首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The 3D structure of monomeric C-truncated Escherichia coli methionyl-tRNA synthetase, a class 1 aminoacyl-tRNA synthetase, has been solved at 2.0 A resolution. Remarkably, the polypeptide connecting the two halves of the Rossmann fold exposes two identical knuckles related by a 2-fold axis but with zinc in the distal knuckle only. Examination of available MetRS orthologs reveals four classes according to the number and zinc content of the putative knuckles. Extreme cases are exemplified by the MetRS of eucaryotic or archaeal origin, where two knuckles and two metal ions are expected, and by the mitochondrial enzymes, which are predicted to have one knuckle without metal ion.  相似文献   

4.
Native methionyl-tRNA synthetase from Escherichia coli (a dimer of molecular weight 172,000) can be converted by mild proteolysis into a well-defined monomeric fragment of molecular weight 64,000. This fragment retains full specificity towards methionine and tRNAMet, and has unimpaired activity in both the activation and aminoacylation reactions.This paper describes the structure of the active fragment, as determined by an X-ray crystallographic study at 2.5 Å resolution using five heavy-atom derivatives. The elongated molecule (90 Å × 52 Å × 44 Å) contains several α-helices, which account for 43% of the residues. Three domains can be distinguished in the structure: (1) a central core beginning at the N-terminus, consisting of a five-stranded parallel pleated sheet with α-helices connecting the β-strands; (2) a second domain with less-ordered structure, inserted between the third and fourth strand of the central sheet; (3) a C-terminal domain, beginning after the fifth parallel strand, very rich in α-helices.These three domains are organized in a biglobular structure; one globule contains the first and the second domain (N-terminal globule), the other the third domain. The two globules, linked together by a single chain, are separated by a large cleft.The most salient feature of the structure is the presence, in the N-terminal domain, of a “nucleotide binding fold” similar to that first observed in dehydrogenases. This makes methionyl-tRNA synthetase, and possibly all aminoacyl-tRNA synthetases, a new member of this family of nucleotide binding proteins possessing the characteristic “Rossmann fold”.  相似文献   

5.
tRNA recognition site of Escherichia coli methionyl-tRNA synthetase   总被引:5,自引:0,他引:5  
O Leon  L H Schulman 《Biochemistry》1987,26(17):5416-5422
We have previously shown that anticodon bases are essential for specific recognition of tRNA substrates by Escherichia coli methionyl-tRNA synthetase (MetRS) [Schulman, L. H., & Pelka, H. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 6755-6759] and that the enzyme tightly binds to C34 at the wobble position of E. coli initiator methionine tRNA (tRNAfMet) [Pelka, H., & Schulman, L. H. (1986) Biochemistry 25, 4450-4456]. We have also previously demonstrated that an affinity labeling derivative of tRNAfMet can be quantitatively cross-linked to the tRNA binding site of MetRS [Valenzuela, D., & Schulman, L. H. (1986) Biochemistry 25, 4555-4561]. Here, we have determined the site in MetRS which is cross-linked to the anticodon of tRNAfMet, as well as the location of four additional cross-links. Only a single peptide, containing Lys465, is covalently coupled to C34, indicating that the recognition site for the anticodon is close to this sequence in the three-dimensional structure of MetRS. The D loop at one corner of the tRNA molecule is cross-linked to three peptides, containing Lys402, Lys439, and Lys596. The 5' terminus of the tRNA is cross-linked to Lys640, near the carboxy terminus of the enzyme. Since the 3' end of tRNAfMet is positioned close to the active site in the N-terminal domain [Hountondji, C., Blanquet, S., & Lederer, F. (1985) Biochemistry 24, 1175-1180], this result indicates that the carboxy ends of the two polypeptide chains of native dimeric MetRS are folded back toward the N-terminal domain of each subunit.  相似文献   

