首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
This study was designed to test 3 approaches for insemination and transfer of oocytes to recipient mares. Oocytes were recovered transvaginally from naturally cycling donor mares 24 to 26 h after an intravenous injection of 2500 IU of hCG when follicles reached 35 mm in diameter. Multiple oocytes (1 to 4) were transferred surgically into the oviducts of 4 or 5 recipient mares per group. Three groups of transfers were compared: 1) transfer of oocytes cultured in vitro for 12 to 14 h postcollection with insemination of the recipient 2 h postsurgery; 2) transfer of oocytes into the oviduct within 1 h of collection, with completion of oocyte maturation occurring within the oviduct, and insemination of the recipient 14 to 16 h postsurgery; and 3) transfer of spermatozoa and oocytes (cultured 12 to 14 h in vitro) into the oviduct. Numbers of embryos detected by Day 16 of gestation were not different (P>0. 1) for groups 1, 2, and 3 (57%, 43% and 27%). Therefore, equine oocytes successfully completed the final stages of maturation within the oviduct, and sperm deposited within the oviduct were capable of fertilizing oocytes.  相似文献   

2.
Successful cryopreservation of mammalian oocytes would provide a steady source of materials for nuclear transfer and in vitro embryo production. Our goal was to develop an effective vitrification protocol to cryopreserve bovine oocytes for research and practice of parthenogenetic activation, in vitro fertilization, and nuclear transfer. Bovine oocytes matured in vitro were placed in 4% ethylene glycol (EG) in TCM 199 plus 20% fetal bovine serum (FBS) at 39 degrees C for 12-15 min, and then transferred to a vitrification solution (35% EG, 5% polyvinyl-pyrrolidone, 0.4 M trehalose in TCM 199 and 20% FBS). Oocytes were vitrified in microdrops on a precooled (-150 degrees C) metal surface (solid-surface vitrification). The vitrified microdrops were stored in liquid nitrogen and were either immediately thawed or were thawed after storage for 2-3 wk. Surviving oocytes were subjected to 1) parthenogenetic activation, 2) in vitro fertilization, or 3) nuclear transfer with cultured adult fibroblast cells. Treated oocytes were cultured in KSOM containing BSA or FBS for 9 to 10 days. Embryo development rates were recorded daily and morphologically high-quality blastocysts were cryopreserved for nuclear transfer-derived embryos at Day 7 or Day 8 of culture. Immediate survival of vitrified/thawed oocytes varied between 77% and 86%. Cleavage and blastocyst development rates of vitrified oocytes following in vitro fertilization or activation were lower than those of the controls. For nuclear transfer, however, vitrified oocytes supported embryonic development as equally well as fresh oocytes.  相似文献   

3.
Transportation of equine ovaries would allow shipment of oocytes for research purposes or transfer after the death of a valuable mare. The objective of this study was to compare two temperatures for maintaining ovaries during a transport interval of 18-24 h. The goal was to obtain pregnancies after transport of ovaries, maturation of oocytes in vitro, and transfer of oocytes. Each shipment was composed of ovaries four to seven mares collected from an abattoir. From each mare, one ovary was packaged at approximately 12 degrees C, and the other was packaged at approximately 22 degrees C. Upon arrival at our laboratory, oocytes were collected and cultured for 24 h. For each transfer, between 9 and 15 oocytes from each group were placed into the oviducts of estrous mares through standing flank laparotomies. Recipients received human chorionic gonadotropin (hCG; 2000 IU, i.v.) 30-36 h before transfer (to synchronize ovulation). Recipients were inseminated 18-20 h before transfers with 2 x 10(9) progressively motile sperm. Uteri of recipients were examined with ultrasound to determine the number of developing embryos. On Day 16 ( ovulation = day 0), developing embryos were recovered by uterine lavage. Parentage verification was performed on recovered vesicles. Pregnancy rates were analyzed by Chi-square. The percentage of oocytes that developed into embryonic vesicles on Day 16 was not different between transport temperatures (22 degrees C, 13/73, 18% versus 12 degrees C, 11/73, 15%). In conclusion, pregnancies were obtained from in vitro matured oocytes that were recovered from ovaries transported for 18-24h at 12 or 22 degrees C.  相似文献   

