首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hexameric insulin is an allosteric protein that undergoes transitions between three conformational states (T(6), T(3)R(3), and R(6)). These allosteric states are stabilized by the binding of ligands to the phenolic pockets and by the coordination of anions to the His B10 metal sites. Raman difference (RD) spectroscopy is utilized to examine the binding of phenolic ligands and the binding of thiocyanate, p-aminobenzoic acid (PABA), or 4-hydroxy-3-nitrobenzoic acid (4H3N) to the allosteric sites of T(3)R(3) and R(6). The RD spectroscopic studies show changes in the amide I and III bands for the transition of residues B1-B8 from a meandering coil to an alpha helix in the T-R transitions and identify the Raman signatures of the structural differences among the T(6), T(3)R(3), and R(6) states. Evidence of the altered environment caused by the approximately 30 A displacement of phenylalanine (Phe) B1 is clearly seen from changes in the Raman bands of the Phe ring. Raman signatures arising from the coordination of PABA or 4H3N to the histidine (His) B10 Zn(II) sites show these carboxylates give distorted, asymmetric coordination to Zn(II). The RD spectra also reveal the importance of the position and the type of substituents for designing aromatic carboxylates with high affinity for the His B10 metal site.  相似文献   

2.
3.
The zinc insulin hexamer undergoes allosteric reorganization among three conformational states, designated T(6), T(3)R(3)(f), and R(6). Although the free monomer in solution (the active species) resembles the classical T-state, an R-like conformational change is proposed to occur upon receptor binding. Here, we distinguish between the conformational requirements of receptor binding and the crystallographic TR transition by design of an active variant refractory to such reorganization. Our strategy exploits the contrasting environments of His(B5) in wild-type structures: on the T(6) surface but within an intersubunit crevice in R-containing hexamers. The TR transition is associated with a marked reduction in His(B5) pK(a), in turn predicting that a positive charge at this site would destabilize the R-specific crevice. Remarkably, substitution of His(B5) (conserved among eutherian mammals) by Arg (occasionally observed among other vertebrates) blocks the TR transition, as probed in solution by optical spectroscopy. Similarly, crystallization of Arg(B5)-insulin in the presence of phenol (ordinarily a potent inducer of the TR transition) yields T(6) hexamers rather than R(6) as obtained in control studies of wild-type insulin. The variant structure, determined at a resolution of 1.3A, closely resembles the wild-type T(6) hexamer. Whereas Arg(B5) is exposed on the protein surface, its side chain participates in a solvent-stabilized network of contacts similar to those involving His(B5) in wild-type T-states. The substantial receptor-binding activity of Arg(B5)-insulin (40% relative to wild type) demonstrates that the function of an insulin monomer can be uncoupled from its allosteric reorganization within zinc-stabilized hexamers.  相似文献   

