首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transfer RNAs (tRNAs) are grouped into two classes based on the structure of their variable loop. In Escherichia coli, tRNAs from three isoaccepting groups are classified as type II. Leucine tRNAs comprise one such group. We used both in vivo and in vitro approaches to determine the nucleotides that are required for tRNA(Leu) function. In addition, to investigate the role of the tRNA fold, we compared the in vivo and in vitro characteristics of type I tRNA(Leu) variants with their type II counterparts.A minimum of six conserved tRNA(Leu) nucleotides were required to change the amino acid identity and recognition of a type II tRNA(Ser) amber suppressor from a serine to a leucine residue. Five of these nucleotides affect tRNA tertiary structure; the G15-C48 tertiary "Levitt base-pair" in tRNA(Ser) was changed to A15-U48; the number of nucleotides in the alpha and beta regions of the D-loop was changed to achieve the positioning of G18 and G19 that is found in all tRNA(Leu); a base was inserted at position 47n between the base-paired extra stem and the T-stem; in addition the G73 "discriminator" base of tRNA(Ser) was changed to A73. This minimally altered tRNA(Ser) exclusively inserted leucine residues and was an excellent in vitro substrate for LeuRS. In a parallel experiment, nucleotide substitutions were made in a glutamine-inserting type I tRNA (RNA(SerDelta); an amber suppressor in which the tRNA(Ser) type II extra-stem-loop is replaced by a consensus type I loop). This "type I" swap experiment was successful both in vivo and in vitro but required more nucleotide substitutions than did the type II swap. The type I and II swaps revealed differences in the contributions of the tRNA(Leu) acceptor stem base-pairs to tRNA(Leu) function: in the type I, but not the type II fold, leucine specificity was contingent on the presence of the tRNA(Leu) acceptor stem sequence. The type I and II tRNAs used in this study differed only in the sequence and structure of the variable loop. By altering this loop, and thereby possibly introducing subtle changes into the overall tRNA fold, it became possible to detect otherwise cryptic contributions of the acceptor stem sequence to recognition by LeuRS. Possible reasons for this effect are discussed.  相似文献   

2.
The structure, phylogeny and in vivo function of the base pair formed between nucleotides 32 and 38 of the tRNA anticodon loop are reviewed. The A32-U38 pair, which is highly conserved in tRNA2(Ala) and sometimes observed in tRNA2(Pro), was recently found to decrease the affinity of tRNAs to the ribosomal A site relative to other 32-38 combinations. This suggests that the role of 32-38 pair is to tune the tRNA affinity in the A site to a uniform value. New experiments presented here show that the U32C mutation in tRNA1(Gly) increases its affinity to the cognate codon and to codons with third position mismatches in the A site. This suggests that one reason for uniform tRNA binding to evolve was to avoid incorrect codon recognition.  相似文献   

3.
In the bacterial decoding system, the AUA codon is deciphered as isoleucine by tRNAIle bearing lysidine (L, 2-lysyl-cytidine) at the wobble position. Lysidine is an essential modification that determines both the codon and amino acid specificities of tRNAIle. We identified an enzyme named tRNAIle lysidine synthetase (TilS) that catalyzes lysidine formation by using lysine and ATP as substrates. Biochemical studies revealed a molecular mechanism of lysidine formation that consists of two consecutive reactions involving the adenylated tRNA intermediate. In addition, we deciphered how Escherichia coli TilS specifically discriminates between tRNAIle and the structurally similar tRNAMet, which bears the same anticodon loop. Recent structural studies unveiled tRNA recognition by TilS, and a molecular basis of lysidine formation at atomic resolution.  相似文献   

