首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
6 polycyclic aromatic hydrocarbon or similar amine carcinogens were tested as inducers of genetic tandem duplications in a rough strain of Salmonella typhimurium. When metabolically activated by rat-liver microsomes, all 6 were active in inducing genetic tandem duplications, yielding from over 3 times to almost 14 times as many tandem duplicants per viable bacterium as did concurrent uninduced control cultures. These results extend the number and chemical diversity of carcinogens shown to induce genetic duplications in bacterial tester systems. We suggest that polycyclic hydrocarbon carcinogens may act in carcinogenesis by inducing genetic duplications or other genetic rearrangements. Duplication induction may be a useful genetic endpoint for screening potential carcinogens.  相似文献   

2.
Structure of cryptic lambda prophages   总被引:9,自引:0,他引:9  
When Escherichia coli cells lysogenic for bacteriophage lambda are induced with ultraviolet light, cells carrying cryptic lambda prophages are occasionally found among the apparently cured survivors. The lambda variant crypticogen (lambda crg) carries an insertion of the transposable element IS2, which increases the frequency of cryptic lysogens to about 50% of cured cells: 43 of these cryptic prophages have been characterized. They all contain substitutions that replace the early segment of the prophage genome (from the IS2 to near the cos site) with a duplicate copy of a large segment of the host chromosome. The right end of the substitution always results from recombination between the nin-QSR-cos region of the prophage and the homologous incomplete lambdoid prophage Qsr' at 12.5 minutes in the E. coli chromosome. The left end of the substitution is usually a crossover that recombines the IS2 element in the prophage with an E. coli IS2 at 8.5 minutes, near the lac gene, or with a second IS2 located counterclockwise from leu at 2 minutes, generating duplications of at least 200,000 bases. Five cryptic lysogens derived from cells lysogenic for a reference strain of lambda (which lacks the IS2 present in lambda crg) have been characterized. They contain substitutions whose right termini are generated by a crossover with the Qsr' prophage. The left termini of these substitutions are formed either by a crossover between the lambda exo gene and a short exo-homologous segment of Qsr' (2/5), or by a crossover between sequences to the left of attL and an unmapped distant region of the host chromosome (3/5). The large duplications carried by these cryptic lysogens are stable, unlike tandem duplications, and so may significantly influence the cell's evolutionary potential.  相似文献   

3.
We have asked whether the mechanism by which tandem genetic duplications arise in the chromosome of phage lambda is inter- or intramolecular. Two parental phages carrying genetic markers at opposite ends of the phage chromosome have been grown in mixed infection, and progeny phages carrying newly-arising tandem duplications have been analysed to determine whether they carry the markers in parental or recombinant configuration. Ordinary genetic recombination of the markers has been prevented by mutations in the phage and host. Phages carrying tandem duplications are isolated by use of CsCl density gradients and an Escherichia coli strain that does not plate deletion phages. Of the duplication mutants isolated under these conditions, 13% carry the input markers in recombinant configuration. This suggests that tandem duplications can be produced via an intermolecular route which joins sequences originally present on different DNA molecules.  相似文献   

4.
Sukhodolets VV 《Genetika》2006,42(11):1526-1535
Unequal crossing-over between sister chromosomes in the process of DNA replication in Escherichia coli leads to the formation of tandem duplications, thus enhancing the activity of certain genes. In conjugational matings between genetically marked E. coli strains, unequal crossing-over leads to the formation of heterozygous tandem duplications. Studying these duplications as model systems allowed the conclusion that unequal crossing-over between direct DNA repeats of sister chromosomes is the main pathway of the formation of selected recombinants in E. coli strains carrying duplications. This was inferred from the data on the segregation of homozygous diploid recombinants by heterozygous duplications. Unequal crossing-over between sister chromosomes occurs as adaptive exchange providing the survival of the greater part of bacterial cells on a selective medium. The known phenomenon of adaptive mutagenesis may also be a consequence of unequal exchanges at the level of DNA mononucleotide repeats.  相似文献   