6.
Activation of methionine by Escherichia coli methionyl-tRNA synthetase   总被引:3,自引:0,他引:3  
G Ghosh  H Pelka  L H Schulman  S Brunie 《Biochemistry》1991,30(40):9569-9575
In the present work, we have examined the function of three amino acid residues in the active site of Escherichia coli methionyl-tRNA synthetase (MetRS) in substrate binding and catalysis using site-directed mutagenesis. Conversion of Asp52 to Ala resulted in a 10,000-fold decrease in the rate of ATP-PPi exchange catalyzed by MetRS with little or no effect on the Km's for methionine or ATP or on the Km for the cognate tRNA in the aminoacylation reaction. Substitution of the side chain of Arg233 with that of Gln resulted in a 25-fold increase in the Km for methionine and a 2000-fold decrease in kcat for ATP-PPi exchange, with no change in the Km for ATP or tRNA. These results indicate that Asp52 and Arg233 play important roles in stabilization of the transition state for methionyl adenylate formation, possibly directly interacting with complementary charged groups (ammonium and carboxyl) on the bound amino acid. Primary sequence comparisons of class I aminoacyl-tRNA synthetases show that all but one member of this group of enzymes has an aspartic acid residue at the site corresponding to Asp52 in MetRS. The synthetases most closely related to MetRS (including those specific for Ile, Leu, and Val) also have a conserved arginine residue at the position corresponding to Arg233, suggesting that these conserved amino acids may play analogous roles in the activation reaction catalyzed by each of these enzymes. Trp305 is located in a pocket deep within the active site of MetRS that has been postulated to form the binding cleft for the methionine side chain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
F Dardel  G Fayat    S Blanquet 《Journal of bacteriology》1984,160(3):1115-1122
The intact metG gene was cloned in plasmid pBR322 from an F32 episomal gene library by complementation of a structural mutant, metG83. The Escherichia coli strain transformed with this plasmid (pX1) overproduced methionyl-tRNA synthetase 40-fold. Maxicell analysis showed that three major polypeptides with MrS of 76,000, 37,000, and 29,000 were expressed from pX1. The polypeptide with an Mr of 76,000 was identified as the product of metG on the basis of immunological studies and was indistinguishable from purified methionyl-tRNA synthetase. In addition, DNA-DNA hybridization studies demonstrated that the metG regions were homologous on the E. coli chromosome and on the F32 episome. DNA sequencing of 642 nucleotides was performed. It completes the partial metG sequence already published (D. G. Barker, J. P. Ebel, R. Jakes, and C. J. Bruton, Eur. J. Biochem. 127:449-451, 1982). Examination of the deduced primary structure of methionyl-tRNA synthetase excludes the occurrence of any significant repeated sequences. Finally, mapping of mutation metG83 by complementation experiments strongly suggests that the central part of methionyl-tRNA synthetase is involved in methionine recognition. This observation is discussed in the light of the known three-dimensional crystallographic structure.  相似文献   

8.
Native and trypsin-modified methionyl-tRNA synthetases from Escherichia coli were found to be inactivated by incubation in the presence of Co(III) complexes of ATP, stabilized either by imidazole or phenanthroline, or by oxidation in situ to Co(III) of the substrate ATP-Co(II). It has been shown that the inactivation proceeds by specific labeling of the catalytic ATP-Mg(II) site of the synthetases. The enzymes are completely inactivated by the incorporation of one cobalt atom and one ATP molecule per active site. The inactivated enzymes may be stored for a long period without significant reactivation or removal of the cobalt label. In the presence of dithiothreitol or 2-mercaptoethanol, the labeled enzymes recover full activity with concomittant release of the bound label molecules.  相似文献   

9.
10.
11.
The reaction scheme of methionyl-tRNA synthetase from Escherichia coli with the initiator tRNAsMet from E. coli and rabbit liver, respectively, has been resolved. The statistical rate constants for the formation, kR, and for the dissociation, kD, of the 1:1 complex of these tRNAs with the dimeric enzyme have been calculated. Identical kR values of 250 μm?1 s?1 reflect similar behaviour for antico-operative binding of both tRNAsMet to native methionyl-tRNA synthetase. Advantage was taken of the difference in extent of tryptophan fluorescence-quenching induced by the bacterial and mammalian initiator tRNAsMet to measure the mode of exchange of these tRNAs antico-operatively bound to the enzyme. Analysis of the results reveals that antico-operativity does not arise from structural asymmetric assembly of the enzyme subunits. Indeed, both subunits can potentially bind a tRNA molecule. Exchange between tRNA molecules can occur via a transient complex in which both sites are occupied. Either strong and weak sites reciprocate between subunits on the transient complex or occupation of the weak site induces symmetry of this complex. While in the present case, these two alternatives are kinetically indistinguishable, they do account for the observation that, upon increasing the concentration of the competing mammalian tRNA, the rate of exchange of the E. coli initiator tRNAMet is enhanced, due to its faster rate of dissociation from the transient complex. Finally, it has been verified that in the case of the trypsin-modified methionyl-tRNA synthetase which cannot provide more than one binding site for tRNA, exchange of enzymebound bacterial tRNA by mammalian tRNA does proceed to a limiting rate independent of the mammalian tRNA concentration present in the solution.  相似文献   