4.
5.
The steps of UUC recognition by tRNAPhe were analysed by temperature-jump measurements. At ion concentrations close to physiological conditions we found three relaxation processes, which we assigned to (1) formation of codon-anticodon complexes, (2) a conformational change of the anticodon loop coupled with Mg2+ binding, and (3) codon-induced association of tRNA. The relaxation data were evaluated both by the usual procedure (fitting the exponentials evaluated from the individual experiments of a set to a reaction model) and by "global fitting", i.e. fitting a set of relaxation curves obtained at various concentrations directly to a reaction model, thus leaving out the intermediate exponential fitting step. The data can be represented quantitatively by a three-step model: the codon binds to the anticodon at a rate of 4 X 10(6) to 6 X 10(6) M-1S-1 as is usual for the formation of oligomer helices; the conformation change of the anticodon loop is associated with inner sphere complexation of Mg2+ at a rate of 10(3) S-1; the codon-tRNA complexes form dimers at a rate of 5 X 10(6) to 15 X 10(6) M-1S-1. A similar mechanism is found for the binding of the wobble codon UUU to tRNAPhe at increased concentrations of Mg2+. Measurements at different Mg2+ concentrations demonstrate the distinct role of this ion in the codon recognition and the codon-induced tRNA dimerization. We propose a simple mechanism, based upon the special properties of magnesium ions, for long-distance transfer of reaction signals along nucleic acid chains.  相似文献   

6.
The accurate decoding of the genetic information by the ribosome relies on the communication between the decoding center of the ribosome, where the tRNA anticodon interacts with the codon, and the GTPase center of EF-Tu, where GTP hydrolysis takes place. In the A/T state of decoding, the tRNA undergoes a large conformational change that results in a more open, distorted tRNA structure. Here we use a real-time transient fluorescence quenching approach to monitor the timing and the extent of the tRNA distortion upon reading cognate or near-cognate codons. The tRNA is distorted upon codon recognition and remains in that conformation until the tRNA is released from EF-Tu, although the extent of distortion gradually changes upon transition from the pre- to the post-hydrolysis steps of decoding. The timing and extent of the rearrangement is similar on cognate and near-cognate codons, suggesting that the tRNA distortion alone does not provide a specific switch for the preferential activation of GTP hydrolysis on the cognate codon. Thus, although the tRNA plays an active role in signal transmission between the decoding and GTPase centers, other regulators of signaling must be involved.  相似文献   

7.
Three glutamine tRNA isoacceptors are known in Tetrahymena thermophila. One of these has the anticodon UmUG which reads the two normal glutamine codons CAA and CAG, whereas the two others with CUA and UmUA anticodons recognize UAG and UAA, respectively, which serve as termination codons in other organisms. We have employed these tRNA(Gln)-isoacceptors as tools for studying unconventional base interactions in a mRNA- and tRNA-dependent wheat germ extract. We demonstrate here (i) that tRNA(Gln)UmUG suppresses the UAA as well as the UAG stop codon, involving a single G:U wobble pair at the third anticodon position and two simultaneous wobble base pairings at the first and third position, respectively, and (ii) that tRNA(Gln)CUA, in addition to its cognate codon UAG, reads the UAA stop codon which necessitates a C:A mispairing in the first anticodon position. These unorthodox base interactions take place in a codon context which favours readthrough in tobacco mosaic virus (TMV) or tobacco rattle virus (TRV) RNA, but are not observed in a context that terminates zein and globin protein synthesis. Furthermore, our data reveal that wobble or mispairing in the middle position of anticodon-codon interactions is precluded in either context. The suppressor activities of tRNAs(Gln) are compared with those of other known naturally occurring suppressor tRNAs, i.e., tRNA(Tyr)G psi A and tRNA(Trp)CmCA. Our results indicate that a 'leaky' context is neither restricted to a single stop codon nor to a distinct tRNA species.  相似文献   

8.
In order to further elucidate the mechanism of tRNA methylase-tRNA intreaction the methylation of some individual tRNAs separately and by pairs was performed. In conditions of tRNA excess the methylation rates of positionally analogous nucleotides in tRNA molecules are not summed up when two substrates are simultaneously present in the reaction mixture. The inhibitory action of yeast tRNASer, possessing m5c in position 29, on the methylation of C29 in other individual tRNAs was shown. Yeast tRNAVal which possesses an A residue in position 27 was shown to inhibit the methylation of G27 in E. coli tRNAMet. The data obtained confirm the suggestion that tRNA methylases recognizes the tertiary structure of tRNAs. They show also that the recognition and the proper catalytic action are two autonomous processes and that the former at least in its first stage is rather unspecific.  相似文献   