5.
Small tandem DNA duplications in the range of 15 to 300 base-pairs play an important role in the aetiology of human disease and contribute to genome diversity. Here, we discuss different proposed mechanisms for their occurrence and argue that this type of structural variation mainly results from mutagenic repair of chromosomal breaks. This hypothesis is supported by both bioinformatical analysis of insertions occurring in the genome of different species and disease alleles, as well as by CRISPR/Cas9-based experimental data from different model systems. Recent work points to fill-in synthesis at double-stranded DNA breaks with complementary sequences, regulated by end-joining mechanisms, to account for small tandem duplications. We will review the prevalence of small tandem duplications in the population, and we will speculate on the potential sources of DNA damage that could give rise to this mutational signature. With the development of novel algorithms to analyse sequencing data, small tandem duplications are now more frequently detected in the human genome and identified as oncogenic gain-of-function mutations. Understanding their origin could lead to optimized treatment regimens to prevent therapy-induced activation of oncogenes and might expose novel vulnerabilities in cancer.  相似文献   

6.
The preservation of sequence homogeneity and copy number of tandemly repeated genes may require specific mechanisms or regulation of recombination. We have identified mutations that specifically affect recombination among natural repetitions in the yeast Saccharomyces cerevisiae. The rrm3 mutation stimulates mitotic recombination in the naturally occurring tandem repeats of the rDNA and copper chelatin (CUP1) genes. This mutation does not affect recombination of several other types of repeated genes tested including Ty elements, mating type information and duplications created by transformation. In addition to stimulating exchange among the multiple CUP1 repeats at their natural chromosomal location, rrm3 also increases recombination of a duplication of CUP1 units present at his4. This suggests that the RRM3 gene may encode a sequence-specific factor that contributes to a global suppression of mitotic exchange in sequences that can be maintained as tandem arrays.  相似文献   

7.
Unequal crossing-over between sister chromosomes in the process of DNA replication in Escherichia coli leads to the formation of tandem duplications, thus enhancing the activity of certain genes. In conjugational matings between genetically marked E. coli strains, unequal crossing-over leads to the formation of heterozygous tandem duplications. Studying these duplications as model systems allowed the conclusion that unequal crossing-over between direct DNA repeats of sister chromosomes is the main pathway of the formation of selected recombinants in E. coli strains carrying duplications. This was inferred from the data on the segregation of homozygous diploid recombinants by heterozygous duplications. Unequal crossing-over between sister chromosomes occurs as adaptive exchange providing the survival of the greater part of bacterial cells on a selective medium. The known phenomenon of adaptive mutagenesis may also be a consequence of unequal exchanges at the level of DNA mononucleotide repeats.  相似文献   

8.
Sukhodolets VV 《Genetika》2004,40(8):1046-1052
Homologous recombination between direct DNA repeats within the extended tandem duplications in E. coli results from unequal sister-chromosome exchanges. This conclusion follows from the observations on the segregation of completely or partly homozygous diploid segregants by heterozygous duplications. The formation of diploid segregants with preserved heterozygosity for the unselected markers could also result from "symmetrical" intrachromosomal recombination. Analysis of the segregant genotypes, however, confirmed their formation via unequal crossing over. The data obtained indicated that in tandem duplications segregation of diploid recombinants of different types was preceded by the formation of triplications as the products of unequal sister-chromosome exchanges. In heterozygous duplications, unequal crossing over is manifested as a highly frequent adaptive exchange, providing the survival of the most part of the duplication-carrying cells on selective medium. It is suggested that adaptive mutagenesis can be the consequence of unequal sister crossing over.  相似文献   

