首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The prion protein (PrP) is a metalloprotein with an unstructured region covering residues 60–91 that bind two to six Cu(II) ions cooperatively. Cu can bind to PrP regions C-terminally to the octarepeat region involving residues His111 and/or His96. In addition to Cu(II), PrP binds Zn(II), Mn(II) and Ni(II) with binding constants several orders of magnitudes lower than those determined for Cu. We used for the first time surface plasmon resonance (SPR) analysis to dissect metal binding to specific sites of PrP domains and to determine binding kinetics in real time. A biosensor assay was established to measure the binding of PrP-derived synthetic peptides and recombinant PrP to nitrilotriacetic acid chelated divalent metal ions. We have identified two separate binding regions for binding of Cu to PrP by SPR, one in the octarepeat region and the second provided by His96 and His111, of which His96 is more essential for Cu coordination. The octarepeat region at the N-terminus of PrP increases the affinity for Cu of the full-length protein by a factor of 2, indicating a cooperative effect. Since none of the synthetic peptides covering the octarepeat region bound to Mn and recombinant PrP lacking this sequence were able to bind Mn, we propose a conformational binding site for Mn involving residues 91–230. A novel low-affinity binding site for Co(II) was discovered between PrP residues 104 and 114, with residue His111 being the key amino acid for coordinating Co(II). His111 is essential for Co(II) binding, whereas His96 is more important than His111 for binding of Cu(II).  相似文献   

2.
The prion protein is a ubiquitous neuronal membrane protein. Misfolding of the prion protein has been implicated in transmissible spongiform encephalopathies (prion diseases). It has been demonstrated that the human prion protein (PrP) is capable of coordinating at least five CuII ions under physiological conditions; four copper binding sites can be found in the octarepeat domain between residues 61 and 91, while another copper binding site can be found in the unstructured “amyloidogenic” domain between residues 91 and 126 PrP(91-126). Herein we expand upon a previous study [J. Shearer, P. Soh, Inorg. Chem. 46 (2007) 710-719] where we demonstrated that the physiologically relevant high affinity CuII coordination site within PrP(91-126) is found between residues 106 and 114. It was shown that CuII is contained within a square planar (N/O)3S coordination environment with one His imidazole ligand (H(111)) and one Met thioether ligand (either M(109) or M(112)). The identity of the Met thioether ligand was not identified in that study. In this study we perform a detailed investigation of the CuII coordination environment within the PrP fragment containing residues 106-114 (PrP(106-114)) involving optical, X-ray absorption, EPR, and fluorescence spectroscopies in conjunction with electronic structure calculations. By using derivatives of PrP(106-114) with systematic Met → Ile “mutations” we show that the CuII coordination environment within PrP(106-114) is actually comprised of a mixture of two major species; one CuII(N/O)3S center with the M(109) thioether coordinated to CuII and another CuII(N/O)3S center with the M(112) thioether coordinated to CuII. Furthermore, deletion of one or more Met residues from the primary sequence of PrP(106-114) both reduces the CuII affinity of the peptide by two to seven fold, and renders the resulting CuII metallopeptides redox inactive. The biological implications of these findings are discussed.  相似文献   

3.
Pathogenesis of transmissible spongiform encephalopathies is correlated with a conversion of the normal cellular form of the prion protein (PrPC) into the abnormal isoform (scrapie form of PrP). Contact of the normal PrP with its abnormal isoform, the scrapie form of PrP, induces the transformation. Knowledge of molecules that inhibit such contacts leads to an understanding of the mechanism of the aggregation, and these molecules may serve as leads for drugs against transmissible spongiform encephalopathies. Therefore, we screened a synthetic octapeptide library of the globular domain of the human PrPC for binding affinity to PrPC. Two fragments with binding affinity, 149YYRENMHR156 and 153NMHRYPNQ160, were identified with Kd values of 21 and 25 μM, respectively. A 10-fold excess of peptide 153NMHRYPNQ160 inhibits aggregation of the PrP by 99%. NMR and mass spectrometry showed that the binding region of the peptide 153NMHRYPNQ160 is located at helix 3 of the PrP.  相似文献   