4.
R Palmieri  R W Lee  M F Dunn 《Biochemistry》1988,27(9):3387-3397
1H Fourier transform NMR investigations of metal ion binding to insulin in 2H2O were undertaken as a function of pH* to determine the effects of metal ion coordination to the Glu(B13) site on the assembly and structure of the insulin hexamer. The C-2 histidyl regions of the 1H NMR spectra of insulin species containing respectively one Ca2+ and two Zn2+/hexamer and three Cd2+/hexamer have been assigned. Both the Cd2+ derivative (In)6(Cd2+)2Cd2+, where two of the Cd2+ ions are coordinated to the His(B10) sites and the remaining Cd2+ ion is coordinated to the Glu(B13) site [Sudmeier, J.L., Bell, S.J., Storm, M. C., & Dunn, M.F. (1981) Science (Washington, D.C.) 212, 560], and the Zn2+-Ca2+ derivative (In)6-(Zn2+)2Ca2+, where the two Zn2+ ions are coordinated to the His(B10) sites and Ca2+ ion is coordinated to the Glu(B13) site, give spectra in which the C-2 proton resonances of His(B10) are shifted upfield relative to metal-free insulin. Spectra of insulin solutions (3-20 mg/mL) containing a ratio of In:Zn2+ = 6:2 in the pH* region from 8.6 to 10 were found to contain signals both from metal-free insulin species and from the 2Zn-insulin hexamer, (In)6(Zn2+)2. The addition of either Ca2+ (in the ratio In:Zn2+:Ca2+ = 6:2:1) or 40 mM NaSCN was found to provide sufficient additional thermodynamic drive to bring about the nearly complete assembly of insulin hexamers. Cd2+ in the ratio In:Cd2+ = 6:3 also drives hexamer assembly to completion. We postulate that the additional thermodynamic drive provide by Ca2+ and CD2+ is due to coordination of these metal ions to the Glu(B13) carboxylates of the hexamer. At high pH*, this coordination neutralizes the repulsive Coulombic interactions between the six Glu(B13) carboxylates and forms metal ion "cross-links" across the dimer-dimer interfaces. Comparison of the aromatic regions of the 1H NMR spectra for (In)6(Zn2+)2 with (In)6(Zn2+)2Ca2+, (In)6(Cd2+)2Cd2+, and (In)6(Cd2+)2Ca2+ indicates that binding of either Ca2+ or Cd2+ to the Glu(B13) site induces a conformation change that perturbs the environments of the side chains of several of the aromatic residues in the insulin structure. Since these residues lie on the monomer-monomer and dimer-dimer subunit interfaces, we conclude that the conformation change includes small changes in the subunit interfaces that alter the microenvironments of the aromatic rings.  相似文献   

5.
The two histidines of the insulin monomer play a vital role in the organization of insulin into insulin hexamers. The B10 histidines bind to zinc to form two-zinc insulin hexamer, and both the B5 and B10 histidines are implicated in the formation of four-zinc insulin hexamer. These two histidines are both accessible to solvent in the dimeric form of insulin, the predominant species present at pH 2–3. In the present work we report the first 500-MHz1H NMR studies of insulin. At this frequency all four proton resonances from the two histidines of each equivalent monomer are resolved. The resonances are assigned to the C(2)- and C(4)-imidazole protons of B5 His and B10 His employing Carr-Purcell pulse sequences to detect singlets and to observe approximateT 2 relaxation times. Zinc-free bovine insulin at pH 2.9 was examined at temperatures up to 60°C in acetate buffer and in urea of varying concentrations. The environments of B5 His in molecule I and molecule II of the dimer must be the same, with the same being true for B10 His, since a total of only four sharp resonances are seen. Our assignments for the two C(2) protons are consistent with those determined from recent studies of human (B5 Ala) insulin.  相似文献   

6.
High-resolution 270-MHz proton nuclear magnetic resonance (NMR) spectra of the native two-zinc insulin hexamer at pH 9 have been obtained, and assignments of key resonances have been made. Spectra of zinc-free insulin titrated with Zn2+ are unchanged after the addition of 1 equiv of zinc per insulin hexamer, indicating that the conformation of the hexamer is fixed at this point and that the second zinc ion does not significantly change the conformation. Titration of the two-zinc insulin hexamer with anions high on the Hofmeister series such as SCN- causes marked changes in the NMR spectra which are interpreted as the result of major conformational changes to a new hexameric form of insulin having a twofold axis perpendicular to the threefold axis. Analysis of difference spectra indicates that this new hexamer (which should be capable of binding six zinc ions) binds 2 equiv of SCN- at two sites which are assumed to be identical and independent (K1 = 10(3), K2 = 2.5 X 10(2) M-1).  相似文献   

