共查询到20条相似文献,搜索用时 15 毫秒
1.
Hee Chun Jeong No-Joong Park Chong Hak Chae Kamil Musilek Jiri Kassa Kamil Kuca Young-Sik Jung 《Bioorganic & medicinal chemistry》2009,17(17):6213-6217
A series of fluorinated oxime compounds was designed and synthesized in order to probe the effect of fluorine substitution on reactivation of inhibited acetylcholinesterase (AChE) by organophosphorus agents. Permeability measurements, using the Parallel Artificial Membrane Permeation Assays (PAMPA) method, were employed to experimentally demonstrate that membrane permeabilities of the series of oximes increase in proportional to the increase in the number of fluorine atoms. Among the compounds explored in this study, the mono-fluorinated carbamoyl aldoxime 4b was the most potent reactivator for paraoxon-inhibited red blood cell (RBC) AChE. 相似文献
2.
To discover multifunctional agents for the treatment of Alzheimer’s disease, a series of hydrazide based Schiff bases were designed and synthesized based on multitarget-directed strategy. We have synthesized twenty-eight analogs of hydrazide based Schiff bases, characterized by various spectroscopic techniques and evaluated in vitro for acetylcholinesterase and butyrylcholinesterase inhibition. All compounds showed varied degree of acetylcholinesterase and butyrylcholinesterase inhibition when compared with standard Eserine. Among the series, compounds 10, 3 and 24 having IC50 values 4.12 ± 0.01, 8.12 ± 0.01 and 8.41 ± 0.06 μM respectively showed potent acetylcholinesterase inhibition when compared with Eserine (IC50 = 0.85 ± 0.0001 μM). Three compounds 13, 24 and 3 having IC50 values 6.51 ± 0.01, 9.22 ± 0.07 and 37.82 ± 0.14 μM respectively showed potent butyrylcholinesterase inhibition by comparing with eserine (IC50 = 0.04 ± 0.0001 μM). The remaining compounds also exhibited moderate to weak inhibitory potential. Structure activity relationship has been established. Through molecular docking studies the binding interaction was confirmed. 相似文献
3.
Schallreuter KU Gibbons NC Elwary SM Parkin SM Wood JM 《Biochemical and biophysical research communications》2007,355(4):1069-1074
The human epidermis holds an autocrine acetylcholine production and degradation including functioning membrane integrated and cytosolic butyrylcholinesterase (BuchE). Here we show that BuchE activities increase 9-fold in the presence of calcium (0.5x10(-3)M) via a specific EF-hand calcium binding site, whereas acetylcholinesterase (AchE) is not affected. (45)Calcium labelling and computer simulation confirmed the presence of one EF-hand binding site per subunit which is disrupted by H(2)O(2)-mediated oxidation. Moreover, we confirmed the faster hydrolysis by calcium-activated BuchE using the neurotoxic organophosphate O-ethyl-O-(4-nitrophenyl)-phenylphosphonothioate (EPN). Considering the large size of the human skin with 1.8m(2) surface area with its calcium gradient in the 10(-3)M range, our results implicate calcium-activated BuchE as a major protective mechanism against suicide inhibition of AchE by organophosphates in this non-neuronal tissue. 相似文献
4.
Chiou SY Wu YG Lin YF Lin LY Lin G 《Journal of biochemical and molecular toxicology》2007,21(1):24-31
Carbamates are used to treat Alzheimer's disease. These compounds inhibit acetylcholinesterase and butyrylcholinesterase. The goal of this work is to use the substrate analogs of butyrylcholinesterase, 3,3-dimethylbutyl-N-n-butylcarbamate (1) and 2-trimethylsilyl-ethyl-N-n-butylcarbamate (2) to probe the substrate activation mechanism of butyrylcholinesterase. Compounds 1 and 2 are characterized as the pseudo substrate inhibitors of acetylcholinesterase; however, compounds 1 and 2 are characterized as the essential activators of butyrylcholinesterase. Therefore, compounds 1 and 2 mimic the substrate in the acetylcholinesterase-catalyzed reactions, but the behavior of compounds 1 and 2 mimics the substrate activation in the butyrylcholinesterase-catalyzed reactions. 相似文献
5.