4.
The novel ferromagnetic coupling one-dimensional complex {Cu(NIT3Py)2[N(CN)2]2(H2O)2} (NIT3Py=2-(3-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) was synthesized and characterized structurally and magnetically. It crystallizes in the monoclinic space group C2/c. The Cu(II) ion is in a distorted octahedral environment. The units of {Cu(NIT3Py)2[N(CN)2]2(H2O)2} were connected as one-dimensional structure by the intermolecular hydrogen bonds. Magnetic measurements show that there are intramolecular ferromagnetic interactions and intermolecular antiferromagnetic interactions within the chain.  相似文献   

5.
The possible time- and/or light-dependent decomposition of the purple Cu(I), Cu(II)-complex of D-penicillamine (Cu(II)6Cu(I)8(D-penicillamine)12Cl)5? was examined. Superoxide dismutase activity of the freshly prepared complex was assayed using the nitroblue tetrazolium assay. The formazan colour formation was inhibited by 50% in the presence of approximately 500 μM copper. Ageing of the copper complex, especially in the light, resulted in a marked increase of EDTA-sensitive activity. Upon gel chromatography of the aged samples the original low inhibitory activity was restored. All EDTA-sensitive inhibitory activity was found in a clearly separated low Mr copper-containing fraction. Aerobic irradiation with a tungsten lamp at 30 °C accelerated the decomposition of (Cu(II)6Cu(I)8(D-penicillamine)12Cl)5?. ?Cu518 = 1800 M?1 cm?1 dropped to ?Cu640 = 60 M?1 cm?1. The photochemical conversion of (Cu(II)6? Cu(I)8(D-penicillamine)12Cl)5? was complete within 48 h. Due to the identical electronic absorption profile of both, the decomposition product and Cu(II) D-penicillamine disulphide the latter complex was assigned to be the unknown low Mr copper-compound. Circular dichroism and electron paramagnetic resonance measurements support this conclusion.  相似文献   

6.
The prion protein (PrP) is a Cu2+ binding cell surface glyco-protein. Misfolding of PrP into a beta-sheet rich conformation is associated with transmissible spongiform encephalopathies. Here we use Ni2+ as a diamagnetic probe to further understand Cu2+ binding to PrP. Like Cu2+, Ni2+ preferentially binds to an unstructured region between residues 90 and 126 of PrP, which is a key region for amyloidogenicity and prion propagation. Using both 1H NMR and visible-circular dichroism (CD) spectroscopy, we show that two Ni2+ ions bind to His96 and His111 independently of each other. 1H NMR indicates that both Ni2+ binding sites form square-planar diamagnetic complexes. We have previously shown that Cu2+ forms a paramagnetic square-planar complex in this region, suggesting that Ni2+ could be used as a probe for Cu2+ binding. In addition, competition studies show that two Cu2+ ions can displace Ni2+ from these sites. Upon Ni2+ addition 1H NMR changes in chemical shifts indicate the imidazole ring and amide nitrogen atoms to the N terminus of both His96 and His111 act as coordinating ligands. Use of peptide fragments confirm that PrP(92-96) and PrP(107-111) represent the minimal binding motif for the two Ni2+ binding sites. Analysis of Cu2+ loaded visible-CD spectra show that as with Ni2+, PrP(90-115) binds two Cu2+ ions at His96 and His111 independently of each other. Visible CD studies with PrP(23-231Delta51-90), a construct of PrP(23-231) with the octarepeat region deleted to improve solubility, confirm binding of Ni2+ to His96 and His111 in octarepeat deleted PrP(23-231). The structure of the Cu/Ni complexes is discussed in terms of the implications for prion protein function and disease.  相似文献   