4.
Objectives of the present study were to use oocyte transfer: 1) to compare the developmental ability of oocytes collected from ovaries of live mares with those collected from slaughterhouse ovaries; and 2) to compare the viability of oocytes matured in vivo, in vitro, or within the oviduct. Oocytes were collected by transvaginal, ultrasound-guided follicular aspiration (TVA) from live mares or from slicing slaughterhouse ovaries. Four groups of oocytes were transferred into the oviducts of recipients that were inseminated: 1) oocytes matured in vivo and collected by TVA from preovulatory follicles of estrous mares 32 to 36 h after administration of hCG; 2) immature oocytes collected from diestrous mares between 5 and 10 d after aspiration/ovulation by TVA and matured in vitro for 36 to 38 h; 3) immature oocytes collected from diestrous mares between 5 and 10 d after aspiration/ovulation by TVA and transferred into a recipient's oviduct <1 h after collection; and 4) im mature oocytes collected from slaughterhouse ovaries containing a corpus luteum and matured in vitro for 36 to 38 hours. Embryo development rates were higher (P < 0.001) for oocytes matured in vivo (82%) than for oocytes matured in vitro (9%) or within the oviduct (0%). However, neither the method of maturation nor the source of oocytes affected (P > 0.1) embryo development rates after the transfer of immature oocytes.  相似文献   

5.
Immature female rats (60-65 g) were injected with 4 i.u. PMSG on Day -2, and allocated to 3 groups. For Groups I and II, unmated donors were killed 67-69 h after PMSG injection, shortly after the expected time of ovulation. Oocytes were recovered from the oviducts and transferred immediately into the oviduct of mated recipients (Group I) whose ipsilateral ovary had been exposed by peeling back the bursa, preventing endogenous oocytes from entering the oviduct, or were fertilized in vitro (Group II) and were transferred 16-18 h later. Rats in Group III were allowed to mate and half were killed 6 h after mating. The fertilized oocytes were then incubated for 10-12 h until transfer. The remaining rats in Group III were killed 16-18 h after mating and fertilized oocytes were collected and transferred immediately. Recipient rats were killed on Days 2, 5, 8 and 20. Zygotes resulting from in-vitro fertilization (Group II) were as able as those fertilized in donors (Group III) or recipients (Group I) to develop to the 2-cell stage, but underwent significantly greater embryonic loss beyond this stage of development. There was a slower rate of development of such oocytes to the blastocyst stage (Day 5) and a lower mean weight of implantation sites (Day 8). Transfer of zygotes after in-vitro fertilization resulted in a loss of 35% of the embryos at the time of implantation. These results suggest that in-vitro fertilization of rat oocytes leads to defects in the embryos causing a delay in early embryo development and a large number of implantation losses.  相似文献   

6.
Buffalo ovaries were collected immediately after slaughter and were transported to laboratory in sterile saline at 37 degrees C. Follicular oocytes with the cumulus mass aspirated from 2 to 6 mm in diameter follicles were cultured in TCM-199 medium supplemented with 10% buffalo estrus serum (BES) in 5% CO(2) at 38.5 degrees C. After 20 to 24 h of incubation, the oocytes were inseminated with precapacitated frozen thawed spermatozoa for 6 h. The fertilization rate was 78.15% of the matured oocytes. Over an in vitro culture period of 3 to 9 d, 4.02% of the inseminated oocytes developed to the morula stage when cultured with cumulus cells alone and 17.83% when cumulus cells plus oviductal epithelial cells were used. The percentage of developed blastocysts was very low (0.57%) when the oocytes were co-cultured with cumulus cells from the original oocytes. However, 8% of the inseminated oocytes that were denuded 3 d after insemination developed to the blastocyst stage when they were co-cultured with cumulus and oviductal epithelial cells. Sixteen early/expanded blastocysts were transferred non-surgically to 16 recipients. Four of the 16 recipients became pregnant, of which 2 delivered normal buffalo male calves.  相似文献   

