首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
B.J. Wallace  I.G. Young 《BBA》1977,461(1):84-100
A ubiA? menA? double quinone mutant of Escherichia coli K12 was constructed together with other isogenic strains lacking either ubiquinone or menaquinone. These strains were used to study the role of quinones in electron transport to oxygen and nitrate. Each of the four oxidases examined (NADH, d-lactate, α-glycerophosphate and succinate) required a quinone for activity. Ubiquinone was active in each oxidase system while menaquinone gave full activity in α-glycerophosphate oxidase, partial activity in d-lactate oxidase but was inactive in NADH and succinate oxidation. The aerobic growth rates, growth yields and products of glucose metabolism of the quinone-deficient strains were also examined. The growth rate and growth yield of the ubi+ menA? strain was the same as the wild-type strain, whereas the ubiA? men+ strain grew more slowly on glucose, had a lower growth yield (30% of wild type) and accumulated relatively large quantities of acetate and lactate. The growth of the ubiA? menA? strain was even more severely affected than that of the ubiA? men+ strain.Electron transport from formate, d-lactate, α-glycerophosphate and NADH to nitrate was also highly dependent on the presence of a quinone. Either ubiquinone or menaquinone was active in electron transport from formate and the activity of the quinones in electron transport from the other substrates was the same as for the oxidase systems. In contrast, quinones were not obligatory carriers in the anaerobic formate hydrogenlyase system. It is concluded that the quinones serve to link the various dehydrogenases with the terminal electron transport systems to oxygen and nitrate and that the dehydrogenases possess a degree of selectivity with respect to the quinone acceptors.  相似文献   

2.
3.
4.
Ubiquinone(−10), known as a component of the electron transfer system in many organisms, has been used for the treatment of heart disease. No attempt at developing an approach for overproduction of ubiquinone by genetic engineering has been reported, presumably because of the limited number of genes involved in ubiquinone biosynthesis have been cloned. In the present study we overproduced ubiquinone in Escherichia coli using all available genes involved in ubiquinone biosynthesis. Two genes were found to be important for the production of ubiquinone, ubiA, which encodes p-hydroxybenzoate-polyprenyl pyrophosphate transferase and ispB, which encodes polyprenyl pyrophosphate synthetase. We succeeded in achieving a level of ubiquinone production three times that of the wild-type cells by genetic engineering.  相似文献   

5.
Screening of a strain which contained a large amount of ubiquinone Q-10 and a variety of isoprenoid compounds using different culture conditions and mutations was carried out.Protomonas extorquens TK 0045, which was found to contain carotenoid pigments, Hop-22(29)-ene, and Hopan-22-ol, was selected on the basis of cell yield and the content of ubiquinone Q-10. The contents of ubiquinone and sterols increased as the age of the culture increased, and reached a maximum level during the stationary phase.The contents of ubiquinone, sterols and carotenoid pigments, and ubiquinone homologs produced by P. extorquens TK 0045 were varied using mutagenesis. Mutants that had increased or decreased contents of carotenoid pigments were obtained with a high frequency. Most mutants had varying contents of other isoprenoid compounds. The ubiquinone homologs obtained by mutagenesis varied with a high frequency, and mutants which possessed increased levels of ubiquinone Q-9, Q-11 or Q-12 were isolated. However, the major ubiquinone component in these mutants was Q-10 the same as that in the wild strain. The production of ubiquinone was increased considerablyby repeated mutagenesis, with the content of ubiquinone produced by the third generation mutant (strains HB-5) being approximately 3.3 mg·g dry cell−1 (2.5 times that of the wild strain). The acquisition of mutants exhibiting altered synthesis of carotenoid pigments would be useful for increasing the content of ubiquinone Q-10 in bacterial cells.  相似文献   

6.
Mutants of Escherichia coli, harbouring the uncA401 or uncB402 alleles, were found to take up streptomycin more rapidly than the coupled parent strains. The increased rate of uptake results in greater sensitivity of the uncoupled strains, compared to the parent strains, to low concentrations of streptomycin. Studies with unc+ revertants showed that hypersensitivity to streptomycin is attributable to the mutation causing uncoupling. The uptake of streptomycin in an unc? strain is abolished by addition of the chemical uncoupler carbonylcyanide m-chlorophenylhydrazone. The phenotype of hypersensitivity to streptomycin can be used as a selection procedure for the isolation of uncoupled strains. In an experiment reported here, nine out of 12 strains isolated as being sensitive to streptomycin (at 2.5 μg/ml), were found to be unable to grow on succinate as a sole source of carbon. Five of the nine Suc? strains were found to be uncoupled in oxidative phosphorylation, and two of the five uncoupled strains lacked Mg2+-ATPase activity. The mutations causing uncoupling were cotransducible with the ilv genes.  相似文献   