Summary The phylo- and ontogenetically related enzymes butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) are expressed consecutively at the onset of avian neuronal differentiation. In order to investigate their possible co-regulation, we have studied the effect of highly selective inhibitors on each of the cholinesterases with respect to their expression in rotary cultures of the retina (retinospheroids) and stationary cultures of the embryonic chick tectum. Adding the irreversible BChE inhibitor iso-OMPA to reaggregating retinal cells has only slight morphological effects and fully inhibits BChE expression. Unexpectedly, iso-OMPA also suppresses the expression of AChE to 35%–60% of its control activity. Histochemically, this inhibition is most pronounced in fibrous regions. The release of AChE into the media of both types of cultures is inhibited by iso-OMPA by more than 85%. Control experiments show that AChE suppression by the BChE inhibitor is only partially explainable by direct cross-inhibition of iso-OMPA on AChE. In contrast, the treatment of retinospheroids with the reversible AChE inhibitor BW284C51 first accelerates the expression of AChE and then leads to a rapid decay of the spheroids. After injection of BW284C51 into living embryos, we find that AChE is expressed prematurely in cells that normally express BChE. We conclude that the cellular expression of AChE is regulated by the amount of both active BChE and active AChE within neuronal tissues. Thus, direct interaction with classical cholinergic systems is indicated for the seemingly redundant BChE. 相似文献
6.
Mohamed S. Dehlawi Amira T. Eldefrawi Mohyee E. Eldefrawi Nabil A. Anis James J. Valdes 《Journal of biochemical and molecular toxicology》1994,9(5):261-268
A light addressable potentiometric sensor was used to measure acetylcholinesterase (AChE) activity in order to evaluate the protective effects of quaternary compounds and NaF against enzyme phosphorylation and aging by two organophosphates. The use of the immobilized AChE made possible the quick removal of reagents (i.e., organophosphate, 2-pralidoxime, and protectant), thereby permitting accurate determination of AChE activity before and after phosphorylation and aging. Paraoxon was 15-fold more potent in inhibiting AChE than DFP, while the percent aging following phosphorylation by diiso-propylfluorophosphate (DFP) was much higher. Sodium fluoride (NaF), the most effective protectant against phosphorylation and aging, and the quaternary ammonium compounds reduced significantly AChE inhibition by DFP and paraoxon, to similar degrees. Even though the percent AChE activity that was lost to aging was reduced by these agents, aging as a percent of phosphorylated AChE was not reduced. Thus, their major effect was in reducing the percent AChE phosphorylation, which consequently resulted in reduction of total aged AChE. The finding that quaternary ammonium compounds protect against phosphorylation is consonant with the proposed presence of the active site of AChE in an aromatic gorge. 相似文献
7.
In this study, a series of novel bromophenols were synthesized from benzoic acids and methoxylated bromophenols. The synthesized compounds were evaluated by using different bioanalytical antioxidant assays including 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS+) radical scavenging assays. Also, reducing power of novel bromophenols were evaluated by Cu2+-Cu+ reducing, Fe3+-Fe2+ reducing and [Fe3+-(TPTZ)2]3+-[Fe2+-(TPTZ)2]2+ reducing and ferrous ions (Fe2+) chelating abilities. The compounds demonstrate powerful antioxidant activities when compared to standard antioxidant molecules of α-tocopherol, trolox, butylated hydroxyanisole (BHA), and butylated hydroxytoluene (BHT). Also in the last part of this studies novel bromophenols were tested against some metabolic enzymes including acetylcholinesterase (AChE), butyrylcholinesterase (BChE) enzymes and carbonic anhydrase I, and II (hCA I and hCA II) isoenzymes. The newly synthesized bromophenols showed Ki values in a range of 6.78 ± 0.68 to 126.07 ± 35.6 nM against hCA I, 4.32 ± 0.23 to 72.25 ± 12.94 nM against hCA II, 4.60 ± 1.15 to 38.13 ± 5.91 nM against AChE and 7.36 ± 1.31 to 29.38 ± 3.68 nM against BChE. 相似文献
8.
《Bioorganic & medicinal chemistry》2020,28(5):115324
Rivastigmine, a dual inhibitor of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), has been approved by U.S. Food and Drug Administration to treat Alzheimer’s disease (AD) and Parkinson’s disease (PD) dementia. In the current work, a bambuterol derivative lacking one of the carbamoyloxy groups on the benzene ring (BMC-1) and its analogues were synthesized using 1-(3-hydroxyphenyl) ethan-1-one and 1-(4-hydroxyphenyl) ethan-1-one as starting materials. In-vitro cholinesterase assay established that nine compounds were more potent to inhibit both electric eel AChE and equine serum BChE than rivastigmine under the same experimental conditions. Further study confirmed that among the nine carbamates, BMC-3 (IC50(AChE) = 792 nM, IC50(BChE) = 2.2 nM) and BMC-16 (IC50(AChE) = 266 nM, IC50(BChE) = 10.6 nM) were excellent cholinesterase inhibitors with potential of permeating through the blood-brain barrier. These carbamates could be used as potential dual inhibitors of AChE and BChE and to discover novel drugs for the treatment of AD and PD dementia. 相似文献
9.