7.
The purpose of this study was to evaluate the in vitro fertilizability of rhesus monkey oocytes and the developmental capacity of the resulting embryos as they relate to oocyte maturation at the time of follicular aspiration. Animals were hyperstimulated with human follicle-stimulating hormone (hFSH) and human luteinizing hormone (hLH), with follicular aspiration performed 27 h after administration of an ovulatory stimulus (1000 IU human chorionic gonadotropin [hCG] or 3 x 100 micrograms gonadotropin-releasing hormone [GnRH]). In 7 animals exhibiting a continuously rising pattern of serum estradiol through Day 10 of hyperstimulation, 45 germinal vesicle-intact (GV), 106 metaphase I (MI), and 24 metaphase II (MII) oocytes were collected and cultured in vitro. Upon reaching MII, oocytes were inseminated with 5 x 10(4) motile sperm/ml. Twenty-four percent of GV oocytes cultured in vitro matured to MII with 11 inseminated and none fertilized. Seventy-three percent of MI oocytes matured to MII in vitro with 50% inseminated and 32% fertilized. Oocytes collected at MII stage and inseminated underwent fertilization at a high rate of efficiency (93%). Pronuclear to 8-cell stage embryos were frozen and, upon thawing, 67% (10/15) survived with all blastomeres intact. Frozen-thawed embryos (2- to 6-cell) were transferred to the oviducts of 4 recipients (2 embryos/recipient) during the early luteal phase (1-3 days post LH surge) of natural menstrual cycles. Three twin pregnancies resulted. Thus, a positive correlation exists between the degree of nuclear maturation of rhesus monkey oocytes at collection and their potential for fertilization in vitro.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
In vitro-matured bovine oocytes were vitrified in a mixture of 2 M-dimethyl sulphoxide (DMSO), 1 M-acetamide and 3 M-propylene glycol dissolved in mTCM199. After vitrification and thawing, the oocytes were exposed to 2-0.1M-sucrose solution in 1 or 12 steps to remove the cryoprotectants. Then the oocytes were fertilized in vitro and co-cultured with a monolayer of cumulus cells for 7 days. Nine of 88 inseminated oocytes developed to the blastocyst stage. Three blastocysts were transferred to 3 recipients, resulting in 2 pregnancies.  相似文献   

9.
Oocyte transfer is a potential method to produce offspring from valuable mares that cannot carry a pregnancy or produce embryos. From 2000 through 2004, 86 mares, 19.2 +/- 0.4 yr of age (mean +/- S.E.M.), were used as oocyte donors in a clinical program at Colorado State University. Oocytes were collected from 77% (548/710) of preovulatory follicles and during 96% (548/570) of cycles. Oocytes were collected 21.0+/-0.1h after administration of hCG to estrous donors and cultured 16.4 +/- 0.2 h prior to transfer into recipients' oviducts. At 16 and 50 d after transfer, pregnancies were detected in 201 of 504 (40%) and 159 of 504 (32%) of recipients, respectively, with an embryo-loss rate of 21% (42/201). Pregnancy rates were similar (P > 0.05) for cyclic and noncyclic recipients and for recipients inseminated with cooled, fresh or frozen semen. One or more recipients were detected pregnant at 16 and 50 d, respectively, for 80% (69/86) and 71% (61/86) of donors. More donors <20 than > or = 20 yr (mean ages +/- S.E.M. of 15.5 +/- 0.4 and 23.0 +/- 0.3 yr, respectively) tended (P = 0.1) to have one or more pregnant recipients at 50 d (36/45, 80%; 28/45, 62%, respectively). Results of the program confirm that pregnancies can consistently be obtained from older, subfertile mares using oocyte transfer.  相似文献   

