首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The assembly of the ribosomal subunits is facilitated by ribosome biogenesis factors. The universally conserved methyltransferase KsgA modifies two adjacent adenosine residues in the 3'-terminal helix 45 of the 16 S ribosomal RNA (rRNA). KsgA recognizes its substrate adenosine residues only in the context of a near mature 30S subunit and is required for the efficient processing of the rRNA termini during ribosome biogenesis. Here, we present the cryo-EM structure of KsgA bound to a nonmethylated 30S ribosomal subunit. The structure reveals that KsgA binds to the 30S platform with the catalytic N-terminal domain interacting with substrate adenosine residues in helix 45 and the C-terminal domain making extensive contacts to helix 27 and helix 24. KsgA excludes the penultimate rRNA helix 44 from adopting its position in the mature 30S subunit, blocking the formation of the decoding site and subunit joining. We suggest that the activation of methyltransferase activity and subsequent dissociation of KsgA control conformational changes in helix 44 required for final rRNA processing and translation initiation.  相似文献   

2.
A comparative study of the 30S ribosomal subunit in the complex with protein S1 and the subunit depleted of this protein has been carried out by the hot tritium bombardment method. Differences in exposure of some ribosomal proteins within the 30S subunit depleted of S1 and within the 30S–S1 complex were found. It was concluded that protein S1 binds in the region of the neck of the 30S ribosomal subunit inducing a conformational change of its structure.  相似文献   

3.
4.
The assembly of ribosomes requires a significant fraction of the energy expenditure for rapidly growing bacteria. The ribosome is composed of three large RNA molecules and over 50 small proteins that must be rapidly and efficiently assembled into the molecular machine responsible for protein synthesis. For over 30 years, the 30S ribosome has been a key model system for understanding the process of ribosome biogenesis through in vitro assembly experiments. We have recently developed an isotope pulse-chase experiment using quantitative mass spectrometry that permits assembly kinetics to be measured in real time. Kinetic studies have revealed an assembly energy landscape that ensures efficient assembly by a flexible and robust pathway.  相似文献   

5.
Culver GM 《Biopolymers》2003,68(2):234-249
Ribosomes are large macromolecular complexes responsible for cellular protein synthesis. The smallest known cytoplasmic ribosome is found in prokaryotic cells; these ribosomes are about 2.5 MDa and contain more than 4000 nucleotides of RNA and greater than 50 proteins. These components are distributed into two asymmetric subunits. Recent advances in structural studies of ribosomes and ribosomal subunits have revealed intimate details of the interactions within fully assembled particles. In contrast, many details of how these massive ribonucleoprotein complexes assemble remain elusive. The goal of this review is to discuss some crucial aspects of 30S ribosomal subunit assembly.  相似文献   