12.
In class 1 aminoacyl-tRNA synthetases, methionyl-tRNA synthetases (MetRS) are homodimers or monomers depending on the presence or absence of a domain appended at the C-side of the polypeptide chain. Beyond this C-domain, all MetRS display a highly conserved catalytic core with a Rossmann fold, the two halves of which are linked by a connective peptide (CP). Three-dimensional folding of CP and its putative zinc content have served as a basis to propose a division of the MetRS family into four subgroups. All subgroups but one, which is predicted to display two zincs per MetRS polypeptide, have been characterized. In the present study, the 3D structure of MetRS from Pyrococcus abyssi could be solved at 2.9 A resolution. The data obtained and atomic absorption spectroscopic measurements establish the presence of two metal ions per polypeptide chain. This finding brings strong support to the above classification. In the crystal, the C-terminal dimerization domain is disordered. This observation is thought to reflect marked flexibility of the two core moieties with respect to the C-domains in the dimer. Gel shift experiments were performed with the isolated C-terminal dimerization domain and a core monomeric MetRS, both derived from the P. abyssi enzyme. Complex formation between the C-domain and the core enzyme could not be evidenced. Moreover, association of tRNA(Met) to the core enzyme is enhanced in the presence of the C-domain. Together, these experiments suggest positive control in trans by the C-domain on recognition of tRNA by the core moiety of MetRS.  相似文献   

13.
G Ghosh  H Pelka  L H Schulman 《Biochemistry》1990,29(9):2220-2225
We have previously shown that the anticodon of methionine tRNAs contains most, if not all, of the nucleotides required for specific recognition of tRNA substrates by Escherichia coli methionyl-tRNA synthetase [Schulman, L. H., & Pelka, H. (1988) Science 242, 765-768]. Previous cross-linking experiments have also identified a site in the synthetase that lies within 14 A of the anticodon binding domain [Leon, O., & Schulman, L. H. (1987) Biochemistry 26, 5416-5422]. In the present work, we have carried out site-directed mutagenesis of this domain, creating conservative amino acid changes at residues that contain side chains having potential hydrogen-bond donors or acceptors. Only one of these changes, converting Trp461----Phe, had a significant effect on aminoacylation. The mutant enzyme showed an approximately 60-100-fold increase in Km for methionine tRNAs, with little or no change in the Km for methionine or ATP or in the maximal velocity of the aminoacylation reaction. Conversion of the adjacent Pro460 to Leu resulted in a smaller increase in Km for tRNA(Mets), with no change in the other kinetic parameters. Examination of the interaction of the mutant enzymes with a series of tRNA(Met) derivatives containing base substitutions in the anticodon revealed sequence-specific interactions between the Phe461 mutant and different anticodons. Km values were highest for tRNA(mMet) derivatives containing the normal anticodon wobble base C. Base substitutions at this site decreased the Km for aminoacylation by the Phe461 mutant, while increasing the Km for the wild-type enzyme and for the Leu460 mutant to values greater than 100 microM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
J S Williams  P R Rosevear 《Biochemistry》1991,30(26):6412-6416
The Escherichia coli truncated methionyl-tRNA synthetase (delta MTS) was shown to catalyze alpha-carbon hydrogen-deuterium exchange of L-selenomethionine, L-methionine, L-ethionine, and L-norleucine in the presence of deuterium oxide. The rate of alpha-proton exchange for L-methionine was shown to be linear with respect to delta MTS concentration. The exchange reaction showed saturation kinetics with apparent Km values of 21 and 4 mM in the absence and presence of saturating adenosine concentrations, respectively. As expected, delta MTS did not catalyze alpha-proton exchange of D-methionine since the enzyme has been shown to be specific for L-amino acids. In the absence of enzyme or in the presence of an equivalent concentration of Zn2+, no hydrogen-deuterium exchange was detected. The exchange reaction was not observed with L-methioninol, an analogue of L-methionine lacking the carboxylate group. These results suggest that the alpha-carboxylate group is a requirement for the delta MTS-catalyzed exchange reaction. The E. coli methionyl-tRNA synthetase (MTS) has previously been shown to be a zinc metalloprotein [Posorske, L. H., Cohn, M., Yanagisawa, N., & Auld, D. S. (1979) Biochim. Biophys. Acta 576, 128]. On the basis of the structural and mechanistic information available on MTS, we propose that the enzyme-bound zinc coordinates the carboxylate of the amino acid, while a base on the enzyme is responsible for exchange of the alpha-proton. The role of the enzyme-bound metal is to render the alpha-proton more acidic through coordination of the carboxylate group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Repeated sequences in methionyl-tRNA synthetase from E. coli   总被引:5,自引:0,他引:5  
  相似文献   