10.
Implantation and early pregnancy, and the potential effects of the reproductive-hormone relaxin, were examined in the cynomolgus macaque (Macaca fascicularis) following in vitro fertilization and embryo transfer. Mature oocytes were collected from regularly cycling, female cynomolgus monkeys subjected to ovarian superovulation using recombinant human FSH and hCG. Oocytes fertilized in vitro were cultured to the 4- to 8-cell stage, slow-cooled, and stored in liquid nitrogen before thawing and embryo transfer. Regularly cycling recipients were administered recombinant human relaxin or vehicle for 21 days through the peri-implantation period (Day 0 = pump implantation), during which time the thawed embryos were transferred (Day 7). Endometrial thickness and the number of gestational sacs were monitored by ultrasound at three time points (Days 7, 21, and 28). The number of days of placental sign (implantation bleeding) in pregnant females and menses in nonpregnant females were also recorded. Implantation (gestational sacs/embryo transferred) and multiple pregnancy (multiple gestations/ pregnant recipient) rates were slightly higher in relaxin-treated recipients compared to vehicle-treated recipients. Administration of relaxin was associated with increased implantation bleeding in pregnant females. Endometrial thickness was increased in relaxin-treated recipients at Days 7 and 28 compared to Day 0, but these differences were not observed at the same time points in vehicle-treated females. Systemic administration of recombinant human relaxin in an in vitro fertilization/embryo transfer setting was associated with effects consistent with a role for this hormone in endometrial physiology in primates.  相似文献   

11.
This study evaluates the effect of coculture with goat oviduct epithelial cells (GOEC) on the pregnancy rate, embryo survival rate and offspring development after direct transfer of vitrified/thawed caprine in vitro produced (IVP) embryos. Oocytes were recovered from slaughterhouse goat ovaries, matured and inseminated with frozen/thawed capacitated semen, and presumptive zygotes were randomly cultured in synthetic oviduct fluid (SOF) (n=352) or GOEC (n=314). The percentage of cleaved embryos reaching the blastocyst stage was 28% and 20% in SOF and GOEC, respectively (P<0.05). Overall, 26 blastocysts of SOF were transferred freshly in pairs to recipient goats, whereas 58 of SOF and 36 of GOEC were vitrified and transferred directly in pairs to recipient goats after thawing without removal of cryoprotectants or morphological evaluation. The kidding rate was 92% for SOF fresh, 14% for SOF vitrified (P<0.001) and 56% for GOEC vitrified (P<0.05); the difference was also significant between vitrified groups (P<0.01). The embryo survival rate was 62% for SOF fresh, 9% for SOF vitrified (P<0.001) and 33% for GOEC vitrified (P<0.05) with a significant difference between vitrified groups (P<0.01). The results showed that the coculture of IVP goat embryos with GOEC significantly improves the pregnancy and embryo survival rates and leads to the birth of healthy offspring. However, further research using more defined GOEC coculture is required to confirm its capacity to increase the success rate of IVP embryo technology in goat.  相似文献   

12.
The present study examined whether the timing of the first cleavage has an effect on the in vitro and in vivo developmental potential of nuclear-transferred mouse oocytes receiving embryonic stem cells. First, the timing of the first cleavage and the developmental potential of nuclear-transferred oocytes were examined every hour from 12 to 24 h after the start of culture and compared with in vitro-fertilized oocytes. The developmental potential of in vitro-fertilized oocytes decreased gradually according to the time required for cleavage (84% (32/38) for 15 h to 50% (1/2) for 20 h), but intermediate-cleaved (15-16 h) nuclear-transferred oocytes had a higher potential to develop into blastocysts (55% (17/31) to 67% (45/67) versus 0-43% (6/14)]. Second the nuclear-transferred oocytes were divided into three groups according to the timing of the first cleavage; each group was cultured to blastocysts in vitro, and then transferred to recipients. The potential of intermediate-cleaved oocytes (15-16 h) to develop into blastocysts was significantly higher than fast-cleaved (before 15 h) and slow-cleaved (after 16 h) oocytes (65, 46, and 37%). The proportion of fetuses on Day 10.5 of pregnancy was highest in the intermediate-cleaved group (4 versus 2 and 1%, respectively) and a full-term fetus was obtained from this group. The present study demonstrated that the timing of the first cleavage could be used to determine the potential of nuclear-transferred oocytes with embryonic stem cells to develop to the blastocyst stage in vitro, but not to determine post-implantation viability after transfer to recipients.  相似文献   