7.
W Kadima 《Biochemistry》1999,38(41):13443-13452
The role of metal ions in the T- to R-allosteric transition is ascertained from the investigation of the T- to R-allosteric transition of transition metal ions substituted-insulin hexamers, as well as from the kinetics of their dissociation. These studies establish that ligand field stabilization energy (LFSE), coordination geometry preference, and the Lewis acidity of the metal ion in the zinc sites modulate the T- to R-state transition. (1)H NMR, (113)Cd NMR, and UV-vis measurements demonstrate that, under suitable conditions, Fe2+/3+, Ni2+, and Cd2+ bind insulin to form stable hexamers, which are allosteric species. (1)H NMR R-state signatures are elicited by addition of phenol alone in the case of Ni(II)- and Cd(II)-substituted insulin hexamers. The Fe(II)-substituted insulin hexamer is converted to the ferric analogue upon addition of phenol. For the Fe(III)-substituted insulin hexamer, appearance of (1)H NMR R-state signatures requires, additionally to phenol, ligands containing a nitrogen that can donate a lone pair of electrons. This is consistent with stabilization of the R-state by heterotropic interactions between the phenol-binding pocket and ligand binding to Fe(III) in the zinc site. UV-vis measurements indicate that the (1)H NMR detected changes in the conformation of the Fe(III)-insulin hexamer are accompanied by a change in the electronic structure of the iron site. Kinetic measurements of the dissociation of the hexamers provide evidence for the modulation of the stability of the hexamer by ligand field stabilization effects. These kinetic studies also demonstrate that the T- to R-state transition in the insulin hexamer is governed by coordination geometry preference of the metal ion in the zinc site and the compatibility between Lewis acidity of the metal ion in the zinc site and the Lewis basicity of the exogenous ligands. Evidence for the alteration of the calcium site has been obtained from (113)Cd NMR measurements. This finding adds to the number of known conformational changes that occur during the T- to R-transition and is an important consideration in the formulation of allosteric mechanisms of the insulin hexamer.  相似文献   

8.
For hexamer formation of native insulin the repulsive potential of six B13 Glu carboxylate groups coming together in the centre is overcome by zinc binding to B10 His. Substitution of Gln for Glu in position B13 by site-directed mutagenesis, i.e. replacement of the repelling carboxylates by amide groups, which are offering H-bonding potential, enhances association and allows a metal-free hexamer to form. Merely upon addition of zinc ions this hexamer undergoes the T6----T3R3 respectively T6----R6 structural transition which in the native 2Zn insulin hexamer is inducible only by additives like inorganic anions or phenolic compounds. [B13 Gln]Insulin hexamers are transformed by phenolic compounds, but not by anions, even in the absence of any metal. The structural transformation of insulin can thus be brought about in two ways: By inorganic ions with the zinc ions as their points of attack, which preexist in the nontransformed hexamer, and by phenol, for which the binding sites close to the B5 histidines come into existence only with the transformation. Therefore transformed and non-transformed hexamers, i.e. molecules with helical and extended B chain N-terminus, must be related in a dynamic equilibrium. Phenol acts as a wedge jamming the structure in the transformed state and trapping the zinc ions. Combination of transformed 2Zn[B13 Gln]insulin and metal-free native insulin in the absence of additives results in a redistribution of the zinc ions in favour of native insulin which is an outcome of the dynamic equilibrium and also demonstrates an influence of B13 charge on metal binding affinity. Transformation of a single subunit in a hexamer would lead to bad contacts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The cobalt(II)-substituted human insulin hexamer has been shown to undergo the phenol-induced T6 to R6 structural transition in solution. The accompanying octahedral to tetrahedral change in ligand field geometry of the cobalt ions results in dramatic changes in the visible region of the electronic spectrum and thus represents a useful spectroscopic method for studying the T to R transition. Changes in the Co2+ spectral envelope show that the aqua ligand associated with each tetrahedral Co2+ center can be replaced by SCN-, CN-, OCN-, N3-, Cl-, and NO2-. 19F NMR experiments show that the binding of m-trifluorocresol stabilizes the R6 state of zinc insulin. The chemical shift and line broadening of the CF3 singlet, which occur due to binding, provide a useful probe of the T6 to R6 transition. Due to the appearance of new resonances in the aromatic region, the 500 MHz 1H NMR spectrum of the phenol-induced R6 hexamer is readily distinguishable from that of the T6 form. 1H NMR studies show that phenol induces the T6 to R6 transition, both in the (GlnB13)6(Zn2+)2 hexamer and in the metal-free GlnB13 species; we conclude that metal binding is not a prerequisite for formation of the R state in this mutant.  相似文献   