9.
Protein domain repeats are common in proteins that are central to the organization of a cell, in particular in eukaryotes. They are known to evolve through internal tandem duplications. However, the understanding of the underlying mechanisms is incomplete. To shed light on repeat expansion mechanisms, we have studied the evolution of the muscle protein Nebulin, a protein that contains a large number of actin-binding nebulin domains.Nebulin proteins have evolved from an invertebrate precursor containing two nebulin domains. Repeat regions have expanded through duplications of single domains, as well as duplications of a super repeat (SR) consisting of seven nebulins. We show that the SR has evolved independently into large regions in at least three instances: twice in the invertebrate Branchiostoma floridae and once in vertebrates.In-depth analysis reveals several recent tandem duplications in the Nebulin gene. The events involve both single-domain and multidomain SR units or several SR units. There are single events, but frequently the same unit is duplicated multiple times. For instance, an ancestor of human and chimpanzee underwent two tandem duplications. The duplication junction coincides with an Alu transposon, thus suggesting duplication through Alu-mediated homologous recombination.Duplications in the SR region consistently involve multiples of seven domains. However, the exact unit that is duplicated varies both between species and within species. Thus, multiple tandem duplications of the same motif did not create the large Nebulin protein.Finally, analysis of segmental duplications in the human genome reveals that duplications are more common in genes containing domain repeats than in those coding for nonrepeated proteins. In fact, segmental duplications are found three to six times more often in long repeated genes than expected by chance.  相似文献   

10.
We developed a recurrence relation that counts the number of tandem duplication trees (either rooted or unrooted) that are consistent with a set of n tandemly repeated sequences generated under the standard unequal recombination (or crossover) model of tandem duplications. The number of rooted duplication trees is exactly twice the number of unrooted trees, which means that on average only two positions for a root on a duplication tree are possible. Using the recurrence, we tabulated these numbers for small values of n. We also developed an asymptotic formula that for large n provides estimates for these numbers. These numbers give a priori probabilities for phylogenies of the repeated sequences to be duplication trees. This work extends earlier studies where exhaustive counts of the numbers for small n were obtained. One application showed the significance of finding that most maximum-parsimony trees constructed from repeat sequences from human immunoglobins and T-cell receptors were tandem duplication trees. Those findings provided strong support to the proposed mechanisms of tandem gene duplication. The recurrence relation also suggests efficient algorithms to recognize duplication trees and to generate random duplication trees for simulation. We present a linear-time recognition algorithm.  相似文献   

11.
Interpreting the genomic and phenotypic consequences of copy-number variation (CNV) is essential to understanding the etiology of genetic disorders. Whereas deletion CNVs lead obviously to haploinsufficiency, duplications might cause disease through triplosensitivity, gene disruption, or gene fusion at breakpoints. The mutational spectrum of duplications has been studied at certain loci, and in some cases these copy-number gains are complex chromosome rearrangements involving triplications and/or inversions. However, the organization of clinically relevant duplications throughout the genome has yet to be investigated on a large scale. Here we fine-mapped 184 germline duplications (14.7 kb–25.3 Mb; median 532 kb) ascertained from individuals referred for diagnostic cytogenetics testing. We performed next-generation sequencing (NGS) and whole-genome sequencing (WGS) to sequence 130 breakpoints from 112 subjects with 119 CNVs and found that most (83%) were tandem duplications in direct orientation. The remainder were triplications embedded within duplications (8.4%), adjacent duplications (4.2%), insertional translocations (2.5%), or other complex rearrangements (1.7%). Moreover, we predicted six in-frame fusion genes at sequenced duplication breakpoints; four gene fusions were formed by tandem duplications, one by two interconnected duplications, and one by duplication inserted at another locus. These unique fusion genes could be related to clinical phenotypes and warrant further study. Although most duplications are positioned head-to-tail adjacent to the original locus, those that are inverted, triplicated, or inserted can disrupt or fuse genes in a manner that might not be predicted by conventional copy-number assays. Therefore, interpreting the genetic consequences of duplication CNVs requires breakpoint-level analysis.  相似文献   

12.
J Du  Y Zhu  A Shanmugam    A L Kenter 《Nucleic acids research》1997,25(15):3066-3073
The molecular mechanism of immunoglobulin switch recombination is poorly understood. Switch recombination occurs between pairs of switch regions located upstream of the constant heavy chain genes. Previously we showed that switch recombination breakpoints cluster to a defined subregion in the Sgamma3, Sgamma1 and Sgamma2b tandem repeats. We have developed a strategy for direct amplification of Smu/Sgamma3 composite fragments as well as Smu and Sgamma3 regions by PCR. This assay has been used to analyze the organization of Smu, Sgamma3 and a series of Smu/Sgamma3 recombination breakpoints from hybridomas and normal mitogen-activated splenic B cells. DNA sequence analysis of the switch fragments showed direct joining of Smu and Sgamma3 without deletions or duplications. Mutations were found in two switch junctions on both sides of the crossover point, suggesting that template switching is the most likely model for the mechanism of switch recombination. Statistical analysis of the positions of the recombination breakpoints in the Sgamma3 tandem repeat indicates the presence of two sub-clusters, suggesting non-random usage of DNA substrate in the recombination reaction.  相似文献   