13.
Bovine follicular oocytes from individual heifers (n=49) were separately matured, fertilized with frozen-thawed spermatozoa and cultured with cumulus cells. Although there were great variations in the number (mean+/-SD=19.1+/-11.9) of oocytes collected from individual heifers and the percentages of the oocytes cleaved 48 hours after insemination (mean+/-SD=69.5+/-18.4) and developed to the morula stage 7 days after insemination (mean+/-SD=10.9+/-10.9), there were significant correlations between the numbers of oocytes collected and cleaved (the correlation coefficient: r= 0.9336) or developed to morula stage (r=0.6633), indicating that oocytes from different heifers have the same developmental ability after in vitro fertilization. Ten morulae and 12 blastocysts which were obtained 7 and 8 days after insemination were transferred, one by one, to each uterine horn of 11 recipients. At Day 60 of pregnancy, 8 (80%) fetuses were identified in 4 (80%) of 5 recipients into which 10 embryos were transferred at Day -1 of synchrony. However, only 3 (25%) fetuses were identified in 2 (40%) of 6 recipients into which 12 embryos were transferred at Day 0 or +1 of synchrony.  相似文献   

14.
昆明小鼠精子冷冻的研究(简报)   总被引:1,自引:0,他引:1  
胚胎工程技术是动物品种、品系培育,种质资源保存及转基因动物制备、保种的重要手段。配子的冷冻保存技术目前广泛应用于胚胎工程。和胚胎冷冻相比小鼠精子冷冻技术方便、高效尤其适用于转基因及突变系小鼠的保种。成功的精子冷冻要求复苏后通过体外受精(IVF)获得胚胎,再移植入受  相似文献   

15.
Bovine oocytes matured in vitro were fertilized in high proportions (92% of matured oocytes) by sperm capacitated with Ca ionophore A23187. Eight percent of inseminated oocytes that were denuded 96 h after insemination developed to the morula stage when cultured for 6-120 h after insemination with cumulus cells from the original oocytes. Inseminated oocytes denuded 96 h after insemination developed to the blastocyst stage when cultured with or without cumulus cells or in the conditioned medium from 96 h to 168-216 h after insemination (9.0%, 8.1%, and 6.8% of inseminated oocytes respectively). Six frozen-thawed blastocysts were transferred nonsurgically to 3 recipients (2 embryos/recipient). Two of the 3 recipients became pregnant, with one delivering live twins at term. Seven fresh blastocysts were transferred nonsurgically to 6 recipients (1-2 embryos/recipient). Three of the 6 recipients became pregnant, with 2 delivering live calves.  相似文献   