Kamil Kuca Jiri Cabal Daniel Jun Jiri Bajgar Martina Hrabinova 《Journal of enzyme inhibition and medicinal chemistry》2013,28(6):663-666
Antidotes currently used for organophosphorus pesticide and nerve agent intoxications consist of anticholinergics (atropine mainly) and acetylcholinesterase (AChE, EC 3.1.1.7) reactivators called oximes. Owing to the wide-spread of these toxic compounds worldwide, development of antidotes in the case of first aid is needed. To select the most promising AChE reactivators is a very time consuming process, which is necessary before approval of these compounds to be used as human antidotes. Because of ethical reasons, many developing experiments have been conducted on laboratory animals. However, these results often could not be transferred directly to human. Here, we have tested five newly developed AChE reactivators – K027, K033, K048, K074 and K075, which showed promising reactivation activity on rodents, as reactivators of inhibited human brain cholinesterases. For this purpose, cyclosarin was used as member of the nerve agent family. Oxime HI-6 and pralidoxime were used as AChE reactivator standards. Two AChE reactivators, K027 and K033, achieved comparable reactivation potency as HI-6. Moreover, oxime K033 reached its maximal reactivation potency at the lowest concentration which could be attained in humans. 相似文献
10.
Kuca K Cabal J Jun D Bajgar J Hrabinova M 《Journal of enzyme inhibition and medicinal chemistry》2006,21(6):663-666
Antidotes currently used for organophosphorus pesticide and nerve agent intoxications consist of anticholinergics (atropine mainly) and acetylcholinesterase (AChE, EC 3.1.1.7) reactivators called oximes. Owing to the wide-spread of these toxic compounds worldwide, development of antidotes in the case of first aid is needed. To select the most promising AChE reactivators is a very time consuming process, which is necessary before approval of these compounds to be used as human antidotes. Because of ethical reasons, many developing experiments have been conducted on laboratory animals. However, these results often could not be transferred directly to human. Here, we have tested five newly developed AChE reactivators--K027, K033, K048, K074 and K075, which showed promising reactivation activity on rodents, as reactivators of inhibited human brain cholinesterases. For this purpose, cyclosarin was used as member of the nerve agent family. Oxime HI-6 and pralidoxime were used as AChE reactivator standards. Two AChE reactivators, K027 and K033, achieved comparable reactivation potency as HI-6. Moreover, oxime K033 reached its maximal reactivation potency at the lowest concentration which could be attained in humans. 相似文献
11.
Exposure to organophosphorus compounds (OPs), in the form of nerve agents and pesticides poses an ever increasing military and civilian threat. In recent years, attention has focused on the use of exogenously administered cholinesterases as an effective prophylactic treatment for protection against OPs. Clearly, a critical prerequisite for any potential bioscavenger is a prolonged circulatory residence time, which is influenced by the size of protein, the microheterogeneity of carbohydrate structures, and the induction (if any) of anti-enzyme antibodies following repeated injections of the enzyme. Previously, it was demonstrated that multiple injections of equine butyrylcholinesterase (BChE) into rabbits, rats, or rhesus monkeys, resulted in a mean residence time spanning several days, and variable immune responses. The present study sought to assess the pharmacokinetics and immunological consequences of administration of purified macaque BChE into macaques of the same species at a dose similar to that required for preventing OP toxicity. An i.v. injection of 7,000 U of homologous enzyme in monkeys demonstrated much longer mean residence times in plasma (MRT = 225 +/- 19 h) compared to those reported for heterologous Hu BChE (33.7 +/- 2.9 h). A smaller second injection of 3,000 U given four weeks later, attained predicted peak plasma levels of enzyme activity, but surprisingly, the MRT in the four macaques showed wide variation and ranged from 54 to 357 h. No antibody response was detected in macaques following either injection of enzyme. These results bode well for the potential use of human BChE as a detoxifying drug in humans. 相似文献
12.