7.
Mutant B1-41a, obtained by UV-irradiation of Gibberella fujikuroi strain GF-1a, does not metabolise mevalonic acid lactone (MVL), ent-kaur-16-ene, ent-kaurenol, and ent-kaurenal to gibberellins. ent-Kaur-16-ene-19-oic acid is completely metabolised to give the same gibberellins in similar concentration as unsupplemented cultures of the parent strain. It is concluded that this mutant is blocked for gibberellin synthesis at the step from ent-kaurenal to ent-kaurenoic acid. Comparison of the incorporation of MVL into GA3 by the mutant and the parent strains indicate that the metabolic block is 97·5% effective. A method of preparing ent-kaur-16-ene, labelled at C-15 and C-17 by [2H] and [3H] is described.  相似文献   

8.
Errata     
Mutants of Escherichia coli K-12 which are defective in components of transport systems for uracil and uridine were isolated and utilized to characterized the transport mechanism of uracil and uridine. Mutant U?, isolated from a culture of the parent strain, is resistant to 5-fluorouracil and is deficient in the uracil transport system. Mutant UR?, isolated from a culture of the parent strain, is resistant to a low concentration of showdomycin and lacks the capacity to transport intact uridine. Mutant U?UR?isolated from a culture of mutant U?, is resistant to a low concentration of showdomycin and is defective in both uracil and intact uridine transport processes. Mutant UR?R? was isolated from a culture of mutant UR?, and is resistant to high concentration of showdomycin. This mutant is defective for transport of intact uridine and in addition lacks the transport system for the ribose moiety of uridine. Characteristics of uracil and uridine transport in parent and mutant cells demonstrate the existence of specific transport processes for uracil, intact uridine and the uracil and ribose moieties of uridine. Mutants U? and UR?, which are defective for uracil transport, lack uracil phosphoribosyltransferase activity and retain a small but significant capacity to transport uracil. The data support the conclusion that uracil is transported by two mechanisms, the major one of which requires uracil phosphoribosyltransferase activity, while the other process involves the transport of uracil as such. The characteristics of uridine transport in parent and mutant strains show that, in addition to transport as the intact nucleoside, uridine is rapidly cleaved to the uracil and ribose moieties. The latter is transported into the cell by a process which, in contrast to transport of intact uridine, does not require an energy source. The uracil moiety is released into the medium and is transported by the uracil transport system. Whole cells of the parent and mutant strains differ in their ability to cleave uridine even though cell-free extracts of all the strains have similar uridine phosphorylase activity. The data implicate a uridine cleavage enzyme in a group transport of the ribose moiety of uridine, a process which is nonfunctional in mutants which lack the capacity to transport the ribose moiety of uridine. A common transport component for this process and the transport of intact uridine is indicated by similarities in the inhibitory effects of heterologous nucleosides on these process.  相似文献   

9.
Three Gram-stain negative, aerobic, non-motile, non-spore-forming, rod-shaped bacterial strains, PYM5-11T, RaM5-2 and PYM5-8, were isolated from the drinking water supply system of Budapest (Hungary) and their taxonomic positions were investigated by a polyphasic approach. All three strains grew optimally at 20-28 °C and pH 5-7 without NaCl. The G+C content of the DNA of the type strain was 65.4 mol%. On the basis of 16S rRNA gene sequence analysis, the isolates showed 94.5-94.9% sequence similarity to the type strain of Dokdonella koreensis and a similarity of 93.0-94.1% to the species of the genera Aquimonas and Arenimonas. The major isoprenoid quinone of the strains was ubiquinone Q-8. The predominant fatty acids were iso-C15:0, iso-C17:1ω9c, C16:1ω7c, and C16:0. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylmonomethylethanolamine, as well as several unidentified aminolipids and phospholipids were present. The 16S rRNA gene sequence analysis, the predominant fatty acids, the polar lipid composition, RiboPrint patterns, physiological and biochemical characteristics showed that the three strains were related but distinct from the type strains of the four recognized species of the genus Dokdonella, and indicated that the strains represented a new genus within the Gammaproteobacteria. The strain PYM5-11 (=DSM 21667T=NCAIM B 02337T) is proposed as the type strain of a new genus and species, designated as Tahibacter aquaticus gen. nov., sp. nov.  相似文献   

