weight of agrin in the retina in vivo. The expression specifically of the neuronal isoforms of agrin was concurrent with the onset of synaptogenesis. Moreover, the neuronal agrin isoforms were exclusively found in the synapse-containing inner plexiform layer, whereas other agrin isoforms were associated also with the inner limiting membrane and with Müller glial cells. These results show that synapse formation is very similar in stratospheroids and in the retina in vivo, and they suggest an important role for agrin during CNS development.  相似文献   

17.
CRB3 (Crumbs homologue 3), a member of the CRB protein family (homologous to the Drosophila Crumbs), is expressed in different epithelium-derived cell types in mammals, where it seems to be involved in regulating the establishment and stability of tight junctions and in ciliogenesis. This protein has been also detected in the retina, but little is known about its localization and function in this tissue. Our goal here was to perform an in-depth study of the presence of CRB3 protein in the mouse retina and to analyze its expression during photoreceptor ciliogenesis and the establishment of the plexiform retinal layers. Double immunofluorescence experiments for CRB3 and well-known markers for the different retinal cell types were performed to study the localization of the CRB3 protein. According to our results, CRB3 is present from postnatal day 0 (P0) until adulthood in the mouse retina. It is localized in the inner segments (IS) of photoreceptor cells, especially concentrated in the area where the connecting cilium is located, in their synaptic terminals in the outer plexiform layer (OPL), and in sub-populations of amacrine and bipolar cells in the inner plexiform layer (IPL).  相似文献   

18.
In the vertebrate retina the presence of synaptic ribbons (SRs) is well documented in two sites only, viz., in photoreceptor axon terminals in the outer plexiform layer and in bipolar cell axons in the inner plexiform layer. The present paper reports the presence of non-photoreceptor SRs in the outer plexiform layer of cattle and mouse, where they were seen in small numbers in thin cell processes near cone pedicles of light-adapted animals. They were never seen near rod spherules. Quantitative data obtained in mice killed at different time-points revealed that the SRs under consideration increased in number during day time and were absent during the dark phase. Moreover, under high light intensity of 10000 lux they were more frequent in number compared to 100-lux-exposed animals. It is concluded that the cell processes revealing the temporary presence of SRs are processes of flat bipolar cells which may provide a feedback to cones during the light phase.  相似文献   

19.
Munc119 (also denoted as RG4) is a mammalian ortholog of the Caenorhabditis elegans protein unc119 and is essential for vision and synaptic transmission at photoreceptor ribbon synapses by unknown molecular mechanisms. Munc119/RG4 is related to the prenyl-binding protein PrBP/delta and expressed at high levels in photoreceptor ribbon synapses. Synaptic ribbons are presynaptic specializations in the active zone of these tonically active synapses and contain RIBEYE as a unique and major component. In the present study, we identified Munc119 as a RIBEYE-interacting protein at photoreceptor ribbon synapses using five independent approaches. The PrBP/delta homology domain of Munc119 is essential for the interaction with the NADH binding region of RIBEYE(B) domain. But RIBEYE-Munc119 interaction does not depend on NADH binding. A RIBEYE point mutant (RE(B)E844Q) that no longer interacted with Munc119 still bound NADH, arguing that binding of Munc119 and NADH to RIBEYE are independent from each other. Our data indicate that Munc119 is a synaptic ribbon-associated component. We show that Munc119 can be recruited to synaptic ribbons via its interaction with RIBEYE. Our data suggest that the RIBEYE-Munc119 interaction is essential for synaptic transmission at the photoreceptor ribbon synapse.  相似文献   

20.
Summary In the normal histogenesis of mouse retina localized distribution of acid phosphatase positive granules has been seen around the photoreceptor cell nuclei along the outer limiting membrane. These granules disappear during the development of the rod elements. Temporarily increased activity is also seen along the nuclei of the inner layer adjacent to and in the course of the development of the outer and the inner plexiform layers. Within the inner nuclear layer, the cells at the outer and inner rows develop localized acid phosphatase positive granules which persist in the adult retina. Ganglion cells and the layer of nerve fibres show little change. In the pigment epithelium the enzyme gradually increases. In mice, homozygous for the retinal degeneration gene, degenerating photoreceptor cell nuclei, characterized by perinuclear acid phosphatase staining, can be detected before morphological signs of degeneration. Increased frequency of such nuclei and intensity of staining are recorded with the progress of degeneration. Enzyme activity in the photoreceptor cells, within the inner nuclear layer and in the degenerating photoreceptor cell nuclei is demonstrable using naphthol substrates but not -glycerophosphate. Positive reaction with -glycerophosphate is obtained in these sites in the presence of dimethyl sulphoxide. Existence of differential permeability among the retinal lysosomes is tentatively suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号