Jean Debord Michel Harel Bernard Verneuil Thierry Dantoine 《Analytical biochemistry》2009,389(2):97-15959
The inhibition of horse serum butyrylcholinesterase (EC 3.1.1.8) by the organophosphorus compound paraoxon (diethyl 4-nitrophenyl phosphate) was studied by flow microcalorimetry at 37 °C in Tris buffer (pH 7.5) using a modification of the kinetic model described by Stojan and coworkers [J. Stojan, V. Marcel, S. Estrada-Mondaca, A. Klaebe, P. Masson, D. Fournier, A putative kinetic model for substrate metabolisation by Drosophila acetylcholinesterase, FEBS Lett. 440 (1998) 85-88]. The reversible steps of the inhibition were studied in the mixing cell of the calorimeter, whereas the irreversible step was studied in the flow-through cell. A new pseudo-first-order approximation was developed to allow the kinetic analysis of inhibition progress curves in the presence of substrate when a significant amount of substrate is transformed. This approximation also allowed one to compute an analytical expression of the calorimetric curves using a gamma distribution to describe the impulse response of the calorimeter. Fitting models to data by nonlinear regression, with simulated annealing as a stochastic optimization method, allowed the determination of all kinetic parameters. It was found that paraoxon binds to both the enzyme and acyl-enzyme, but with weak affinities (Ki = 0.123 mM and K′i = 5.5 mM). A slight activation was observed at the lowest paraoxon concentrations and was attributed to the binding of the substrate to the enzyme-inhibitor complex. The bimolecular inhibition rate constant ki = 2.8 × 104 M−1 s−1 was in agreement with previous studies. It is hoped that the methods developed in this work will contribute to extending the application range of microcalorimetry in the field of irreversible inhibitors. 相似文献
13.
《Bioorganic & medicinal chemistry》2016,24(16):3742-3751
In the present study, a series of 2-benzoyl-6-benzylidenecyclohexanone analogs have been synthesized and evaluated for their anti-cholinesterase activity. Among the forty-one analogs, four compounds (38, 39, 40 and 41) have been identified as lead compounds due to their highest inhibition on both AChE and BChE activities. Compounds 39 and 40 in particular exhibited highest inhibition on both AChE and BChE with IC50 values of 1.6 μM and 0.6 μM, respectively. Further structure–activity relationship study suggested that presence of a long-chain heterocyclic in one of the rings played a critical role in the dual enzymes’ inhibition. The Lineweaver–Burk plots and docking results suggest that both compounds could simultaneously bind to the PAS and CAS regions of the enzyme. ADMET analysis further confirmed the therapeutic potential of both compounds based upon their high BBB-penetrating. Thus, 2-benzoyl-6-benzylidenecyclohexanone containing long-chain heterocyclic amine analogs represent a new class of cholinesterase inhibitor, which deserve further investigation for their development into therapeutic agents for cognitive diseases such as Alzheimer. 相似文献
14.
Hyun Myung Lee Rudolf Andrys Jakub Jonczyk Kyuneun Kim Avinash G. Vishakantegowda David Malinak Adam Skarka Monika Schmidt Michaela Vaskova Kamil Latka Marek Bajda Young-Sik Jung Barbara Malawska Kamil Musilek 《Journal of enzyme inhibition and medicinal chemistry》2021,36(1):437
The pyridinium-2-carbaldoximes with quinolinium carboxamide moiety were designed and synthesised as cholinesterase reactivators. The prepared compounds showed intermediate-to-high inhibition of both cholinesterases when compared to standard oximes. Their reactivation ability was evaluated in vitro on human recombinant acetylcholinesterase (hrAChE) and human recombinant butyrylcholinesterase (hrBChE) inhibited by nerve agent surrogates (NIMP, NEMP, and NEDPA) or paraoxon. In the reactivation screening, one compound was able to reactivate hrAChE inhibited by all used organophosphates and two novel compounds were able to reactivate NIMP/NEMP-hrBChE. The reactivation kinetics revealed compound 11 that proved to be excellent reactivator of paraoxon-hrAChE better to obidoxime and showed increased reactivation of NIMP/NEMP-hrBChE, although worse to obidoxime. The molecular interactions of studied reactivators were further identified by in silico calculations. Molecular modelling results revealed the importance of creation of the pre-reactivation complex that could lead to better reactivation of both cholinesterases together with reducing particular interactions for lower intrinsic inhibition by the oxime. 相似文献
15.