13.
A selective system for recovery of exchanges between trans mutations at adjacent loci, l(3)S12 and rosy, is described. In addition to the expected crossover and conversion classes, two exceptional types of offspring were recovered. Triploid offspring arose as 0.01% of all zygotes; the diploid chromosome set was apparently of maternal origin. Nine tandem duplications derived from unequal exchange between nonsister homologues were recovered among 2.25 x 10(6) zygotes screened. From considerations of the proportion of the genome that was assayed in this system, and on the assumption that the rate of unequal exchange observed is typical for the genome as a whole, it appears that one unequal exchange occurs per 500 female meioses in Drosophila.  相似文献   

14.
Tandem direct duplications are a common feature of the genomes of eukaryotes ranging from yeast to human, where they comprise a significant fraction of copy number variations. The prevailing model for the formation of tandem direct duplications is non-allelic homologous recombination (NAHR). Here we report the isolation of a series of duplications and reciprocal deletions isolated de novo from a maize allele containing two Class II Ac/Ds transposons. The duplication/deletion structures suggest that they were generated by alternative transposition reactions involving the termini of two nearby transposable elements. The deletion/duplication breakpoint junctions contain 8 bp target site duplications characteristic of Ac/Ds transposition events, confirming their formation directly by an alternative transposition mechanism. Tandem direct duplications and reciprocal deletions were generated at a relatively high frequency (∼0.5 to 1%) in the materials examined here in which transposons are positioned nearby each other in appropriate orientation; frequencies would likely be much lower in other genotypes. To test whether this mechanism may have contributed to maize genome evolution, we analyzed sequences flanking Ac/Ds and other hAT family transposons and identified three small tandem direct duplications with the structural features predicted by the alternative transposition mechanism. Together these results show that some class II transposons are capable of directly inducing tandem sequence duplications, and that this activity has contributed to the evolution of the maize genome.  相似文献   

15.
Koszul R  Dujon B  Fischer G 《Genetics》2006,172(4):2211-2222
The high level of gene redundancy that characterizes eukaryotic genomes results in part from segmental duplications. Spontaneous duplications of large chromosomal segments have been experimentally demonstrated in yeast. However, the dynamics of inheritance of such structures and their eventual fixation in populations remain largely unsolved. We analyzed the stability of a vast panel of large segmental duplications in Saccharomyces cerevisiae (from 41 kb for the smallest to 268 kb for the largest). We monitored the stability of three different types of interchromosomal duplications as well as that of three intrachromosomal direct tandem duplications. In the absence of any selective advantage associated with the presence of the duplication, we show that a duplicated segment internally translocated within a natural chromosome is stably inherited both mitotically and meiotically. By contrast, large duplications carried by a supernumerary chromosome are highly unstable. Duplications translocated into subtelomeric regions are lost at variable rates depending on the location of the insertion sites. Direct tandem duplications are lost by unequal crossing over, both mitotically and meiotically, at a frequency proportional to their sizes. These results show that most of the duplicated structures present an intrinsic level of instability. However, translocation within another chromosome significantly stabilizes a duplicated segment, increasing its chance to get fixed in a population even in the absence of any immediate selective advantage conferred by the duplicated genes.  相似文献   