9.
10.
11.
Recognition of the stop codon by the translation machinery is essential to terminating translation at the right position and to synthesizing a protein of the correct size. Under certain conditions, the stop codon can be recognized as a coding codon promoting translation, which then terminates at a later stop codon. This event, called stop codon readthrough, occurs either by error, due to a dedicated regulatory environment leading to generation of different protein isoforms, or through the action of a readthrough compound. This review focuses on the mechanisms of stop codon readthrough, the nucleotide and protein environments that facilitate or inhibit it, and the therapeutic interest of stop codon readthrough in the treatment of genetic diseases caused by nonsense mutations.  相似文献   

12.
13.
tRNA identity: a hair of the dogma that bit us   总被引:13,自引:0,他引:13  
M Yarus 《Cell》1988,55(5):739-741
  相似文献   

14.
The major valine acceptor tRNA1Val from rabbit liver was purified and its nucleotide sequence determined by in vitro [32P] - labeling with T4 phage induced polynucleotide kinase and finger-printing techniques. Its primary structure was found to be identical with the major valine tRNA from mouse myeloma cells. According to the wobble hypothesis this tRNA, which exclusively has an IAC anticodon, should decode the valine codons GUU, GUC and GUA only. However, this tRNA recognizes all four valine codons with a surprising preference for GUG. It is unknown whether this is due to the lack of A37 modification next to the 3' end of the anticodon IAC. The nature of the inosine-guanosine interaction remains to be clarified.  相似文献   

15.
16.
17.
T Suzuki  T Ueda    K Watanabe 《The EMBO journal》1997,16(5):1122-1134
In some Candida species, the universal CUG leucine codon is translated as serine. However, in most cases, the serine tRNAs responsible for this non-universal decoding (tRNA(Ser)CAG) accept in vitro not only serine, but also, to some extent, leucine. Nucleotide replacement experiments indicated that m1G37 is critical for leucylation activity. This finding was supported by the fact that the tRNA(Ser)CAGs possessing the leucylation activity always have m1G37, whereas that of Candida cylindracea, which possesses no leucylation activity, has A37. Quantification of defined aminoacetylated tRNAs in cells demonstrated that 3% of the tRNA(Ser)CAGs possessing m1G37 were, in fact, charged with leucine in vivo. A genetic approach using an auxotroph mutant of C.maltosa possessing this type of tRNA(Ser)CAG also suggested that the URA3 gene inactivated due to the translation of CUG as serine was rescued by a slight incorporation of leucine into the polypeptide, which demonstrated that the tRNA charged with multiple amino acids could participate in the translation. These findings provide the first evidence that two distinct amino acids are assigned by a single codon, which occurs naturally in the translation process of certain Candida species. We term this novel type of codon a 'polysemous codon'.  相似文献   

18.
By two-dimensional nuclear magnetic resonance (2D-NMR) spectroscopy, we analyzed dynamic structures of various tRNA species from Escherichia coli and Bacillus subtilis. Proton resonances due to the anticodon of the tRNA molecules were unambiguously identified by NOESY and 2D-HOHAHA techniques. Thus, it was found that rigidity/flexibility of the two types of modified uridines in the first position of the anticodon were certainly related with the codon recognition properties of the tRNA species.  相似文献   

19.
Nucleotides that contribute to the identity of Escherichia coli tRNA(Phe)   总被引:8,自引:0,他引:8  
A series of sequence variants of amber suppressor genes of tRNA(Phe) were synthesized in vitro and cloned in Escherichia coli to examine the contributions of individual nucleotides to identity for amino acid acceptance. Three different but complementary types of tRNA variants were constructed. The first involved the substitution of base-pairs on the cloverleaf stem regions of the E. coli tRNA(Phe). The second type of variant involved total gene synthesis based on wild-type tRNA(Phe) sequences found in Bacillus subtilis and in Halobacterium volcanii. In the third type of variant, the identity of E. coli tRNALys was changed to that of tRNA(Phe). The nucleotides which are important for tRNA(Phe) identity in E. coli are located on the corner of the L-shaped tRNA molecule, where the dihydrouridine loop interacts with the T loop, and extend to the interior opening of the anticodon stem and the adjoining variable loop. The nucleotide sequence on the dihydrouridine stem region, which joins the corner and stem regions, was not successfully studied though it may contribute to tRNA(Phe) identity. The fourth nucleotide from the 3' end of tRNA(Phe) has some importance for identity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号