6.
The mechanism of 16 S ribosomal RNA folding into its compact form in the native 30 S ribosomal subunit of Escherichia coli was studied by scanning transmission electron microscopy and circular dichroism spectroscopy. This approach made it possible to visualize and quantitatively analyze the conformational changes induced in 16 S rRNA under various ionic conditions and to characterize the interactions of ribosomal proteins S4, S8, S15, S20, S17 and S7, the six proteins known to bind to 16 S rRNA in the initial assembly steps. 16 S rRNA and the reconstituted RNA-protein core particles were characterized by their mass, morphology, radii of gyration (RG), and the extent and stability of 16 S rRNA secondary structure. The stepwise binding of S4, S8 and S15 led to a corresponding increase of mass and was accompanied by increased folding of 16 S rRNA in the core particles, as evident from the electron micrographs and from the decrease of RG values from 114 A and 91 A. Although the binding of S20, S17 and S7 continued the trend of mass increase, the RG values of these core particles showed a variable trend. While there was a slight increase in the RG value of the S20 core particles to 94 A, the RG value remained unchanged (94 A) with the further addition of S17. With subsequent addition of S7 to the core particles, the RG values showed an increase to 108 A. Association with S7 led to the formation of a globular mass cluster with a diameter of about 115 A and a mass of about 300 kDa. The rest of the mass (about 330 kDa) remained loosely coiled, giving the core particle a "medusa-like" appearance. Morphology of the 16 S rRNA and 16 S rRNA-protein core particles, even those with all six proteins, does not resemble the native 30 S subunit, contrary to what has been reported by others. The circular dichroism spectra of the 16 S rRNA-protein complexes and of free 16 S rRNA indicate a similarity of RNA secondary structure in the core particles with the first four proteins, S4, S8, S15, S20. The circular dichroism melting profiles of these core particles show only insignificant variations, implying no obvious changes in the distribution or the stability of the helical segments of 16 S rRNA. However, subsequent binding of proteins S17 and S7 affected both the extent and the thermal stability of 16 S rRNA secondary structure.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Era (E. coliRas-like protein) is a highly conserved and essential GTPase in bacteria. It binds to the 16S ribosomal RNA (rRNA) of the small (30S) ribosomal subunit, and its depletion leads to accumulation of an unprocessed precursor of the 16S rRNA. We have obtained a three-dimensional cryo-electron microscopic map of the Thermus thermophilus 30S-Era complex. Era binds in the cleft between the head and platform of the 30S subunit and locks the subunit in a conformation that is not favorable for association with the large (50S) ribosomal subunit. The RNA binding KH motif present within the C-terminal domain of Era interacts with the conserved nucleotides in the 3' region of the 16S rRNA. Furthermore, Era makes contact with several assembly elements of the 30S subunit. These observations suggest a direct involvement of Era in the assembly and maturation of the 30S subunit.  相似文献   

8.
Elongated hollow strands were revealed on raw images and averaged by the correlation method images of the 30 S subunit of the E. coli ribosome negatively stained by uranyl acetate. The tentative three-dimensional arrangement of the 'strands' and their nature are discussed.  相似文献   

9.
10.
Muth GW  Hennelly SP  Hill WE 《Biochemistry》2000,39(14):4068-4074
Determining the detailed tertiary structure of 16S rRNA within 30S ribosomal subunits remains a challenging problem. The particular structure of the RNA which allows tRNA to effectively interact with the associated mRNA during protein synthesis remains particularly ambiguous. This study utilizes a chemical nuclease, 1, 10-o-phenanthroline-copper, to localize regions of 16S rRNA proximal to the decoding region under conditions in which tRNA does not readily associate with the 30S subunit (inactive conformation), and under conditions which optimize tRNA binding (active conformation). By covalently attaching 1,10-phenanthroline-copper to a DNA oligomer complementary to nucleotides in the decoding region (1396-1403), we have determined that nucleotides 923-929, 1391-1396, and 1190-1192 are within approximately 15 A of the nucleotide base-paired to nucleotide 1403 in inactive subunits, but in active subunits only cleavages (1404-1405) immediately proximal to the 5' end of the hybridized probe remain. These results provide evidence for dynamic movement in the 30S ribosomal subunit, reported for the first time using a targeted chemical nuclease.  相似文献   

11.
Functional Escherichia coli 30S ribosomal subunits can be reconstituted in vitro. However, slow kinetics and sharp temperature dependence suggest additional assembly factors are present in vivo. Extract activation of in vitro assembly results in association of DnaK/hsp70 chaperone components with pre-30S particles. Purified DnaK, its cochaperones DnaJ and GrpE, and ATP can facilitate reconstitution of functional 30S subunits under otherwise nonpermissive conditions. A link has been observed between DnaK, 30S subunit components, and ribosome biogenesis in vivo as well as in vitro. These studies reveal a novel role for the DnaK/hsp70 chaperone system, in addition to its well-documented role in protein folding, and suggest that 30S subunit assembly can be facilitated.  相似文献   