Jinmei Zhu Chun-Feng Wu Xiaobing Li Gui-Sheng Wu Shan Xie Qian-Nan Hu Zixin Deng Michael X. Zhu Huai-Rong Luo Xuechuan Hong 《Bioorganic & medicinal chemistry》2013,21(14):4218-4224
A series of novel 2-aminobenzimidazole derivatives were synthesized under microwave irradiation. Their biological activities were evaluated on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). A number of the 2-aminobenzimidazole derivatives showed good inhibitory activities to AChE and BuChE. Among them, compounds 9, 12 and 13 were found to be >25-fold more selective for BuChE than AChE. No evidence of cytotoxicity was observed by MTT assay in PC12 cells or HepG2 cells exposed to 100 μM of the compounds. Molecular modeling studies indicate that the benzimidazole moiety of compounds 9, 12 and 13 forms a face-to-face π–π stacking interaction in a ‘sandwich’ form with the indole ring of Trp82 (4.09 Å) in the active gorge, and compounds 12 and 13 form a hydrogen bond with His438 at the catalytic site of BuChE. In addition, compounds 12 and 13 fit well into the hydrophobic pocket formed by Ala328, Trp430 and Tyr332 of BuChE. Our data suggest the 2-aminobenzimidazole drugs as promising new selective inhibitors for AChE and BuChE, potentially useful to treat neurodegenerative diseases. 相似文献
16.
Exposure to the organophosphorus nerve agents such as sarin, soman, cyclosarin, and VX causes acute intoxication by inhibiting acetylcholinesterase (AChE), where the serine residue of the active site can attack the phosphorous atom of the organophosphorus agents to form a strong P–O bond. The purpose of the present study was to evaluate new oxime antidotes to reactivate the inhibited AChE. We have designed and synthesized several new oximes, and have evaluated the substances that differ from the currently used oximes in linker between the two pyridinium rings. The potency of newly synthesized oximes was compared with two currently used AChE reactivators (2-PAM, HI-6). The reactivation potencies of the bis-pyridinium oximes connected with a (CH2)n linker between the two quaternary nitrogen atoms were evaluated with housefly (HF) AChE inhibited by diisopropyl fluorophosphates (DFP) and by paraoxon. The bis-pyridinium oximes showed stronger activity compared with mono-pyridinium oxime, and the magnitude of reactivation potency depended on the length of the methylene linker. The potency order was (CH2) < (CH2)2 < (CH2)3 > (CH2)4 > (CH2)7. A (CH2)3 linker was optimal in HF AChE inhibited by either DFP or paraoxon. Thus, bis-pyridinium oxime 5 which has (CH2)3 linker showed the highest activity in this series of compounds. Interestingly, 5 was not as active as 2-PAM, showing that the position of the oxime group on the pyridinium ring is also very important for the reactivation potency. 相似文献
17.
Kinetic parameters were evaluated for inhibition of native and reactivation of tabun-inhibited human erythrocyte acetylcholinesterase (AChE, EC 3.1.1.7) and human plasma butyrylcholinesterase (BChE, EC 3.1.1.8) by three bispyridinium para-aldoximes with butane (K074), but-2-ene (K075) or xylene-like linker (K114). Tested aldoximes reversibly inhibited both cholinesterases with the preference for binding to the native AChE. Both cholinesterases showed the highest affinity for K114 (Ki was 0.01 mM for AChE and 0.06 mM for BChE). The reactivation of tabun-inhibited AChE was efficient by K074 and K075. Their overall reactivation rate constants were around 2000 min−1 M−1, which is seven times higher than for the classical bispyridinium para-aldoxime TMB-4. The reactivation of tabun-inhibited AChE assisted by K114 was slow and reached 90% after 20 h. Since the aldoxime binding affinity of tabun-inhibited AChE was similar for all tested aldoximes (and corresponded to their Ki), the rate of the nucleophilic displacement of the phosphoryl-moiety from the active site serine was the limiting factor for AChE reactivation. On the other hand, none of the aldoximes displayed a significant reactivation of tabun-inhibited BChE. Even after 20 h, the reactivation maximum was 60% for 1 mM K074 and K075, and only 20% for 1 mM K114. However, lower BChE affinities for K074 and K075 compared to AChE suggest that the fast tabun-inhibited AChE reactivation by these compounds would not be obstructed by their interactions with BChE in vivo. 相似文献
18.