10.
Four strains of rod-shaped gram-negative sulfur-oxidizing bacteria were isolated from Khoito-Gol hydrogen-sulfide springs in the eastern Sayan Mountains (Buryatia). The cells of the new isolates were motile by means of a single polar flagellum. The strains were obligately chemolithoautotrophic aerobes that oxidized thiosulfate (with the production of sulfur and sulfates) and hydrogen sulfide. They grew in a pH range of 6.8–9.5, with an optimum at pH 9.3 and in a temperature range of 5–39°C, with an optimum at 28–32°C. The cells contained ubiquinone Q-8. The DNA G+C content of the new strains was 62.3–64.2 mol %. According to the results of analysis of their 16S rRNA genes, the isolates belong to the genus Thiobacillus within the subclass Betaproteobacteria. However, the similarity level of nucleotide sequences of the 16S rRNA genes was insufficient to assign the isolates to known species of this genus. The affiliation to the genus Thiobacillus was confirmed by DNA-DNA hybridization of the isolates with the type strain of the type species of the genus Thiobacillus, T. thioparus DSM 505T (= ATCC 8158T). Despite the phenotypic similarity, the hybridization level was as low as 21–29%. In addition, considerable differences were revealed in the structure of the genes encoding RuBPC, the key enzyme of autotrophic CO2 assimilation, between the known Thiobacillus species and the new isolates. Based on molecular-biological features and certain phenotypic distinctions, the new isolates were assigned to a new Thiobacillus species, T. sajanensis sp. nov., with the type strain 4HGT (= VKM B-2365T).  相似文献   

11.
Three Escherichia coli mutants defective in formate-dependent nitrite reduction (Nrf activity) were characterised. Two of the mutants, JCB354 and JCB356, synthesized all five c-type cytochromes previously characterised in anaerobic cultures of E. coli. The third mutant, JCB355, was defective for both cytochrome b and cytochrome c synthesis, but only during anaerobic growth. The insertion sites of the transposon in strains JCB354 and JCB356 mapped to the menFDBCE operon; the hemN gene was disrupted in strain JCB355. The mutation in strain JCB354 was complemented by a plasmid encoding only menD; strain JCB356 was complemented by a plasmid encoding only menBCE. A mutant defective in the methyltransferase activity involved in both ubiquinone synthesis and conversion of demethylmenaquinone to menaquinone expressed the same Nrf activity as the parental strain. The effects of men, ubiA and ubiE mutations on other cytochrome-c-dependent electron transfer pathways were also determined. The combined data establish that menaquinones are essential for cytochrome-c-dependent trimethylamine-N-oxide reductase (Tor) and Nrf activity, but that either menaquinone or ubiquinone, but not demethylmenaquinone, can transfer electrons to a third cytochrome-c-dependent electron transfer chain, the periplasmic nitrate reductase. Received: 9 December 1996 / Accepted: 11 June 1997  相似文献   

12.
Cells of the yeast Saccharomyces cerevisiae with a low content of polyphosphates (polyP) are characterized by disturbance of growth in medium with 0.5% glucose. The parent strain with polyP level reduced by phosphate starvation had a longer lag phase. The growth rate of strains with genetically determined low content of polyP due to their enhanced hydrolysis (CRN/pMB1_PPN1 Sc is a superproducer of exopolyphosphatase PPN1) or reduced synthesis (the BY4741 vma2Δ mutant with impaired vacuolar membrane energization) was lower in the exponential phase. The growth of cells with high content of polyP was accompanied by polyP consumption. In cells of strains with low content of polyP, CRN/pMB1_PPN1 Sc and BY4741 vma2Δ, their consumption was insignificant. These findings provide more evidence indicating the use of polyP as an extra energy source for maintaining high growth rate.  相似文献   

13.
Previous studies have indicated that the yellow pigments (xanthomonadins) produced by phytopathogenic Xanthomonas bacteria are unimportant during pathogenesis but may be important for protection against photobiological damage. We used a Xanthomonas campestris pv. campestris parent strain, single-site transposon insertion mutant strains, and chromosomally restored mutant strains to define the biological role of xanthomonadins. Although xanthomonadin mutant strains were comparable to the parent strain for survival when exposed to UV light; after their exposure to the photosensitizer toluidine blue and visible light, survival was greatly reduced. Chromosomally restored mutant strains were completely restored for survival in these conditions. Likewise, epiphytic survival of a xanthomonadin mutant strain was greatly reduced in conditions of high light intensity, whereas a chromosomally restored mutant strain was comparable to the parent strain for epiphytic survival. These results are discussed with respect to previous results, and a model for epiphytic survival of X. campestris pv. campestris is presented.  相似文献   