12.
Summary Expression of resistance to erythromycin in Escherichia coli, caused by an altered L4 protein in the 50S ribosomal subunit, can be masked when two additional ribosomal mutations affecting the 30S proteins S5 and S12 are introduced into the strain (Saltzman, Brown, and Apirion, 1974). Ribosomes from such strains bind erythromycin to the same extent as ribosomes from erythromycin sensitive parental strains (Apirion and Saltzman, 1974).Among mutants isolated for the reappearance of erythromycin resistance, kasugamycin resistant mutants were found. One such mutant was analysed and found to be due to undermethylation of the rRNA. The ribosomes of this strain do not bind erythromycin, thus there is a complete correlation between phenotype of cells with respect to erythromycin resistance and binding of erythromycin to ribosomes.Furthermore, by separating the ribosomal subunits we showed that 50S ribosomes bind or do not bind erythromycin according to their L4 protein; 50S with normal L4 bind and 50S with altered L4 do not bind erythromycin. However, the 30s ribosomes with altered S5 and S12 can restore binding in resistant 50S ribosomes while the 30S ribosomes in which the rRNA also became undermethylated did not allow erythromycin binding to occur.Thus, evidence for an intimate functional relationship between 30S and 50S ribosomal elements in the function of the ribosome could be demonstrated. These functional interrelationships concerns four ribosomal components, two proteins from the 30S ribosomal subunit, S5, and S12, one protein from the 50S subunit L4, and 16S rRNA.  相似文献   

13.
Biogenesis of ribosomal subunits involves enzymatic modifications of rRNA that fine-tune functionally important regions. The universally conserved prokaryotic dimethyltransferase KsgA sequentially modifies two universally conserved adenosine residues in helix 45 of the small ribosomal subunit rRNA, which is in proximity of the decoding site. Here we present the cryo-EM structure of Escherichia coli KsgA bound to an E. coli 30S at a resolution of 3.1 Å. The high-resolution structure reveals how KsgA recognizes immature rRNA and binds helix 45 in a conformation where one of the substrate nucleotides is flipped-out into the active site. We suggest that successive processing of two adjacent nucleotides involves base-flipping of the rRNA, which allows modification of the second substrate nucleotide without dissociation of the enzyme. Since KsgA is homologous to the essential eukaryotic methyltransferase Dim1 involved in 40S maturation, these results have also implications for understanding eukaryotic ribosome maturation.  相似文献   

14.
15.
16.
17.
18.
Desai PM  Culver GM  Rife JP 《Biochemistry》2011,50(5):854-863
KsgA is an rRNA methyltransferase important to the process of small subunit biogenesis in bacteria. It is ubiquitously found in all life including archaea and eukarya, where the enzyme is referred to as Dim1. Despite the emergence of considerable data addressing KsgA function over the last several years, details pertaining to RNA recognition are limited, in part because the most accessible substrate for in vitro studies of KsgA is the 900000 Da 30S ribosomal subunit. To overcome challenges imposed by size and complexity, we adapted recently reported techniques to construct in vivo assembled mutant 30S subunits suitable for use in in vitro methyltransferase assays. Using this approach, numerous 16S rRNA mutants were constructed and tested. Our observations indicate that the 790 loop of helix 24 plays an important role in overall catalysis by KsgA. Moreover, the length of helix 45 also is important to catalysis. In both cases loss of catalytic function occurred without an increase in the production of N(6)-methyladenosine, a likely indication that there was no critical reduction in binding strength. Both sets of observations support a "proximity" mechanism of KsgA function. We also report that several of the mutants constructed failed to assemble properly into 30S subunits, while some others did so with reduced efficiency. Therefore, the same technique of generating mutant 30S subunits can be used to study ribosome biogenesis on the whole.  相似文献   

19.
Two forms of the 30 S ribosomal subunit of Escherichia coli   总被引:15,自引:0,他引:15  
  相似文献   

20.
The 22 S ribonucleoproten particles containing the 5' (body) and the central (platform) domains of the Thermus thermophilus 30 S subunit has been studied by sedimentation, neutron scattering and electron microscopy. The RNP particles have been obtained by oligonucleotide-directed cleavage of 16 S RNA with ribonulease H in the region of the 900th nucleotide of the protein-deficient derivatives of the 30 S subunits. It is shown that these RNP particles are very compact, though their form and dimensions differ slightly from those expected from the electron microscopy model of the 30 S subunit beheaded by computer simulation. The particles are subdivided into two structural domains whose mutual arrangement differs from that of the corresponding morphological parts of the native 30 S subunit. Electron microscopy demonstrates that the mutual arrangement of domains in the RNP particles is not strictly fixed suggesting that interaction with the third domain of the 30 S subunit is a requisite for their correct fitting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号