Differences were observed in the extent of thermal inactivation of human butyrylcholinesterase (BuChE) and eel acetylcholinesterase (AChE). BuChE was more resistant to 57°C inactivation than was AChE. Thermal inactivation of BuChE was reversible and followed first-order kinetics. AChE thermal inactivation was irreversible and did not follow first-order kinetics. AChE was marginally protected from thermal inactivation by the nonspecific salts ammonium sulfate and sodium chloride and to a greater extent by the active site-specific salts choline chloride, sodium acetate, and acetylcholine iodide. This protection was accompanied by a loss of absorbance at 280 nm. This data supports the hypothesis that thermal inactivation of AChE occurs by conformational scrambling and that aromatic amino acid residue(s) are involved in this process.Recipient of a research fellowship from the UNCW graduate school. 相似文献
19.
Julian R. Haigh Scott R. Johnston Adam Peppernay Patrick J. Mattern Gregory E. Garcia Bhupendra P. Doctor Richard K. Gordon Paul S. Aisen 《Chemico-biological interactions》2008,175(1-3):380
As part of a phase Ib clinical trial to determine the tolerability and safety of the highly specific acetylcholinesterase (AChE) inhibitor huperzine A, twelve (12) healthy elderly individuals received an escalating dose regimen of huperzine A (100, 200, 300, and 400 μg doses, twice daily for a week at each dose), with three (3) individuals as controls receiving a placebo. Using the WRAIR whole blood cholinesterase assay, red blood cell AChE and plasma butyrylcholinesterase (BChE) were measured in unprocessed whole blood samples from the volunteers following each dose, and then for up to 48 h following the final and highest (400 μg) dose to monitor the profile of inhibition and recovery of AChE. Significant inhibition of AChE was observed, ranging from 30–40% after 100 μg to >50% at 400 μg, and peaking 1.5 h after the last dose. Gradual recovery of AChE activity then occurs, but even 48 h after the last dose red blood cell AChE was about 10% below control (pre-dose) values. Huperzine A levels in plasma peaked 1.5 h after the final 400 μg dose (5.47 ± 2.15 ng/mL). Plasma BChE was unaffected by huperzine A treatment (as expected).Aliquots of huperzine A-containing (from three individuals) and placebo blood samples were exposed ex vivo to the irreversible nerve agent soman (GD) for 10 min, followed by removal of unbound huperzine and soman from the blood by passing through a small C18 reverse phase spin column. Eluted blood was diluted in buffer, and aliquots taken at various time intervals for AChE and BChE activity measurement to determine the time taken to achieve full return in activity of the free enzyme (dissociation from the active site of AChE by huperzine A), and thus the proportion of AChE that can be protected from soman exposure. Huperzine A-inhibited red blood cell (RBC) AChE activity was restored almost to the level that was initially inhibited by the drug. The increased doses of huperzine A used were well tolerated by these patients and in this ex vivo study sequestered more red blood cell AChE than has been previously demonstrated for pyridostigmine bromide (PB), indicating the potential improved prophylaxis against organophosphate (OP) poisoning. 相似文献
20.
A series of thirty (30) thiazole analogs were prepared, characterized by 1H NMR, 13C NMR and EI-MS and evaluated for Acetylcholinesterase and butyrylcholinesterase inhibitory potential. All analogs exhibited varied butyrylcholinesterase inhibitory activity with IC50 value ranging between 1.59 ± 0.01 and 389.25 ± 1.75 μM when compared with the standard eserine (IC50, 0.85 ± 0.0001 μM). Analogs 15, 7, 12, 9, 14, 1, 30 with IC50 values 1.59 ± 0.01, 1.77 ± 0.01, 6.21 ± 0.01, 7.56 ± 0.01, 8.46 ± 0.01, 14.81 ± 0.32 and 16.54 ± 0.21 μM respectively showed excellent inhibitory potential. Seven analogs 15, 20, 19, 24, 28, 30 and 25 exhibited good acetylcholinesterase inhibitory potential with IC50 values 21.3 ± 0.50, 35.3 ± 0.64, 36.6 ± 0.70, 44.81 ± 0.81, 46.36 ± 0.84, 48.2 ± 0.06 and 48.72 ± 0.91 μM respectively. All other analogs also exhibited well to moderate enzyme inhibition. The binding mode of these compounds was confirmed through molecular docking. 相似文献