17.
18.
In previous work we identified several specific sites in Escherichia coli tRNAfMet that are essential for recognition of this tRNA by E. coli methionyl-tRNA synthetase (MetRS) (EC 6.1.1.10). Particularly strong evidence indicated a role for the nucleotide base at the wobble position of the anticodon in the discrimination process. We have now investigated the aminoacylation activity of a series of tRNAfMet derivatives containing single base changes in each position of the anticodon. In addition, derivatives containing permuted sequences and larger and smaller anticodon loops have been prepared. The variant tRNAs have been enzymatically synthesized in vitro by using T4 RNA ligase (EC 6.5.1.3). Base substitutions in the wobble position have been found to reduce aminoacylation rates by at least five orders of magnitude. Derivatives having base substitutions in the other two positions of the anticodon are aminoacylated 55-18,500 times slower than normal. Nucleotides that have specific functional groups in common with the normal anticodon bases are better tolerated at each of these positions than those that do not. A tRNAfMet variant having a six-membered loop containing only the CA sequence of the anticodon is aminoacylated still more slowly, and a derivative containing a five-membered loop is not measurably active. The normal loop size can be increased by one nucleotide with a relatively small effect on the rate of aminoacylation, which indicates that the spatial arrangement of the nucleotides is less critical than their chemical nature. We conclude from these data that recognition of tRNAfMet requires highly specific interactions of MetRS with functional groups on the nucleotide bases of the anticodon sequence. Several other aminoacyl-tRNA synthetases are known to require one or more anticodon bases for efficient aminoacylation of their tRNA substrates, and data from other laboratories suggest that anticodon sequences may be important for accurate discrimination between cognate and noncoagnate tRNAs by these enzymes.  相似文献   

19.
20.
D Valenzuela  L H Schulman 《Biochemistry》1986,25(16):4555-4561
Four different structural regions of Escherichia coli tRNAfMet have been covalently coupled to E. coli methionyl-tRNA synthetase (MetRS) by using a tRNA derivative carrying a lysine-reactive cross-linker. We have previously shown that this cross-linking occurs at the tRNA binding site of the enzyme and involves reaction of only a small number of the potentially available lysine residues in the protein [Schulman, L. H., Valenzuela, D., & Pelka, H. (1981) Biochemistry 20, 6018-6023; Valenzuela, D., Leon, O., & Schulman, L. H. (1984) Biochem. Biophys. Res. Commun. 119, 677-684]. In this work, four of the cross-linked peptides have been identified. The tRNA-protein cross-linked complex was digested with trypsin, and the peptides attached to the tRNA were separated from the bulk of the tryptic peptides by anion-exchange chromatography. The tRNA-bound peptides were released by cleavage of the disulfide bond of the cross-linker and separated by reverse-phase high-pressure liquid chromatography, yielding five major peaks. Amino acid analysis indicated that four of these peaks contained single peptides. Sequence analysis showed that the peptides were cross-linked to tRNAfMet through lysine residues 402, 439, 465, and 640 in the primary sequence of MetRS. Binding of the tRNA therefore involves interactions with the carboxyl-terminal half of MetRS, while X-ray crystallographic data have shown the ATP binding site to be located in the N-terminal domain of the protein [Zelwer, C., Risler, J. L., & Brunie, S. (1982) J. Mol. Biol. 155, 63-81].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号