16.
Cryopreservation of zona-intact porcine embryos has been relatively unsuccessful to date, although some success has been obtained with lipid reduced morulae and early blastocysts. This study adapted some vitrification protocols used successfully with late blastocysts for use with early zona-intact blastocysts, using actin depolymerization, centrifugation, and open-pulled (OPS) straws. Initially, Day 6 peri-hatching blastocysts were collected, cultured for 40 min in 7.5 microg/ml cytochalasin B and vitrified in 6.5 M glycerol and 6% BSA (VS1) in either heat-sealed (HS) or open straws (OS). The post-thaw survival of those stored in HS was 15.4% after 24 and 48 h in vitro; storage in OS significantly improved survival (58.8% for both 24 and 48 h). When similar stage blastocysts were cultured in cytochalasin B and vitrified with 8 M ethylene glycol and 7% polyvinylpyrrolidone (PVP; VS2) in OS, survival was 44.4 and 33.3% for 24 and 48 h, respectively. Day 5 late morulae and early blastocysts were collected, cultured with cytochalasin B, and centrifuged or left intact (control), then vitrified with VS1 in HS or OS, or vitrified in VS2 in OS only. None of the intact control embryos survived thawing and 48 h culture in vitro. Centrifuged early blastocysts vitrified with VS1 showed good post-thaw survival in culture when stored in HS (62.8 and 60.5% for 24 and 48 h, respectively), or OS (75 and 63.6%). When vitrified with VS2 in OS, survival improved (80 and 76.7%). Peri-hatching blastocysts were vitrified in VS1, and early blastocysts were vitrified with VS1 and VS2. All blastocysts were stored in OS. The embryos were recovered and transferred to Day 4 and 5 pseudopregnant recipients (for Day 5 and 6 blastocysts, respectively). Of the five recipients receiving peri-hatching blastocysts, two became pregnant and delivered a total of eight piglets. All three recipients of early blastocysts vitrified in VS1 had a delayed return to estrus; while of the four receiving embryos vitrified with VS2, two were delayed in returning to estrus, and one was confirmed pregnant after 45 days. A litter of five piglets, one male and four female, was produced at 116 days of gestation. To our knowledge, this is the first litter of piglets produced from early blastocysts vitrified without micromanipulation to remove polarized lipid droplets.  相似文献   

17.
小鼠卵巢冷冻移植后卵泡发育和卵母细胞成熟的研究   总被引:12,自引:1,他引:11  
Qin BL  Chen XJ  Shi ZD  Li WL  Tian YB 《生理学报》2006,58(1):41-46
本研究探讨了冷冻保存的1日龄小鼠卵巢异体异位移植后,其原始卵泡重新启动生长发育的能力。一日龄B6C2F.小鼠卵巢分离冷冻后置液氮中保存,保存1周。6个月后解冻,并将卵巢移植到8-12周龄B6C2F.受体鼠。肾脏包膜下,移植至少14d。每侧肾囊移植2枚卵巢的40只受体鼠中卵巢的回收率为45.00%(72/160),而每侧。肾囊移植l枚卵巢的20只受体鼠的回收率为82.50%(33/40)。移植卵巢上卵泡的发育基本与体外自然生长鼠的卵巢卵泡发育情况一致。对卵巢移植19d的受体鼠用孕马血清促性腺激素(pregnant mare serum gonadotrophin,PMSG)处理后,从移植卵巢上发育成熟卵泡中获得的卵母细胞在MEM0c培养基中培养16-17h,有40.90%的卵母细胞发生生发泡破裂(germinal vesicle breakdown,GVBD),其中89.02%的卵母细胞发育到第二次减数分裂中期(metaphaseⅡ,MⅡ)。将剩余的卵母细胞继续培养到20~21h,又有50.83%的卵母细胞发生生发泡破裂,但其中只有21.40%的卵母细胞能够发育到MII期。以上结果说明,小鼠早期卵巢经过冷冻.解冻并异体异位移植后,其原始卵泡能够重新启动生长发育,发育后的卵泡卵母细胞能够在体外培养成熟。这些结果意味着原始卵泡或卵巢冷冻一移植技术有可能充分利用雌性生殖细胞用于濒危动物保种、建立动物基因库和人类辅助生殖等。  相似文献   

