首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
R. J. Cherry  Kwan Hsu  D. Chapman 《BBA》1972,267(3):512-522
A technique has been developed for measuring visible absorption spectra of chlorophyll in lipid membranes. An expression is derived which enables the directions of the transition moments of the different absorption bands to be determined from polarisation data. It is found that the transition moments of the principal blue and red absorption bands of chlorophyll a make angles of 26° and 36.5° respectively with the plane of the membrane. On the assumption that these two transitions lie in the plane of the porphyrin ring and are mutually perpendicular, it may be deduced that the plane of the porphyrin ring is tilted at approx. 48° to the membrane surface. For chlorophyll b the transition moments of the blue and red bands are found to make angles of 29.5° and 36.5° with the plane of the bilayer, giving an angle of tilt of the porphyrin ring of approx. 51°.

These results are compared with measurements of dichroism in vivo.  相似文献   


3.
Polarised absorption and reflection spectra of chlorophyll-containing bimolecular lipid membranes were obtained in the spectral range of 590–710 nm. The spectra were analysed using the formalism of the complex dielectric tensor which characterizes the optical anisotropy of the membrane and the light absorption therein.The maxima of the absorption spectra recorded at a 45° angle of incidence are located at 665 and 670 nm for light in which the electric vector is oriented parallel and perpendicular, respectively, to the plane of incidence. The analysis of these spectra shows that the spectral shift is wholly due to the dispersion of the real part of the dielectric tensor.The angle between the dipole transition moment in the red and the normal to the membrane was estimated to be 42.3–45.3°.On the basis of these results, a model absorption spectrum, simulating the dichroic properties of oriented chloroplasts, was calculated for a system of parallel membranes.Some of the possible artifacts introduced into the dichroic spectra of chloroplasts due to anisotropy and dispersion are discussed.  相似文献   

4.
Raman and infrared spectroscopy have been simultaneously applied, for the first time, to the study of myelin membranes and their proteolipid protein (PLP) so as to obtain information on the secondary structure of proteins and the ordering of lipid chains. The vibrational spectra were recorded at physiological pH using a non-denaturing detergent (n-octyl--d-glucopyranoside) in phosphate buffer. Neither the buffer nor the detergent interfere spectroscopically with the amide bands from proteins. The spectra reveal that the predominant secondary structure in the polypeptide backbone in myelin is the helix. The proteolipid protein was found to be more disordered than the polypeptide arrangement of the myelin membrane, as deduced from the relative intensities and halfwidths of characteristic infrared amide I bands. -form and turns are also present, the amount of these structures being higher in PLP. The study of the Raman spectra of vC-C and vC-H regions made it possible to obtain information on the lipid chain order.  相似文献   

5.
Structure of photoreceptor membranes   总被引:4,自引:0,他引:4  
  相似文献   

6.
B. A. Pethica 《Protoplasma》1967,63(1-3):147-156
Summary With the concept of the unit membrane as a central theme, a number of current problems for the theory of membrane structures are discussed from the point of view of the physical chemist. In view of the wide variety of chemical compositions of membranes, some current opinions of the forces maintaining the integrity of membranes are of limited generality. The thermodynamic status of the membrane is discussed, and it is suggested that the new small-systems thermodynamics can be usefully employed as a conceptual basis for discussing fluctuations and phase-changes in membranes. Arguments are given to suggest that the lipid interior of membranes is more ordered and crystalline than is currently supposed. The role of water in membrane structures remains an enigma.  相似文献   

7.
Structure and function of basement membranes   总被引:2,自引:0,他引:2  
Basement membranes (BMs) are present in every tissue of the human body. All epithelium and endothelium is in direct association with BMs. BMs are a composite of several large glycoproteins and form an organized scaffold to provide structural support to the tissue and also offer functional input to modulate cellular function. While collagen I is the most abundant protein in the human body, type IV collagen is the most abundant protein in BMs. Matrigel is commonly used as surrogate for BMs in many experiments, but this is a tumor-derived BM-like material and does not contain all of the components that natural BMs possess. The structure of BMs and their functional role in tissues are unique and unlike any other class of proteins in the human body. Increasing evidence suggests that BMs are unique signal input devices that likely fine tune cellular function. Additionally, the resulting endothelial and epithelial heterogeneity in human body is a direct contribution of cell-matrix interaction facilitated by the diverse compositions of BMs.  相似文献   

8.
9.
10.
11.
Structure of mitochondrial cristae membranes   总被引:11,自引:0,他引:11  
  相似文献   

12.
The technique of polarized Fourier transform infrared attenuated total reflectance spectroscopy has been applied to the study of oriented purple membranes of Halobacterium cutirubrum. This method offers a fast and simple approach for probing conformations of proteins in-situ and capable of obtaining polarized infrared spectra at an angle of incidence that is much greater than the Brewster angle.  相似文献   