10.
Olsen HB  Kaarsholm NC 《Biochemistry》2000,39(39):11893-11900
Intracellular proteins are frequently modified by covalent addition of lipid moieties such as myristate. Although a functional role of protein lipidation is implicated in diverse biological processes, only a few examples exist where the structural basis for the phenomena is known. We employ the insulin molecule as a model to evaluate the detailed structural effects induced by myristoylation. Several lines of investigation are used to characterize the solution properties of Lys(B29)(N(epsilon)-myristoyl) des(B30) insulin. The structure of the polypeptide chains remains essentially unchanged by the modification. However, the flexible positions taken up by the hydrocarbon chain selectively modify key structural properties. In the insulin monomer, the myristoyl moiety binds in the dimer interface and modulates protein-protein recognition events involved in insulin dimer formation and receptor binding. Myristoylation also contributes stability expressed as an 30% increase in the free energy of unfolding of the protein. Addition of two Zn(2+)/hexamer and phenol results in the displacement of the myristoyl moiety from the dimer interface and formation of stable R(6) hexamers similar to those formed by human insulin. However, in its new position on the surface of the hexamer, the fatty acid chain affects the equilibria of the phenol-induced interconversions between the T(6), T(3)R(3), and R(6) allosteric states of the insulin hexamer. We conclude that insulin is an attractive model system for analyzing the diverse structural effects induced by lipidation of a compact globular protein.  相似文献   

11.
Insulin hexamers: new conformations and applications   总被引:3,自引:0,他引:3  
Recent studies on the structural and chemical properties of insulin have shown that the insulin hexamer is an allosteric protein capable of adopting three distinct conformations, designated T6, T3R3 and R6. Although the physiological consequences of this allostery are not established, new applications for the insulin hexamer as a model system for the study of allostery and for the study of zinc enzymes and copper proteins are emerging.  相似文献   

12.
The assembly of the insulin hexamer brings the six B13 glutamate side-chains at the centre into close proximity. Their mutual repulsion is unfavourable and zinc co-ordination to B10 histidine is necessary to stabilize the well known zinc-containing hexamers. Since B13 is always a carboxylic acid in all known sequences of hexamer forming insulins, it is likely to be important in the hormone's biology. The mutation of B13 Glu-->Gln leads to a stable zinc-free hexamer with somewhat reduced potency. The structures of the zinc-free B13 Gln hexamer and the 2Zn B13 insulin hexamer have been determined by X-ray analysis and refined with 2.5 A and 2.0 A diffraction data, respectively. Comparisons show that in 2Zn B13 Gln insulin, the hexamer structure (T6) is very like that of the native hormone. On the other hand, the zinc-free hexamer assumes a quaternary structure (T3/R3) seen in the native 4Zn insulin hexamer, and normally associated only with high chloride ion concentrations in the medium. The crystal structures show the B13 Gln side-chains only contact water in contrast to the B13 glutamate in 2Zn insulin. The solvation of the B13 Gln may be associated with this residue favouring helix at B1 to B8. The low potency of the B13 Gln insulin also suggests the residue influences the hormone's conformation.  相似文献   