18.
This study investigated the capacity of healthy oocytes derived from follicles of different size to undergo normal fertilization and early embryonic development in vitro and full-term development in vivo. Ovaries were collected from a local abattoir and dissected and classified as follows: group A, greater than 4-8 mm (large); group B, greater than 2-4 mm (medium); and group C, greater than 1-2 mm (small). Oocytes were isolated by puncturing the follicular wall and pressing of the follicle. Only healthy-looking cumulus-oocyte complexes (COC) were used for in vitro maturation. Oocytes were fertilized in vitro by frozen/thawed semen from one bull. Approximately one-fourth of all oocytes was fixed and stained 15-20 h after fertilization, to determine penetration rates. The remaining eggs were transferred to culture medium and were cultivated for up to 9.5 days. Cleavage was observed 65 h and 7 days after fertilization. Expanded, hatching, and hatched blastocysts were fixed and stained after 9.5 days of culture. A total of 86 blastocysts derived from group A and B oocytes was nonsurgically transferred to synchronized recipients 7-8 days after onset of culture. A total of 6.624 follicles were dissected from 265 ovaries, and 1,485 oocytes were isolated from 1,671 group A follicles, 3,509 oocytes from 3,862 group B follicles, and 965 oocytes from 1,091 group C follicles. The fertilization rate, rate of normal fertilization, rate of polyspermy, and rate of other abnormal fertilization features were as follows: group A, 84.9%, 43.2%, 34.1%, 7.6%; group B, 83.6%, 44.8%, 31.1%, 7.8%; and group C, 61.7%, 13.1%, 33.7%, 19.1%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Immature female rats (60-65 g) were injected with 4 i.u. PMSG on Day -2 and allocated to 3 groups. On the evening of Day 0, rats in Groups I and II were allowed to mate. Embryos were collected on Day 4 (Group I, control morulae) or Day 5 (Group II, control blastocysts) and were transferred into the oviduct or uterine horn of Day-4 pregnant recipient rats. On the transfer side of the recipients, the bursa had been peeled from around the ovary to prevent endogenous oocytes from entering the oviduct. For Group III, unmated donors were killed 65-67 h after PMSG injection. Ovulated oocytes recovered from the oviducts were fertilized in vitro and transferred 16-18 h later. Embryos developing from in-vitro fertilized (IVF) oocytes were recovered on Day 5, separated into morulae (Group IIIm) and blastocysts (Group IIIb) and transferred into Day-4 pregnant recipients similar to control embryos. Some embryos from each group were used to determine the mean number of cells/embryo. Embryo recipients were killed on Day 20. After transfer, the development of IVF oocytes was retarded compared to control embryos. IVF morulae contained significantly fewer cells/embryo than did control morulae but were able to implant and grow to fetuses, in proportions similar to controls, if transferred into the oviduct of the recipients. These results suggest that the developmental potential of rat oocytes fertilized in vitro is limited due to asynchrony between the embryo and the uterine environment at the time of implantation, rather than possible defects incurred by the oocyte during the fertilization procedure.  相似文献   

20.
Two experiments have been performed to clone the bucardo, an extinct wild goat. The karyoplasts were thawed fibroblasts derived from skin biopsies, obtained and cryopreserved in 1999 from the last living specimen, a female, which died in 2000. Cytoplasts were mature oocytes collected from the oviducts of superovulated domestic goats. Oocytes were enucleated and coupled to bucardo's fibroblasts by electrofusion. Reconstructed embryos were cultured for 36 h or 7 d and transferred to either Spanish ibex or hybrid (Spanish ibex male ×  domestic goat) synchronized recipients. Embryos were placed, according to their developmental stage, into the oviduct or into the uterine horn ipsilateral to an ovulated ovary. Pregnancy was monitored through their plasmatic PAG levels. In Experiment 1, 285 embryos were reconstructed and 30 of them were transferred at the 3- to 6-cells stage to 5 recipients. The remaining embryos were further cultured to day 7, and 24 of them transferred at compact morula/blastocyst stage to 8 recipients. In Experiment 2, 154 reconstructed embryos were transferred to 44 recipients at the 3- to 6-cells stage. Pregnancies were attained in 0/8 and 7/49 of the uterine and oviduct-transferred recipients, respectively. One recipient maintained pregnancy to term, displaying very high PAG levels. One morphologically normal bucardo female was obtained by caesarean section. The newborn died some minutes after birth due to physical defects in lungs. Nuclear DNA confirmed that the clone was genetically identical to the bucardo's donor cells. To our knowledge, this is the first animal born from an extinct subspecies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号