13.
14.
Outer and cytoplasmic membranes of Escherichia coli were prepared by a method based on isopyenic centrifugation on a sucrose gradient. The infrared spectra of solid films of these membranes were studied. The cytoplasmic membrane had an amide I band at 1657 cm?1 and an amide II band at 1548 cm?1. The outer membrane had a broad amide I band at 1631–1657 cm?1 and an amid II band at 1548 cm?1 with a shoulder at 1520–1530 cm?1. Upon deuteration, the amide I band of the cytoplasmic membrane shifted to 1648 cm?1, whereas the band at 1631 cm?1 of the outer membrane remained unchanged. After extraction of lipids with chloroform and methanol, the infrared spectra in the amide I and amide II regions of both membranes remained unchanged. Although the outer membrane specifically contained lipopolysaccharide, this could not account for the difference in the infrared spectra of outer and cytoplasmic membranes. It is concluded that a large portion of proteins in the outer membrane is a β-structured polypeptide, while this conformation is found less, if at all in the cytoplasmic membrane.  相似文献   

15.
The use of total internal reflection illumination in fluorescence microscopy (TIRFM) is reviewed with emphasis on application to fluorescent macromolecules that specifically and reversibly bind to planar model membranes supported on glass or quartz substrates. Several methods for characterizing macromolecular motion and organization are discussed: the measurement of equilibrium binding curves to obtain values for equilibrium binding constants; the measurement of fluorescence photobleaching recovery curves to obtain values of kinetic rate constants and surface diffusion coefficients; and the measurement of fluorescence intensities as a function of the evanescent field polarization to characterize orientational order. Applications to cell-substrate contact regions are summarized and future directions of TIRFM are outlined. Correspondence to: N. L. Thompson  相似文献   

16.
We show that fluorescence emission spectra for molecules containing the dansyl fluorophor can be accurately described as skewed Gaussians, and that spectra for dansyl probes bound to biological membranes can be resolved using least-squares techniques into two components, representing probe bound to the lipid and protein sites in the membrane.  相似文献   

17.
The field of membrane structural biology represents a fast-moving field with exciting developments including native nanodiscs that allow preparation of complexes of post-translationally modified proteins bound to biological lipids. This has led to conceptual advances including biological membrane:protein assemblies or “memteins” as the fundamental functional units of biological membranes. Tools including cryo-electron microscopy and X-ray crystallography are maturing such that it is becoming increasingly feasible to solve structures of large, multicomponent complexes, while complementary methods including nuclear magnetic resonance spectroscopy yield unique insights into interactions and dynamics. Challenges remain, including elucidating exactly how lipids and ligands are recognized at atomic resolution and transduce signals across asymmetric bilayers. In this special volume some of the latest thinking and methods are gathered through the analysis of a range of transmembrane targets. Ongoing work on areas including polymer design, protein labelling and microfluidic technologies will ensure continued progress on improving resolution and throughput, providing deeper understanding of this most important group of targets.  相似文献   

18.
The lamellar membrane stacks of Ectothiorhodospira mobilis were isolated and purified by a combination of lysozyme and osmotic shock treatment, followed by differential and density gradient centrifugation. Preparations of lamellar membranes were enriched at least 2.4-fold in the ratio of bacteriochlorophyll a to protein.Thin-sectioning, negative staining, platinumcarbon shadowing and freeze-etching were used to study the architecture of the membrane units. Both platinum-carbon shadowing and freeze-etching showed the outer surfaces of the isolated lamellar membrane stacks to be relatively smooth. Particles averaging 7 nm in diameter were seen on several faces following freeze-ctching.Non-polar amino acids amounted to 60% of the total amino acid composition. Lipids constituted 32% of the membrane dry weight. Phosphatidyl ethanolamine and diphosphatidyl glycerol were the major phospholipids. Fatty acids of 10–15 carbons represented a small fraction of both membrane and whole cell fatty acids. Monoenes constituted 36% of the total membrane fatty acids and 38.4% of the total whole cell fatty acids. The major fatty acids of both whole cells and purified membranes were C16:0, C18:1 and cyclopropane C19:0.  相似文献   

19.

Book Review

Plant membranes: Structure, assembly and functionJ.L. Harwood and T.J. Walton (Eds.), London: The Biochemical Society, 1988, 251 pages. £25. ISBN 0-904498-23-9  相似文献   

20.
Structure and hydration of purple membranes in different conditions   总被引:6,自引:0,他引:6  
The unit cell dimension of the bacteriorhodopsin lattice in purple membranes decreases by the same amount (2%) upon drying the membranes at room temperature as when they are cooled to liquid nitrogen temperatures. Neutron diffraction experiments with H2O:2H2O exchange, however, show that whereas in the dry membranes the lipid headgroups are dehydrated and the decrease in dimension is due to a smaller area occupied by the lipid molecules, the water of hydration remains in place in the cooled membranes, and the decrease in dimension is due to thermal contraction only. These data suggest a hypothesis that functional bacteriorhodopsin, in the wet state at room temperature, has a relatively soft environment that would allow large amplitude motions of the protein; in the dry membranes at room temperature (which are inactive), the amplitudes of protein motions would be inhibited by a more close-packed environment as they are reduced, due to thermal contraction, in the cold membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号