14.
During a study of the diversity and phylogeny of rhizobia isolated from root nodules of Oxytropis ochrocephala grown in the northwest of China, four strains were classified in the genus Rhizobium on the basis of their 16S rRNA gene sequences. These strains have identical 16S rRNA gene sequences, which showed a mean similarity of 94.4 % with the most closely related species, Rhizobium oryzae. Analysis of recA and glnA sequences showed that these strains have less than 88.1 and 88.7 % similarity with the defined species of Rhizobium, respectively. The genetic diversity revealed by ERIC-PCR fingerprinting indicated that the isolates correspond to different strains. Strain CCNWQLS01T contains Q-10 as the predominant ubiquinone. The major fatty acids were identified as feature 8 (C18: 1ω7c and/or C18: 1ω6c; 67.2 %). Therefore, a novel species Rhizobium qilianshanense sp. nov. is proposed, and CCNWQLS01T (= ACCC 05747T = JCM 18337T) is designated as the type strain.  相似文献   

15.
《Anaerobe》2000,6(3):197-203
In order to confirm that H+-ATPase plays an important role in the acid tolerance ofStreptococcus bovis , two mutants with low activities of H+-ATPase were isolated by use of ethyl methanesulfonate and neomycin resistance. The activity of H+-ATPase per cellular nitrogen was related to the lowest culture pH permitting growth. A mutant with little H+-ATPase activity (Mutant 2) was unable to grow below pH 5.5, which suggests that the intracellular pH should be maintained above 5.5 in S. bovis. Since lactate dehydrogenase activity, which is important for acid tolerance, was similar in parent and mutant strains, H+-ATPase activity is likely to affect acid tolerance. The amount of H+-ATPase protein as determined by Western-blot analysis with polyclonal antibody, was similar in Mutant 2 and its parent, indicating that H+-ATPase activity per enzyme protein is reduced by mutation. Probably, H+-ATPase synthesis was not changed by mutation. The gene encoding H+-ATPase of Mutant 2 had mutations at positions close to the ATP-binding motif A sequence in the β-subunit, which probably explains the reduced activity of H+-ATPase in this mutant. These results strongly support the assumption that H+-ATPase has a key role in the acid tolerance of S. bovis.  相似文献   

16.
J.D. Butlin  G.B. Cox  F. Gibson 《BBA》1973,292(2):366-375
1. A mutant strain of Escherichia coli unable to grow with succinate as sole carbon source was isolated. This mutant was found to carry a mutation in a gene (designated uncB) mapping at about minute 73.5 on the E. coli chromosome and close to the uncA gene which is probably the structural gene for (Mg2+,Ca2+)-stimulated ATPase.2. The uncB401 allele was transduced into two other strains of E. coli and the transductants compared with the parent strains.3. Strains carrying the uncB401 allele have low aerobic growth yields when grown on limiting concentrations of glucose, but unlike mutations in the uncA gene, mutations in the uncB gene do not impair anaerobic growth on a glucose-mineral salts medium.4. Oxidase activities in membranes from the normal strains and strains carrying the uncB401 allele were similar.5. Measurement of P/O ratios indicated that a mutation in the uncB gene causes uncoupling of phosphorylation associated with electron transport with d-lactate as substrate.6. (Mg2+,Ca2+)-stimulated ATPase activities in the normal strains and in strains carrying the uncB401 allele are similar.7. Estimation of the energy-linked and non-energy-linked transhydrogenase activities in membrane preparations from both the normal and mutant strains indicated that the protein affected by a mutation in the uncB gene is essential for the functioning of the ATP-dependent energy-linked transhydrogenase.8. It is concluded that two proteins, specified by the uncA and uncB genes, are essential for phosphorylation coupled to d-lactate oxidation and also for the energy-linked transhydrogenase activity using ATP as the energy source.  相似文献   