13.
1H n.m.r. studies at 270 MHz were made of the transformation of 2 Zn insulin hexamer to 4 Zn hexamer produced by the addition of anions (thiocyanate ion). Four separate H2 histidine resonances were observed for the B5 and B10 histidines in 2 Zn hexamer at pH 7 and 9 and four separate resonances also occurred in the 4 Zn hexamer. The observation of these resonances and others from phenylalanine, tyrosine and leucine residues showed that the 2 Zn to 4 Zn transformation probably occurred in solution in a similar manner to that observed in the crystal. Furthermore as occurred in the crystal, it was found that in solution the transformation was reversible (on removal of thiocyanate) and that 2 Cd insulin was unable to undergo the transformation. Des-Phe-Bl-insulin did not undergo the transformation. Addition of SCN- to Zn-free insulin (mainly dimer) produced only a small transformation, consistent with the idea that Zn2+ promotes formation of hexamer from dimer but probably does not otherwise affect the transformation.  相似文献   

14.
Destripeptide (B28-B30) insulin (DTRI) is an insulin analogue that has much weaker association ability than native insulin but keeps most of its biological activity. It can be crystallized from a solution containing zinc ions at near-neutral pH. Its crystal structure has been determined by molecular replacement and refined at 1.9 A resolution. DTRI in the crystal exists as a loose hexamer compared with 2Zn insulin. The hexamer only contains one zinc ion that coordinates to the B10 His residues of three monomers. Although residues B28-B30 are located in the monomer-monomer interface within a dimer, the removal of them can simultaneously weaken both the interactions between monomers within the dimer and the interactions between dimers. Because the B-chain C-terminus of insulin is very flexible, we take the DTRI hexamer as a transition state in the native insulin dissociation process and suggest a possible dissociation process of the insulin hexamer based on the DTRI structure.  相似文献   

15.
L Gross  M F Dunn 《Biochemistry》1992,31(5):1295-1301
The phenol-induced conformational transition in the insulin hexamer is known to involve a large change in structure wherein residues 1-8 of the insulin B-chain are transformed from an extended coil (T-state) to a helix (R-state). This change in protein conformation both exposes a cryptic protein pocket on each subunit to which phenol binds and forces the HisB10 zinc sites to undergo a change in coordination geometry from octahedral to tetrahedral [Derewenda, U., Derewenda, Z., Dodson, E. J., Dodson, G. G., Reynolds, C. D., Smith, G. D., Sparks, C., & Swensen, D. (1989) Nature 338, 593-596]. Substitution of Co(II) for Zn(II) at the HisB10 sites introduces a sensitive chromophoric probe of the structural and chemical events that occur during this allosteric transition [Roy, M., Brader, M. L., Lee, R. W.-K., Kaarsholm, N. C., Hansen, J. F., & Dunn, M. F. (1989) J. Biol. Chem. 264, 19081-19085]. In this study, using rapid-scannig stopped-flow (RSSF) UV-visible spectroscopic studies, we demonstrate that a transient chemical intermediate is formed during the phenol-induced conversion of Co(II)-substituted hexamer from the T-state to the R-state. Decomposition of the RSSF spectra gave a spectrum for the intermediate with d-d transitions consistent with the assignment of the intermediate as either a distorted tetrahedral or a 5-coordinate Co(II) species. Possible structures for the intermediate and the implications of these findings to the allosteric mechanism are considered.  相似文献   

16.
M L Brader  D Borchardt  M F Dunn 《Biochemistry》1992,31(19):4691-4696
The R-state conformation of the Cu(II)-substituted insulin hexamer has been identified, and a number of its derivatives have been studied via 1H NMR, ESR, and UV-visible spectroscopy. This work establishes that the Cu(II)-substituted insulin hexamer undergoes an analogous T to R conformational transition in solution that has been identified previously for Zn(II)- and Co(II)-insulin hexamers [Roy, M., Brader, M.L., Lee, R. W.-K., Kaarsholm, N.C., Hansen, J., & Dunn, M.F. (1989) J. Biol. Chem. 264, 19081-19085]. The data indicate that each Cu(II) center of the R-state Cu(II)-insulin hexamer possesses a coordination site that is accessible to anions from solution. Both phenol and anionic ligands that coordinate to the Cu(II) ions are required to generate the necessary heterotropic interactions that stabilize the R-state structure. With phenylmethylthiolate (PMT), a Cu(II)-R6 adduct that displays the spectral features of blue (type 1) copper proteins is obtained. This complex is proposed to embody a pseudotetrahedral CuIIN3S(PMT) chromophore, in which N is HisB10 (imidazolyl). The remaining ligands examined gave rise to Cu(II)-R6 adducts that possessed the spectral characteristics of normal (type 2) Cu(II) proteins. Under reducing conditions, Cu(I)-T6 and Cu(I)-R6 hexamers have been identified.  相似文献   