7.
A new complex of composition [Cu(2-NO2bz)2(nia)2(H2O)2] (1) (nia = nicotinamide, 2-NO2bz = 2-nitrobenzoate) has been prepared and its composition and stereochemistry as well as coordination mode have been determined by elemental analysis, electronic, infrared and EPR spectroscopy, magnetization measurements over the temperature range 1.8-300 K, and its structure has been solved, as well. The complex structure consists of the centrosymmetric molecules with Cu(II) atom monodentately coordinated by the pair of 2-nitrobenzoato anions and by the pair of nicotinamide molecules, forming nearly tetragonal basal plane, and by a pair of water molecules that complete tetragonal-bipyramidal coordination polyhedron about the copper atom. The complex 1 exhibits magnetic moment μeff = 1.86 B.M. at 300 K which decreases to μeff = 1.83 B.M. at 1.8 K. The magnetic susceptibility temperature dependence obeys Curie-Weiss law with Curie constant of 0.442 cm3 K mol−1 and with Weiss constant of −1.0 K. EPR spectra at room temperature as well as at 77 K are of axial type with g = 2.065 and g = 2.280 and exhibit clearly, but partially resolved parallel hyperfine splitting with AII = 160 G, that is consistent with the determined molecular structure of 1. In order to analyze the factors influencing the degree of tetragonal distortion of coordination polyhedron, the dataset of 72 structures similar to that of 1 was extracted from CCD and analyzed. A significant correlation between the average Cu-Oax bond length and tetragonality parameter τ which was found as a consequence of the Jahn-Teller effect.  相似文献   

8.
The photophysical properties (absorption, emission, and excitation spectra; luminescence quantum yields; luminescence decay lifetimes ) of K13[Eu(SiW11O39)2] and K15[Eu(BW11O39)2] in aqueous solution and in the solid state are reported. Both complexes exhibit broad and very intense O → W charge transfer bands in the U.V. region and weak and narrow f → f Eu3+ bands in the visible. At 77 K the luminescence emission of both complexes, which consists of 5DO7FJ bands split by the local crystal field, can be pumped very efficiently via both the O → W CT and the f → f Eu3+ levels, whereas at 298 K only pumping via the f → f Eu3+ is efficient. The values of the luminescence decay lifetimes in H2O and D2O solution are quite similar, showing that no water molecule is coordinated to the central Eu3+ ion. The high resolution emission spectra are discussed in an attempt to define the coordination symmetry of Eu3+.  相似文献   

9.
The 30-membered hexaaza macrocylic ligand, L (L=3,7,11,18,22,26-hexaazatricyclo-[26.2.2.213,16]tetratriaconta-1(31),13(33),14,16(34),28(32),29-hexaene), is capable of forming binuclear complexes with the divalent transition metal ions Ni, Cu and Zn. The two metal ions are bound by the two dipropylenetriamine units of the macrocycle. Extra coordination sites on the metal ions can be occupied by exogenous ligands such as acetate, chloride and thiocyanate. The crystal structure of one of the di-copper complexes is described: [LCu2(CH3CO2)2](ClO4)2·5H2O crystallizes in the monoclinic space group P21/c (No. 14), with a=9.369(2), b=17.644(3), c= 27.466(3) Å, β=92.90(1)°, U=4534.7 Å3 and Z=4. The Cu1···Cu2 separation is 8.40(3) Å. The access for potential exogenous bridging ligands, to the cavity between the copper ions, is somewhat restricted by the two phenyl units of the macrocycle which appear almost parallel in the structure. The redox potential of the couple L(Cu2+)2/L(Cu+)2, recorded by cyclic voltammetry for the chloride adduct, [LCu2Cl2]Cl2·5H2O, is −0.061 V versus SCE in DMF.  相似文献   

10.
Transmissible spongiform encephalopathies are associated with the misfolding of the cellular Prion Protein (PrPC) to an abnormal protein isoform, called scrapie prion protein (PrPSc). The structural rearrangement of the fragment of N-terminal domain of the protein spanning residues 91–127 is critical for the observed structural transition. The amyloidogenic domain of the protein encloses two copper-binding sites corresponding to His-96 and His-111 residues that act as anchors for metal ion binding. Previous studies have shown that Cu(II) sequestration by both sites may modulate the peptide’s tendency to aggregation as it inflicts the hairpin-like structure that stabilizes the transition states leading to β-sheet formation. On the other hand, since both His sites differ in their ability to Cu(II) sequestration, with His-111 as a preferred binding site, we found it interesting to test the role of Cu(II) coordination to this single site on the structural properties of amyloidogenic domain. The obtained results reveal that copper binding to His-111 site imposes precise backbone bending and weakens the natural tendency of apo peptide to β-sheet formation.  相似文献   