16.
Propok'ev VV  Sukhodolets VV 《Genetika》2005,41(8):1038-1044
Homologous recombination between direct DNA repeats in tandem duplications usually leads to their dissociation. An even number of crossovers between two copies of a duplication should lead to the formation of diploid segregants, i.e., to the preservation of the duplication. However, in studies of the genotype of diploid segregants in heterozygous tandem duplications of Escherichia coli, it was shown that they arise by unequal exchanges between sister chromosomes rather than by intrachromosomal exchanges. Generally, these exchanges lead to the establishment of the homozygous state of (heterozygous) duplications. Since the available data suggest that the exchange between sister chromosomes may be coupled with DNA replication, it is supposed that unequal exchanges between direct DNA repeats occur in the process of DNA replication.  相似文献   

17.
Repetitive DNA is present in the eukaryotic genome in the form of segmental duplications, tandem and interspersed repeats, and satellites. Repetitive sequences can be beneficial by serving specific cellular functions (e.g. centromeric and telomeric DNA) and by providing a rapid means for adaptive evolution. However, such elements are also substrates for deleterious chromosomal rearrangements that affect fitness and promote human disease. Recent studies analyzing the role of nuclear organization in DNA repair and factors that suppress non-allelic homologous recombination (NAHR) have provided insights into how genome stability is maintained in eukaryotes. In this review, we outline the types of repetitive sequences seen in eukaryotic genomes and how recombination mechanisms are regulated at the DNA sequence, cell organization, chromatin structure, and cell cycle control levels to prevent chromosomal rearrangements involving these sequences.  相似文献   

18.
Loring Craymer 《Genetics》1981,99(1):75-97
Techniques have been developed for manipulating pericentric inversions in Drosophila that are based on the lethality of grossly aneuploid zygotes and the existence of recombinationally interconvertible genotypes for any heterozygous inversion complex: males of some of these genotypes will produce only aneuploid sperm, which can be used to rescue complementary aneuploid ova and selectively recover recombinational derivatives of inversions. Markers can be recombined into inversions through a sequence of selected single exchanges, and a novel type of duplication can be synthesized from overlapping inversions that has the characteristics of both insertional and tandem duplications; there are also applications to half-tetrad analyses.——Two cytogenetic screens are developed: (1) the dominant lethality of a large insertional-tandem duplication can be reverted by deletional events that give rise to net deficiencies or duplications, and (2) deficiencies and tandem duplications in proximal regions can be selectively recovered as the results of unequal exchanges within an inversion loop. Recombinants have been recovered between breakpoints separated by distances of as little as fifty bands, arguing against the existence of some small number of sites necessary for the initiation of recombinational pairing. In several instances, hyperploids for four to six numbered divisions were observed to be fertile in both sexes.  相似文献   

19.
Repetitive DNA is present in the eukaryotic genome in the form of segmental duplications, tandem and interspersed repeats, and satellites. Repetitive sequences can be beneficial by serving specific cellular functions (e.g. centromeric and telomeric DNA) and by providing a rapid means for adaptive evolution. However, such elements are also substrates for deleterious chromosomal rearrangements that affect fitness and promote human disease. Recent studies analyzing the role of nuclear organization in DNA repair and factors that suppress non-allelic homologous recombination (NAHR) have provided insights into how genome stability is maintained in eukaryotes. In this review, we outline the types of repetitive sequences seen in eukaryotic genomes and how recombination mechanisms are regulated at the DNA sequence, cell organization, chromatin structure, and cell cycle control levels to prevent chromosomal rearrangements involving these sequences.  相似文献   

20.
Duplication and amplification of toxin genes in Vibrio cholerae   总被引:60,自引:0,他引:60  
J J Mekalanos 《Cell》1983,35(1):253-263
Vibrio cholerae strains of the classical biotype all contain two widely separated copies of the cholera toxin operon ctxAB. In contrast, EI Tor strains containing multiple copies of ctx have their copies arranged on large tandem repeats which are either 7 or 9.7 kb in length. The variation in size among these large tandem duplications was due to a difference in the copy number of a smaller, 2.7 kb, tandemly repeated sequence (RS1) that is located at the novel joint of these duplications, as well as upstream and downstream of ctx. Southern blot hybridization analysis indicated that amplification of a DNA region carrying ctx and flanked by direct repeats of RS1 may be responsible for the hypertoxinogenic phenotype of EI Tor variants selected by intraintestinal growth in rabbits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号