17.
Cupric insulin was modified by the addition of cross-linking disulphide bridges between hexamers. The electron paramagnetic resonance (EPR) spectrum of this freeze-dried material was compared with that of freeze-dried unmodified cupric insulin containing various amounts of copper and added water. The modified insulin was found to have cupric ion sites magnetically very similar to that of native insulin containing two cupric ions per hexamer. Native hexamer produced in the presence of 2 Cu(II) ions per hexamer gave, after freeze-drying, an EPR spectrum with ACu=16.5 mT, g=2.285 and g=2.059 (site 1). The use of 4 or 6 Cu(II) ions per hexamer resulted in spectra with two components-a major component with the same ACu and g values as the sample containing 2 Cu(II) ions (site 1) and an additional minor component (site 2). These sites have been identified with the analogous zinc binding site within the hexamer formed by three B-10 histidine residues (site 1) [1, 2] and the site formed by the B-1 α-amino and A-17 glutamyl-γ-barboxylic acid functions where excess zinc is bound (site 2) [3, 4]. The addition of water to native hexamer containing 2, 4, or 6 Cu(II) ions resulted in the appearance of three distinct EPR absorptions, one of which had the same parameters as the freeze-dried native insulin containing 2 Cu(II) ions per hexamer (site 1). Two further sites appeared (3 and 4) with the following parameters: ACu=15.0 mT, g=2.353, and g=2.07; ACu=16.5 mT, g=2.315, and g=2.07, respectively.  相似文献   

18.
The addition of phenols to hexameric insulin solutions produces a particularly stable hexamer, resulting from a rearrangement in which residues B1-B8 change from an extended conformation (T-state) to form an alpha-helix (R-state). The R-state is, in part, stabilized by nonpolar interactions between the phenolic molecule and residue B5 His at the dimer-dimer interface. The B5 His --> Tyr mutant human insulin was constructed to see if the tyrosine side chain would mimic the effect of phenol binding in the hexamer and induce the R-state. In partial support of this hypothesis, the molecule crystallized as a half-helical hexamer (T(3)R(3)) in conditions that conventionally promote the fully nonhelical (T6) form. As expected, in the presence of phenol or resorcinol, the B5 Tyr hexamers adopt the fully helical (R6) conformation. Molecular modeling calculations were performed to investigate the conformational preference of the T-state B5 Tyr side chain in the T(3)R(3) form, this side chain being associated with structural perturbations of the A7-A10 loop in an adjacent hexamer. For an isolated dimer, several different orientations of the side chain were found, which were close in energy and readily interconvertible. In the crystal environment only one of these conformations remains low in energy; this conformation corresponds to that observed in the crystal structure. This suggests that packing constraints around residue B5 Tyr result in the observed structural rearrangements. Thus, rather than promoting the R-state in a manner analogous to phenol, the mutation appears to destabilize the T-state. These studies highlight the role of B5 His in determining hexamer conformation and in mediating crystal packing interactions, properties that are likely be important in vivo.  相似文献   