11.
A trinuclear copper(II) complex, [Cu3(2,5-pydc)2(Me5dien)2(BF4)2(H2O)2] · H2O 1, has been constructed from 2,5-pyridine-dicarboxylato bridges (2,5-pydc2−) and N,N,N′,N″,N″-pentamethyl-diethylenetriamine (Me5dien) acting as a blocking ligand. The copper ions, within the centrosymmetric trinuclear cations, are connected by two 2,5-pydc2− bridges, with an intramolecular Cu···Cu separation of 8.432 Å. The central copper ion exhibits an elongated octahedral geometry, with semicoordinated ions, while the terminal ones are pentacoordinated (distorted square-pyramidal geometry). The cryomagnetic investigation of 1 reveals an antiferromagnetic coupling of the copper(II) ions (J = −5.9 cm−1, H = −JSCu1SCu2 − JSCu2SCu1a).  相似文献   

12.
Two series of A-frame complexes, [Pd2(dppm)2(R)2(μ-X)]+ (R = Me and X = Cl, Br, I, H; R = Mes and X = Br, I), were investigated by cyclic voltammetry (CV). The 2-electron reduction potentials for the first series increase from I (−1.10), Br (−1.17), Cl (−1.25) to H (−1.65 V versus SCE, in CHCl3), as well as in the second series; Br (−1.35) and I (−1.38 V versus SCE, in THF). The nature of the LUMO where the electron reduction takes place is qualitatively addressed by DFT on the corresponding model complexes [Pd2(H2PCH2PH2)2(R)2(μ-X)]+. The LUMO and (LUMO + 1) of the halide derivatives exhibit the presence of Pd dx2-y2 atomic orbitals interacting in an anti-bonding fashion with the n-donor orbitals of X, P, and Me, explaining in part the observed reactivity upon reduction. The X-ray structure of [Pd2(dppm)2(Me)2(μ-Br)]+ compound exhibits the typical A-frame structure with a Pd?Pd non-bonding distance of 3.036(1) Å, and long Pd-Br bonds of 2.5623(5) and 2.5793(5) Å.  相似文献   

13.
Recent studies from our laboratory resolved two subtypes of the κ2 binding site, termed κ2a and κ2b, using guinea pig, rat, and human brain membranes depleted of μ and δ receptors by pretreatment with the site-directed acylating agents BIT (μ-selective) and FIT (δ-selective). 6β-Iodo-3,14-dihydroxy-17-cyclopropylmethyl-4,5α-epoxymorphinan (IOXY), an opioid antagonist that has high affinity for κ2 sites, was radioiodinated to maximum specific activity (2200 Ci/mmol) and purified by high pressure liquid chromotography and used to characterize multiple κ2 binding sites. The results indicated that [125I]IOXY, like [3H]bremazocine, selectively labels κ2 binding sites in rat brain membranes pretreated with BIT and FIT. Using 100 nM [d-Ala2-MePhe4,Gly-ol5]enkephalin to block [125I]IOXY binding to the κ2b site, two subtypes of the κ2a binding site were resolved, both in the absence and presence of 50 μM 5′-guanylyimidodiphosphate. Viewed collectively, these results provide further evidence for heterogeneity of the κ opioid receptor, which may provide new targets for drug design, synthesis, and therapeutics.  相似文献   

14.
The synthesis, optical and magnetic properties and X-ray crystal structure of [Cu(2-aminopyrimidine)2(OH)(CF3SO3)]2(2-aminopyrimidine)2, a new dinuclear hydroxo-bridged copper(II) compound with a CuOCu angle of 97.96° and a very small antiferromagnetic interaction for which the singlet-triplet exchange parameter J, is described. The magnetic exchange coupling is almost negligible and, depending on the actual sample, varies from −1.8 to −7.2 cm−1.  相似文献   