17.
The effect of the glutathione reductase (GshR) activity of Lactobacillus sanfranciscensis DSM20451T on the thiol levels in fermented sourdoughs was determined, and the oxygen tolerance of the strain was also determined. The gshR gene coding for a putative GshR was sequenced and inactivated by single-crossover integration to yield strain L. sanfranciscensis DSM20451TΔgshR. The gene disruption was verified by sequencing the truncated gshR and surrounding regions on the chromosome. The gshR activity of L. sanfranciscensis DSM20451TΔgshR was strongly reduced compared to that of the wild-type strain, demonstrating that gshR indeed encodes an active GshR enzyme. The thiol levels in wheat doughs fermented with L. sanfranciscensis DSM20451 increased from 9 μM to 10.5 μM sulfhydryl/g of dough during a 24-h sourdough fermentation, but in sourdoughs fermented with L. sanfranciscensis DSM20451TΔgshR and in chemically acidified doughs, the thiol levels decreased to 6.5 to 6.8 μM sulfhydryl/g of dough. Remarkably, the GshR-negative strains Lactobacillus pontis LTH2587 and Lactobacillus reuteri BR11 exerted effects on thiol levels in dough comparable to those of L. sanfranciscensis. In addition to the effect on thiol levels in sourdough, the loss of GshR activity in L. sanfranciscensis DSM20451TΔgshR resulted in a loss of oxygen tolerance. The gshR mutant strain exhibited a strongly decreased aerobic growth rate on modified MRS medium compared to either the growth rate under anaerobic conditions or that of the wild-type strain, and aerobic growth was restored by the addition of cysteine. Moreover, the gshR mutant strain was more sensitive to the superoxide-generating agent paraquat.  相似文献   

18.
A novel plant-associated obligate methylotrophic bacterium, designated strain Ca-68T, was isolated from the rhizosphere soil of field-grown red pepper from India. The isolates are strictly aerobic, Gram negative, motile rods multiplying by binary fission and formaldehyde is assimilated via the ribulose monophosphate pathway. A comparative 16S rRNA gene sequence-based phylogenetic analysis placed the strain in a clade with the species Methylobacillus flagellatus, Methylobacillus glycogens and Methylobacillus pratensis, with which it showed pairwise similarity of 97.8, 97.4 and 96.2 %, respectively. The major fatty acids are C16:0, C10:0 3OH and C16:1 ω7c. The G+C content of the genomic DNA is 59.7 mol%. The major ubiquinone is Q-8. Dominant phospholipids are phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Based on 16S rRNA gene sequence analysis and DNA–DNA relatedness (14–19 %) with type strains of the genus Methylobacillus, the novel isolate was classified as a new species of this genus and named Methylobacillus rhizosphaerae Ca-68T (=KCTC 22383T = NCIMB 14472T).  相似文献   

19.
Two strains of Rhizobia isolated from sewage collected from the Chinese Baijiu distillery were characterized using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strains W15T and W16 were grouped as a separate clade closely related to Rhizobium daejeonense L61T (98.6%). Multilocus sequence analysis (MLSA) with three housekeeping genes (recA, glnII and rpoA) also showed that strains W15T and W16 belonged to the genus Rhizobium. Average nucleotide identity and digital DNA–DNA hybridization values between genome sequences of strain W15T and the closely related species ranged from 77.0% to 87.8% and from 23.9% to 30.9%. The DNA G + C content of strain W15T was 61.6 mol%. Strain W15T contained Q-10 as the major ubiquinone and the dominant fatty acids were summed feature 8 (C 18:1ω7c and/or C 18:1ω6c; 73.1%) and C18:0 (7.6%). The main polar lipids are phosphatidylcholine, phosphatidylmethylethanolamine, phosphatidylethanolamine and phosphatidylglycerol. On the basis of the evidences presented in this study, strains W15T and W16 represents a novel species of the genus Rhizobium, for which the name Rhizobium cremeum sp. nov. is proposed. The type strain is W15T (= CGMCC 1.18731T = KACC 22344T).  相似文献   

20.
A nicotinic acid-resistant mutant, designated NA201, was obtained from Fusarium sp. no. 5-128B by treatment with ultraviolet light. This mutant strain could grow in the presence of up to 500 mM nicotinic acid in the culture medium, although the parent strain could not grow at concentrations of nicotinic acid above 200 mM. The NA201 strain exhibited morphological mutations, neither forming aerial hyphae nor secreting a red-brown pigment. However, it retained the resistance to kabicidin at 25 mg l−t of the parent strain. The mutant NA201 cells contained high levels of squalene and low levels of ergosterol, about 53 times higher and five to six times lower, respectively, than those of the parent strain under standard culture conditions. The volumetric oxygen transfer coefficient (Kd) affected the level of squalene in the mutant cells. The Kd for the maximum production of squalene by the mutant was 24 mmol O2I−1h−1atm−1 and the level of squalene in the mutant cells was 26 mg (g cell)−1 on a dry weight basis. The greatest accumulation of squalene by the NA201 strain, corresponding to 323 mg per liter of culture medium and 35 mg (g cell)−1 on a dry weight basis, was achieved in a culture in which the Kd was changed from a high to a low value on the third day, with the simultaneous addition of 3% glucose (w/v).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号