19.
4-Oxalocrotonate tautomerase (4-OT), a homohexameric enzyme, converts the unconjugated enone, 2-oxo-4-hexenedioate (1), to the conjugated enone, 2-oxo-3-hexenedioate (3), via a dienolic intermediate, 2-hydroxymuconate (2). Pro-1 serves as the general base, and both Arg-11 and Arg-39 function in substrate binding and catalysis in an otherwise hydrophobic active site. Although 4-OT exhibits hyperbolic kinetics and no structural asymmetry either by X-ray or by NMR, inactivation by two affinity labels showed half-site stoichiometry [Stivers, J. T., et al. (1996) Biochemistry 35, 803-813; Johnson, W. H., Jr., et al. (1997) Biochemistry 36, 15724-15732], and titration of the R39Q mutant with cis,cis-muconate showed negative cooperativity [Harris, T. K., et al. (1999) Biochemistry 38, 12343-12357]. To test for anticooperativity during catalysis, 4-OT was titrated with equilibrium mixtures (> or = 81% product) of the reactive dicarboxylate or monocarboxylate intermediates, 2 or 2-hydroxy-2,4-pentadienoate (4), respectively, in three types of NMR experiments: two-dimensional 1H-15N HSQC titrations of backbone NH and of Arg N epsilonH resonances and one-dimensional 15N NMR titrations of Arg N epsilon resonances. All titrations showed substoichiometric binding of the equilibrium mixtures to 3 +/- 1 sites per hexamer with apparent dissociation constants comparable to the Km values of the intermediates. Compound 4 also bound 1 order of magnitude less tightly at another site, suggesting negative cooperativity. Consistent with negative cooperativity, asymmetry of the resulting complexes at saturating levels of 2 and 4 is indicated by splitting of the backbone NH resonances of 11 residues and 10 residues of 4-OT, respectively. The dicarboxylate competitive inhibitor, (2E)-fluoromuconate (5), with a KI of 45 +/- 7 microM, also exhibited substoichiometric binding to 3 +/- 1 sites per hexamer, with a KD of 25 +/- 18 microM, and splitting of the backbone NH resonance of L8. The monocarboxylate inhibitors (2E)- (6) and (2Z)-2-fluoro-2,4-pentadienoate (7) showed much weaker binding (KD = 3.1 +/- 1.3 mM), as well as splitting of two and five backbone NH resonances, respectively, indicating asymmetry of the complexes. The N epsilon resonances of both Arg-11 and Arg-39 were shifted downfield, and that of Pro-1N was broadened by all ligands, consistent with the major catalytic roles of these residues. Structural pathways for the site-site interactions which result in negative cooperativity are proposed on the basis of the X-ray structures of free and affinity-labeled 4-OT. Selective resonance broadenings induced by the binding of inactive analogues and active intermediates indicate residues which may be mobilized during reversible ligand binding and during catalysis, respectively.  相似文献   

20.
Metal ion binding to the insulin hexamer has been investigated by crystallographic analysis. Cadmium, lead, and metal-free hexamers have been refined to R values of 0.181, 0.172, and 0.172, against data of 1.9-, 2.5-, and 2.5-A resolution, respectively. These structures have been compared with each other and with the isomorphous two-zinc insulin. The structure of the metal-free hexamer shows that the His(B10) imidazole rings are arranged in a preformed site that binds a water molecule and is poised for Zn2+ coordination. The structure of the cadmium derivative shows that the binding of Cd2+ at the center of the hexamer is unusual. There are three symmetry-related sites located within 2.7 A of each other, and this position is evidently one-third occupied. It is also shown that the coordinating B13 glutamate side chains of this derivative have two partially occupied conformations. One of these conformations is two-thirds occupied and is very similar to that seen in two-zinc insulin. The other, one-third-occupied conformation, is seen to coordinate the one-third-occupied metal ion. The binding of Ca2+ to insulin is assumed to be essentially identical with that of Cd2+. Thus, we conclude that the Ca2+ binding site in the insulin hexamer is unlike that of any other known calcium binding protein. The crystal structures reported herein explain how binding of metal ions stabilizes the insulin hexamer. The role of metal ions in hexamer assembly and dissociation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号