15.
The cellular isoform of the prion protein PrPC is a Cu2+-binding cell surface glycoprotein that, when misfolded, is responsible for a range of transmissible spongiform encephalopathies. As changes in PrPC conformation are intimately linked with disease pathogenesis, the effect of Cu2+ ions on the structure and stability of the protein has been investigated. Urea unfolding studies indicate that Cu2+ ions destabilise the native fold of PrPC. The midpoint of the unfolding transition is reduced by 0.73 ± 0.07 M urea in the presence of 1 mol equiv of Cu2+. This equates to an appreciable difference in free energy of unfolding (2.02 ± 0.05 kJ mol− 1 at the midpoint of unfolding). We relate Cu2+-induced changes in secondary structure for full-length PrP(23-231) to smaller Cu2+ binding fragments. In particular, Cu2+-induced structural changes can directly be attributed to Cu2+ binding to the octarepeat region of PrPC. Furthermore, a β-sheet-like transition that is observed when Cu ions are bound to the amyloidogenic fragment of PrP (residues 90-126) is due only to local Cu2+ coordination to the individual binding sites centred at His95 and His110. Cu2+ binding does not directly generate a β-sheet conformation within PrPC; however, Cu2+ ions do destabilise the native fold of PrPC and may make the transition to a misfolded state more favourable.  相似文献   

16.
Oxidative stress is believed to play a central role in the pathogenesis of prion diseases, a group of fatal neurodegenerative disorders associated with a conformational change in the prion protein (PrP(C)). The precise physiological function of PrP(C) remains uncertain; however, Cu(2+) binds to PrP(C) in vivo, suggesting a role for PrP(C) in copper homeostasis. Here we examine the oxidative processes associated with PrP(C) and Cu(2+). (1)H NMR was used to monitor chemical modifications of PrP fragments. Incubation of PrP fragments with ascorbate and CuCl(2) showed specific metal-catalyzed oxidation of histidine residues, His(96/111), and the methionine residues, Met(109/112). The octarepeat region protects His(96/111) and Met(109/112) from oxidation, suggesting that PrP(90-231) might be more prone to chemical modification. We show that Cu(2+/+) redox cycling is not 'silenced' by Cu(2+) binding to PrP, as indicated by H(2)O(2) production for full-length PrP. Surprisingly, although detection of Cu(+) indicates that the octarepeat region of PrP is capable of reducing Cu(2+) even in the absence of ascorbate, H(2)O(2) is not generated unless ascorbate is present. Full-length PrP and fragments cause a dramatic reduction in detectable hydroxyl radicals in an ascorbate/Cu(2+)/O(2) system; however, levels of H(2)O(2) production are unaffected. This suggests that PrP does not affect levels of hydroxyl radical production via Fentons cycling, but the radicals cause highly localized chemical modification of PrP(C).  相似文献   

17.
The prion protein (PrP) is a Cu2+-binding cell-surface glycoprotein. Using various PrP fragments and spectroscopic techniques, we show that two Cu2+ ions bind to a region between residues 90 and 126. This region incorporates the neurotoxic portion of PrP, vital for prion propagation in transmissible spongiform encephalopathies. Pentapeptides PrP-(92-96) and PrP-(107-111) represent the minimum motif for Cu2+ binding to the PrP-(90-126) fragment. Consequently, we were surprised that the appearance of the visible CD spectra for two fragments of PrP, residues 90-126 and 91-115, are very different. We have shown that these differences do not arise from a change in the co-ordination geometry within the two fragments; rather, there is a change in the relative preference for the two binding sites centred at His111 and His96. These preferences are metal-, pH- and chain-length dependent. CD indicates that Cu2+ initially fills the site at His111 within the PrP-(90-126) fragment. The pH-dependence of the Cu2+ co-ordination is studied using EPR, visible CD and absorption spectroscopy. We present evidence that, at low pH (5.5) and sub-stoichiometric amounts of Cu2+, a multiple histidine complex forms, but, at neutral pH, Cu2+ binds to individual histidine residues. We have shown that changes in pH and levels of extracellular Cu2+ will affect the co-ordination mode, which has implications for the affinity, folding and redox properties of Cu-PrP.  相似文献   

18.
The rhodium dimer [Rh2H(PPh2)2(PPh3)3] was prepared from RhCl(PPh3)3 and K4Sn9 in the presence of 2,2,2-cryptand in ethylenediamine/toluene solvent mixtures. The [K(2,2,2-crypt)]+ salt was isolated and characterized via NMR and X-ray diffraction studies. The solid state structure reveals a binuclear, diphenylphosphido-bridged, 32 electron Rh(I)-Rh(I) complex with edge-shared tetrahedral and square planar Rh centers with overall Cs point symmetry. 1-D and 2-D 1H, 31P, and 31P{1H} NMR experiments were used to characterize the complex.  相似文献   

19.
Conversion of normal prion protein (PrPC) to the pathogenic PrPSc conformer is central to prion diseases such as Creutzfeldt–Jakob disease and scrapie; however, the detailed mechanism of this conversion remains obscure. To investigate how the N-terminal polybasic region of PrP (NPR) influences the PrPC-to-PrPSc conversion, we analyzed two PrP mutants: ΔN6 (deletion of all six amino acids in NPR) and Met4-1 (replacement of four positively charged amino acids in NPR with methionine). We found that ΔN6 and Met4-1 differentially impacted the binding of recombinant PrP (recPrP) to the negatively charged phospholipid 1-palmitoyl-2-oleoylphosphatidylglycerol, a nonprotein cofactor that facilitates PrP conversion. Both mutant recPrPs were able to form recombinant prion (recPrPSc) in vitro, but the convertibility was greatly reduced, with ΔN6 displaying the lowest convertibility. Prion infection assays in mammalian RK13 cells expressing WT or NPR-mutant PrPs confirmed these differences in convertibility, indicating that the NPR affects the conversion of both bacterially expressed recPrP and post-translationally modified PrP in eukaryotic cells. We also found that both WT and mutant recPrPSc conformers caused prion disease in WT mice with a 100% attack rate, but the incubation times and neuropathological changes caused by two recPrPSc mutants were significantly different from each other and from that of WT recPrPSc. Together, our results support that the NPR greatly influences PrPC-to-PrPSc conversion, but it is not essential for the generation of PrPSc. Moreover, the significant differences between ΔN6 and Met4-1 suggest that not only charge but also the identity of amino acids in NPR is important to PrP conversion.  相似文献   

20.
New copper(II) clofibriates (clof, {2-(4-chlorophenoxy)-2-methylpropionic or 2-(4-chlorophenoxy)isobutyric acid}) of composition Cu(clof)2L2 (where L=2-pyridylmethanol (2-pymeth) (1), N-methylnicotinamide (Menia) (4), N,N-diethylnicotinamide (Et2nia) (5), isonicotinamide (isonia) (7) or methyl-3-pyridylcarbamate (mpc) (8)), [Cu(clof)2(4-pymeth)2(H2O)] · 2H2O (4-pymeth=4-pyridylmethanol) (2 · 2H2O) and Cu(clof)2L (where L=4-pymeth (3) or Et2nia (6)) have been prepared and spectroscopically characterized. All the Cu(clof)2L2 compounds seem to possess distorted octahedral copper(II) stereochemistry with differing tetragonal distortions. An X-ray analysis of 1 was carried out and it featured a tetragonal-bipyramidal geometry around the copper(II) atom. X-ray analysis of 2 · 2H2O featured a square-pyramidal geometry around copper(II) atom. Both the Cu(clof)2L compounds seem to consist of a binuclear unit of tetracarboxylate type bridging. An X-ray analysis of 6 revealed typical binuclear paddle-wheel type structure, consisting of two copper(II) atoms in square-pyramidal geometry bridged by four carboxylate anions in the xy-plane. All complexes under study were characterized by EPR and electronic spectroscopy. The antimicrobial effects have been tested on various strains of bacteria, yeasts and filamentous fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号